

Agricultural Research Institute PUSA

PROCEEDINGS

OF THE

ROYAL SOCIETY OF LONDON

Serirg A

CONTAINING PAPERS OF A MATHRMATICAL AND PHYSICAL CHARACTER.

V()L. CXII.

LONDON.
Printel hon THE ROYAL SOCIETY and Sold by HARRISON AND SONS, LTt, ST MARTIN'S LANE, PRINTERS IN ORDINARY TO HIB MAJKSTY.

Octozer, 1926, "

BONDON

HAKHIGON AND RONS, LTD, PRINTKRS in DKDINARY TO HIS MAJEGTY, • ot Mahtin'g lane

CONTENTS.

SERIES A. VOL CXIT.

No A 760-August 3, 1920
Page
, Itesearchea on the Mode of Dastribution of the Constanta of Simplea taken ut Raniom from a Bivariate Normal Population By K Pearson, FRS I
Further Sicx tronoopio Studiea on the Luminuis Vapour Distilled from Melalli Arca By lord layligh, FRN (PLitex 1-3) 14
The Freozing of Gelatin (IAl Hy T Moran (Plate 4) Communirated by Gir Willam Hardy, FRS 30
A Mioroscopic Study of the Frcoking of Gel. Iy Sir William Hardy, FRS (Plato 5) 47
Studiea in Adheaion -I Hy Sir Willasm Hardy, FRS, and M. Notage 62
Atomio States and Spoutral Terms By J C MoLennen, FHS, A H MeLay, and H G. Smith 70
On the Struoture of the Arc Spartrum of Gold Hy I (' McLonnan, FRS, and A B MoLay 95
On the Sories Spectra of l'alladum By J C McLomen, FRS, and H G Smith 110
The Equabrinm of Heterogeneous Syatoms including blectrolytag --- I'art I Fundanental Equations and I'hase Rule By J A V Hutler Comminicated 129
An Investigation of the Diffeote of Variationa In the Radiation Factor on the Fifinency of Dewar Vessals By \mathbf{B} Lambert and K T Harlley Commumeated by Piof F Noddy, FRS 136
On the Action of a Locomolive Drivnig Wheel By F W Carter Comminicated by Prof A E LI Love, F R S 151
On the Speatic Hoat of Ferromagnolio Subetaneas By W Suckamith and H H Pottor. Commumeated by Prof. A P. Chattock, F R S 167
On the Change of Hefractive Index of Lineced Oil in the Process of Dryang and ita Effect on the Doterioration of Oil Paintings By A [' Laurie Communcered by Bur Arthur Schuster, E'R S 176
The Effeat of Ocoluded Hydrogen on the Tonsile Strongth of Iron By L H Pfeil (Plates 6 and 7) Communicatod by Prol H C H. Carpentor, F,N S.. 182
The Infra-red Anoondary Speotrum of Hydrogon.' By T. F. Aillibone (Plate 8) Communcated by l'rof S R Milner, F H S 196
A Further Note upon " Inter-traction" Hy Sir Almmoth Wright, FRE. (Plate θ) 213
The Moleoular Fiolds of Hydropen, Nilmogn and Neon Dy J E Jannard-Jonee and W R, C'ook Communicated by Prof S Chapman, F.RS' 214
The Forces leturen Atoms and Ions Hy d \mathbf{E} Lenasid-Jones and B M Dent Communicated by Prof S Chapmen, FRS 1930
The Origin of the Electrical Chargo on Small Particlea in Water By T Alty Communicated by Sur Jow ph Thomson, F R B 235
The Effect of Superposed Alternating (turrent on the Polariaibla Primary Cell Zane -
Sulphuric Acid - C'arbon P'art II-High Frequoncy Current By A J Allmand and H C Cocks Communtated by l'ruf 8 smuley, F His 252
The Polariselon of Zine Electrodea in Neutral and Acid solutlone of Zanc Salam by Drect and Alternaling Currents -liart I Hy A I Allmand and H \mathbb{C} Cocky Communiented by Prof S Smules FRS 250
A Method of Study ing the Hehaviour of X-Itay Tubea Hy R C Richarils Com- mumeatiad by l'rof 4 W Porter, FRS 280
Tensile Texte of Large Guld, Sdver and Copper Cryatals Hy C N. Elam Com municatiod lyy Prof H (' H Ciarpenter. FILS 289
No A 7ill-Heptember 1, 1920
The Atractphom of (ineer by Charcoal --I Ky il A Smith, FRS 998
A Comparison of the Kecords froin Britash Magneliu Stationa I'nderground and Surface. By C'. Chree, FRS, and Il F. Wateon 304
On the Gyration of Light lyy Multiplet Lines Hy C' G Darwin, F.R s 314
The Dastortion of Iron (ryataln IY, G, I 'Teylor, FRS, and C' F Elam (Platea 10-12) 337
The Atructurg of Thin Filme Part VllL-Expended Filmas. By N K Adem and G. Jexsop Communcated hy Sir Willian Hardy, Fit is 362
The Structure of I'hin Filme Part IX-Dibabic Sulstanoea By N. K. Adam and G Jersop Communicated by Sir Willim Hardy, F R,S 376
The Number of Partucles in Heta-Rey Spentra II -Thorium B and Thomum ($\operatorname{B}+\mathbf{C}+\mathrm{D}$) By R W Gurney. Communcated by Lir Ernast Rutherford, Pree RS 380
Exporimenta upon the Reported Transmutation of Mercury into Oold By M. W. Garrett Communicated by Prof F. A. Lindemann, FRS 301
The More Reframple Band Ryatern of Cyanogen as Developect in Acture Nitrogen By W Jevons (Plates 13 and 14) (Communated by I'rof A Fowler, FHS 407
 111
The Structure and Isotrimorphism of the Tersalont Metalle Acetylacatozea Hy W T Astbury Addendum by (T Morgin, FRS Commanuated by Nis Willam Bragg. Fils 448
Change of Cryatal Structure of Some Saltr when ('riutaliamed from Silicie Acul Gel --. The Structure of silicic Aid (ael By H A Fella nod J H firth (Plateen 10 and 17.) ('ommuncated by Prof F \& hipping FKN 465
No A 782- (W-tober 1, 1026
Studies upon Catalytic ('ombustion---Part III The InAurnce of Sitenm upon the Catalytua Combustion of C'aibonic Oxide By Wilhum A Bone, Fits 174
Effects of Thermal Treatment on Olaw as whown by fiecise Vimometry bs, Vaughan H Stutt, D) Turnur und H A Sloman (Plater IA and IV) (om municated by Dr W Resenhain, FRS 400
Amplitude of Sound Waves in lipes By E. G Richarison Commumanted by Prof A. W Porter, F.MS 622
The Solubility and Rate of Solution of Oxygen in Silver By E W R Ntima and FMG, Johnson Commumented by Prof 4 A Eve, Fins 542
The Flexure of Thick Chrcular Platey Jy (' 1 Clemmow Commumunted by Prof A, E If Love, ERS 505
On the Total Photo-Electric Emisajon of Elections Irom Metale an a Functuon of Temperatury of the Fixcting Radiation By N (' Rov Commumented by Prof O W Richardson, FR S 699
 J Young (Plate 20) Communcutel by Prof is W I Smiti, FRis (i30)
On the Exestation of Polarised Light by Electron Impact By H W IS Skinner (Plate 2]) Communieated by hir Ernewt Ruthorford, Prem RS 142
On the Theory of Qiuntruin Merhunict By P A M Dirac Commumeated by H H Fowler, F R S 661
The Struature of $\boldsymbol{\gamma}$-Brass, By A J Bradley and $\%$. Thewhs ('ommunicatad by Prof W. L Bragg, FR.S 078
. Index 69.9

PROCEEDINGS OF
 THE ROYAL SOCIETY.

- Shgtion A-Mathematicil and Phisical Soiences

Researches on the Mode of Distrlution of the Constants of Sumples taken at random from a Bivariate Normal Population.

By Karl Prarson, f R S

(Recen ed April 26, 1926)
(1) The theory of brmples, whatever their tize, has been largely developed of recent years This development may be said to have followed two independent lines. In the first of these there is no lunitation to the nature of the frequency in the sampled population, that population has been supposed to be known by its momental (oeffic cente, and the amm has been to determine the momental roelficients of the population of samples, and to find the successive momontal coefficients of these momental coefficientes themselves Thus we now know completely the first four momentul coulficients of the distribution of means, and of atandard deviations of aamples of any shae large or small taken from a finste population with any law of diatribution These give us aome general idea of how thesi menns und stundard devintions are lileely to occur in practice But the nypresquis are very lengthy, and in the case of the third and fourth moments inventigators have boen reduced to approximations, or to supposing the population sampled "infinite," $2 e$., to supposing an individual just drawn to be returned to the anmplor population before the next drawing. Some recent researches, experimental and theoretical, seem to indicate that if the sample be not more than about one-fiftieth of the samplod population, it is, for practical purposes, indifierent whether we consider tho population sampled fimite or "minite "

The second form of investigation is to olbtain, if posmible, not the momental constants, but the actual frequency distributions of tho various chararters whoch describe the distributions of samplea Thus the dertributions of the
means of samples from populations following certein types of frequency ourves can now be written down in algebraical form. But thus far this mathod of inquiry has not been very fruitful, excopt in the cass when the sampled population is supposed to follow a normal law and is considered infinite. In thas case the distrbutions of the means, standard devations, and the correlation coefficients have now been very completely studied. There are, however, other characters of samples, what we mey term "compound characters," that contrmbute essentially to our knowledge of sampling, and of which it is possible to obtan the theoretical distributions Illustrations of this will be given in the present meinomr It must be remembered, of course, that they only apply to samples from a normal population, but these samples may be as small or as large as we please, and the reaults may possibly tend to throw light on the corresponding distributions for samples in the case of nonnormal sampled populations
(2) I suppose the sampled population bivariate, with variates x and y weasured from the means m_{1}, n_{2}, the staudard deviations a_{1}, a_{Ω}, and tho correlation ρ. If the size of the population be N , the distribution will be given by the surface

Let the size of the samples be M, the means, standard deviations and oorrelation coefficient of any individual sample be given by $\bar{x}, \bar{y}, \Sigma_{1}, \Sigma_{2}$ and r. Then it is known that the frequency siuface for the distribution of these five variables is given by

$$
\begin{aligned}
& z=z_{0} e^{-\frac{M}{2}\left(\frac{\left(\bar{r} m_{1}\right)^{2}}{\sigma_{1} \lambda^{2}}-\mu_{p}^{(\bar{r}} \frac{\left.m_{1}\right)\left\langle\bar{y}-m_{2}\right)}{\sigma_{1} \sigma_{1}}+\frac{\left(\bar{y}-m_{2}\right)^{2}}{\left.\sigma_{2}\right)^{2}}\right) \frac{1}{1-\rho^{2}}}
\end{aligned}
$$

$\left[d \bar{x} d \bar{y} d \Sigma_{1} d \Sigma_{1} d r\right]$.
It follows accordungly that if any "compound character" involves more than r, Σ_{1} and $\Sigma_{2}, v e$., involves either \bar{x} or \bar{y} or both, we must use the complete fivevariate surface to ascertain ite distribution. We will illustrate the process in various cases
(3) The Dhstribution of $\Sigma_{1} \sqrt{\overline{1}-r^{2}}$ in Samples.-If the population be normal' $\Sigma_{1} \sqrt{1-r^{2}}$ represents the standard deviation of any array about the unean of that array, and ita "probable error" is a matter of considerable upportance. In the case of any single array, the total number in the array varies from ampla to
ample, and we are here concerned not with the value of the standard deviation as found from the single array, but as determined from Σ_{1} and r of the whole sample. I write $\lambda=\Sigma_{1} \sqrt{1-r^{9}}$, and we need considar only the $r, \Sigma_{1}, \Sigma_{y}$ factor in (ii), for \bar{x} and \bar{y} are independent variatos and can be aupposed integrated out. To simplify the expressions we will put.

$$
\begin{equation*}
s_{1}=\sigma_{1} \sqrt{1-\rho^{2}} / \sqrt{\bar{M}} \text { and } s_{2}=\sigma_{2} \sqrt{1-\rho^{2}} / \sqrt{\bar{M}}, \tag{iu}
\end{equation*}
$$

and farther throughout indicate the independent variables by placing their differentials in square brackets after the equation to the surface. As to the conatant z_{0} we can throw any additional fartors into it which do not involve the independent variables themselves. It will thus change with ench transformation of varisbles and whth ench integration ; we shall indicate such changes by merely adding a dash to the letter z_{0} The final value of z_{0} is to be found by a simpleintegration of the remsining constant or compound character, and wll be expressible in terms of the total number of samples and the constante of the distribution Thes process is much simpler than substituting for z_{11} ita value ab amtio, and followng it through all the vanate ohangea and integrations Finally we may note that if we retain two of the original variates, two compound characters, or one original variate and one compound character, we get the corresponding corrclation surfaces, from which the regression curves may be deduced. These are frequently of considerable interest, but become at tumes, both as to surface and regresaion curve, of considerable complezity
In our present case, we start with
and transform the variablas to $\lambda, \sum_{i v}^{\prime \prime}$ anil r, thus reanching -

I now write $v=t \frac{\Sigma_{g}{ }^{2}}{y_{2}{ }^{2}}$, and transform the varinbles to λ, v and r, expanding the thind exponential.

We have :
and alter integrating with regard to v from 0 to ∞ :

We must now integrate this from $r=-1$ to +1 . Let un put $r=\sin \theta$, sad the general term in r being :
we have for its integral:
which vansshes when t is odd. When $t=2 \tau$, if $\gamma=\delta_{1} / \lambda$ and $u=\tan \theta$, we heve the value

$$
e^{-1} \frac{A a}{a_{i}^{2}} \int_{-\infty}^{+\infty} e^{-1 \frac{u a}{r^{2}} u^{\frac{s}{2}} d u,}
$$

wheh in equal to

$$
e^{-\frac{-1 \frac{A}{1 i}}{r_{1}} \sqrt{2 \pi} \gamma(2 \tau-1)(2 \tau-3) \cdot 1 \cdot \gamma^{2 \pi} .}
$$

Hence

As the series in τ is indepeadeat of λ, it can be again thrown into the $\approx_{0}{ }^{t}$, and we have finally for the distribution of λ, the ourve .

$$
\begin{equation*}
z=z_{0}{ }^{\top} e^{-1 \frac{M \lambda}{\sigma_{1} \lambda^{2}\left(1-\mu^{2}\right)}} \lambda^{M-z} . \tag{iv}
\end{equation*}
$$

Now the distribation curve for the atandard deviation Σ of samplea of size M taken from a normal population of atandard deviation σ is well-known to be :

Hence the distribution of λ is not the same as that of namplea taken from a population of standard deviation $\sigma_{1} \sqrt{1-\rho^{2}}$, the power terna wa $M-3$ and not M-2.
(iv) Provides the following pointa as to the distribution of λ -
(a) When M is of the order of $B 0$, for all practical purposes the distribution of λ may be trested as a normal curve, mesn value $=\sigma_{1} \sqrt{1 \rightarrow \rho^{2}}$ and standard deviation $=\frac{\sigma_{1} \sqrt{l-\rho^{2}}}{\sqrt{M}}$.
(b) The modal value of $\lambda=\lambda_{\text {mo. }}=\sqrt{\frac{\overline{M-8}}{M}} \sigma_{1} \sqrt{1-p^{2}}$.
(c) The mean value of $\lambda=\lambda_{\text {mee }}=\sqrt{\frac{2}{M}} \frac{\Gamma\left(\frac{M-1}{2}\right)}{\Gamma\left(\frac{M-2}{2}\right)} \sigma_{1} \sqrt{1-\rho^{2}}$.
(d) The standard deviation σ_{λ} of λ is given by

$$
\sigma_{\lambda}^{2}+\lambda_{\operatorname{ma}}^{2}=\frac{\sigma_{1}^{2}\left(1-\rho^{2}\right)}{M}(M-2),
$$

and can thus be found for any given value of M.
(e) The frequency for any desired range of λ can be found from the Tables of the Incomplate Γ-Functions, H M Stationery Office
(4) The Drstribution of the Regressuon Coefficients R_{2}.--The value of R_{2} for the second vanate on the first is: $\mathrm{R}_{2}=r \Sigma_{a} / \Sigma_{1}$. We shall accordingly again need only the second part of our five-variate surface (i) and shall transform the variatea Σ_{1}, Σ_{2} and r to Σ_{1}, Σ_{2} and R_{2}. We have

Now $\boldsymbol{r}=\mathbf{R}_{\mathbf{R}} \Sigma_{1} / \Sigma_{\mathrm{g}}$ is always less than unity, and therefore whether M be even or odd the expansion of the binomal $\left(1-\frac{R_{2}^{2} \sum_{2}^{2} L_{2}^{2}}{\sum_{2}^{2}}\right)^{M-4}$ is legitimate. If M be even, there will be a finute number of terms, if M be odd, the series wall still convarge and gamma functions, such as $\Gamma(M / 2-i)$ where 8 is a pountive integer, will still have a real value reducible by means 0°. the relation

$$
\Gamma(-m)=\Gamma(1-m) /(-m)
$$

ultimataly to $\Gamma(\mathbf{t})$. We can accordingly write our binomial expansion :

$$
\left(1-\frac{R_{4}{ }^{2} \Sigma_{2}^{2}}{\Sigma_{2}^{2}}\right)^{\frac{Y-4}{2}}=S_{i}(-1)^{\prime} \frac{R_{2}^{2 t} \Sigma_{1}^{20}}{\Sigma_{2}^{21}} \frac{\Gamma\left(\frac{M-2}{2}\right)}{\Gamma\left(\frac{M-2}{2}-t\right) \iota 1}
$$

and prooeed without regard to whether M is even or odd
We will first integrate with regand to Σ_{g}, writing :

$$
v=d \frac{\Sigma_{8}{ }^{8}}{z_{9}{ }^{2}} .
$$

We have

But

$$
\int_{0}^{\infty} e^{-\eta} v^{1 M-2-3} d v=\Gamma\left(\frac{1}{2} M-1-\ell\right)
$$

Hence we get the surface for Σ_{1} and \mathbf{R}_{2}

$$
\begin{equation*}
z=z_{0}^{\prime \prime} e^{-1 y_{1,1}^{1}\left(1-\frac{\sum_{0}}{n_{1}} \mathrm{R}_{1}+\mathrm{R}_{1}, \frac{\mathrm{~B}, \mathrm{~L}}{r_{1}}\right)} \Sigma_{1} \mathbf{u - 1}\left[d \Sigma_{1} d \mathrm{R}_{\mathrm{n}}\right] . \tag{vi}
\end{equation*}
$$

This is the correlation aurface of Σ_{1} and $R_{2}, i e$, the correlation surface for a atandard deviation of one varrate afd the regression coefficient of the second variste on this varaste. It is clear that for a given value of Σ_{1} the distribution of R_{2} is a normal curve with mean and mode $=\rho s_{1} / s_{1}=\rho \sigma_{2} / \sigma_{1}$, i e., the regreasion coefficient in the sampled population The regression line is therefore a horizontal stranght line, but the standard deviation of the arrays of $\mathbf{R}_{\mathbf{a}}$ for e . given Σ_{j} is $a_{3} / \Sigma_{1}=\frac{\sigma_{9} \sqrt{1-p^{2}}}{\Sigma_{1} \sqrt{M}}, i e$, the acedastic curve is a reotangular hyperboln This is a good llustration of how "correlation" oan exist, when the regression line 18 horizontal, but the shapes of the array ourves vary.

If we consider the regression of Σ_{1} on $\mathbf{R}_{\mathbf{g}}$ we find for the modal value $\bar{m}_{\mathbf{p}} \bar{\Sigma}_{1}$ of Σ_{1} for a given R_{1}

$$
\begin{equation*}
\left.\mathrm{R}_{1} \bar{\Sigma}_{1}=\sqrt{\frac{\overline{\mathrm{M}-1}}{\bar{M}}} \frac{\sigma_{1} \sqrt{1-\rho^{2}}}{\left(1-2 \rho \frac{\sigma_{1}}{\sigma_{\mathbf{2}}} \mathrm{R}_{2}+\frac{\sigma_{1}^{1}}{\sigma_{\mathbf{2}}^{2}} \mathrm{R}_{\mathbf{2}}^{2}\right.}\right) \tag{vii}
\end{equation*}
$$

a quartic curve, whule for the mean ${ }_{H_{2}} \bar{\Sigma}_{1}$ we find

$$
\begin{equation*}
\dot{m}_{2} \vec{\Sigma}_{1}=\sqrt{\frac{2}{M}} \frac{\Gamma\left(\frac{1}{2}(M+1)\right)}{\Gamma\left(\frac{1}{2} M\right)} \frac{\sigma_{1} \sqrt{1-\rho^{2}}}{\left(1-2 \rho \frac{\sigma_{1}}{\sigma_{\ell}} R_{2}+\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} R_{2}^{2}\right)} \tag{vii}
\end{equation*}
$$

or a parallel quartio curve, These are further illugtrations of how, even for $M \rightarrow \infty$, s.e, for large samples, the regression need not become linear. Here, again, the standard devistion of the array of Σ_{1} for a given R_{1} is very far from constant, i.e., the system is heterosoedartic.

We oan now integrate the expression (vi) for Σ_{1} and find at once

$$
\begin{align*}
& z=z_{0}^{\prime \prime \prime} \frac{1}{\left(1-\frac{2 p_{1}}{8_{\mathrm{g}}} R_{2}+s_{1}{ }^{2} \frac{R_{2}^{2}}{\delta_{R^{2}}^{2}}\right)^{1 \prime \prime}} \\
& =\frac{z_{0}^{\mathrm{k}}}{\left(\frac{\sigma_{g^{2}}^{2}}{\sigma_{1}^{2}}\left(1-\rho^{2}\right)+\left(R_{\mathrm{g}}-\rho \frac{\sigma_{\mathrm{g}}}{\sigma_{1}}\right)^{2}\right)^{\mathrm{M}}} \tag{ix}
\end{align*}
$$

This is a aymmetrical curve of my Type vi The slope of the regression line varies symmetrically round the value in the sampled population proceeding from plus to manus infinity.

The momontal coefficients of this curve aro given by the relations

$$
\begin{equation*}
\mu_{2,}=\frac{2 s-1}{M-(2 s+1)} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\left(1-\rho^{2}\right) \mu_{2,-1} \quad \mu_{2 n+1}=0, \tag{x}
\end{equation*}
$$

Accordingly,

$$
\begin{gather*}
\sigma_{H_{3}}=\frac{1}{\sqrt{M}-3} \frac{\sigma_{2}}{\sigma_{1}} \sqrt{1-\rho^{2}}, \\
\beta_{2}=3 \frac{\mathrm{M}-3}{\mathrm{M}-5}, \quad \beta_{1}=15 \frac{\mathrm{M}-3 \mathrm{M}-3}{\mathrm{M}-\overline{\mathrm{K}} \frac{\mathrm{M}-7}{2}}, \& c
\end{gather*}
$$

Thus as $M^{-} \propto$, we have $\beta_{\mathrm{s}}=3, \beta_{1}=1 \delta$, etr, or the normal values, or the regression coefficient tends with increasing size of the sample to n normal distribution, and we have for the atandard deviation the value

$$
\begin{equation*}
\sigma_{\mathrm{II}_{\mathrm{I}}}=\sqrt[1]{\sqrt{\mathrm{M}} \frac{\sigma_{\mathrm{g}}}{\sigma_{1}} \sqrt{1-\rho^{2}}} \tag{xil}
\end{equation*}
$$

This is the usual value deduced for large amples, irrospective of the nature of the sampled population, on the assumption that it has hear regression. It seems probable, acoordingly, that the result (a) may extend further than for normal distributions of the sampled population

The determination of the frequency of $\mathbf{R}_{\mathbf{a}}$ within any given range depends upon a knowledge of the integral

$$
\int_{0}^{\varphi} \cos ^{\mathrm{m}-\varepsilon} \theta d \theta,
$$

s.e., on

$$
2 \int_{0}^{\pi} x^{-4}(1-x)^{1 \cos -81} d x, \text { if } x=\sin ^{2} 0,
$$

or

$$
\frac{1}{d} B_{x}\left(\frac{1}{2}, \frac{1}{1}(M-1)\right) .
$$

Thus it reduces to a knowledge of the incomplete B-function, tables of which are in proparation and will be shortly published.
(5) The Dustribution of the Mean of the Array of y-Variates for a Gwen Vahue of the x-Varuate-We will represent this quantity by \bar{y}_{x} to be determuned not from the individuals observed in that array in the given sample, but from the regression straight line of the sample In other words, we take

$$
\begin{equation*}
\bar{y}_{\mathrm{z}}-\bar{y}=r \frac{\Sigma_{2}}{\Sigma_{\mathrm{k}}}(x-\bar{u}) . \tag{xiii}
\end{equation*}
$$

It is clear that \vec{y}_{x} involves all the five constants $\bar{c}, \bar{y}, \Sigma_{1}, \Sigma_{y}$ and r of the sample. Accordingly, we shall need to use the two parts of the five-variate surface (ii)
We may write -

$$
\bar{y}-m_{2}=\bar{y}_{x}-m_{2}-R_{g}\left(x-m_{1}-\left(\bar{i}-m_{1}\right)\right)
$$

and throw this into the form:-

$$
\overline{\mathbf{Y}}=\overline{\mathbf{Y}}_{z}-\mathbf{R}_{2}(\mathbf{X}-\overline{\mathbf{X}}),
$$

where $\overline{\mathrm{Y}}=\bar{y}-m_{\mathrm{q}}, \overline{\mathrm{Y}}_{x}=\bar{y}_{x}-m_{\mathrm{q}}, \mathbf{X}=x-m_{\mathrm{l}}, \overline{\mathrm{X}}=\bar{r}-m_{1}$ and $\mathrm{R}_{\mathrm{a}}=$ $r \boldsymbol{\Sigma}_{\mathbb{k}} / \Sigma_{1}$ as before Here X is an absolute constant from samplo to sample, and we have $d \bar{v}=d \overline{\mathrm{X}}, d \bar{y}=d \overline{\mathrm{Y}}$ and $=d \bar{y}_{x}$ if we transforn for \bar{y} to \bar{y}_{x} keepung the variates R_{2} and X conatant. The first portion of our surface (ii) may be written

Transform thus to $\overline{\mathbf{X}}$ and $\overline{\mathbf{Y}}_{\text {v, }}{ }^{\text {"and after }}$ 的mewhat lengthy rearranging we find:-
where

$$
\begin{equation*}
\bar{X}^{\prime}=\bar{X}-\frac{\sigma_{1}\left(Y_{m}-R_{2} X\right)\left(\rho-\frac{\sigma_{1}}{\sigma_{p}} R_{2}\right)}{\sigma_{\mathbb{L}}\left(1-2 \rho \frac{\sigma_{1}}{\sigma_{2}} R_{2}+\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}} R_{2}{ }^{2}\right)} . \tag{xiv}
\end{equation*}
$$

Keeping R_{11} and \bar{Y}_{E} constant we can integrate out for \bar{X}^{\prime} and the limits will be the same as for $\overline{\mathbf{X}}$, and so for $\overline{j_{1}}$ ve., from plus to minus infinity The result of the integration is
where

$$
\overline{\mathbf{Y}}_{z}^{\prime}=\overline{\mathbf{Y}}_{z}-\mathbf{R}_{\mathbf{2}} \mathbf{X} .
$$

We have now to combine this with the second part of (u)

But if we change our varinbles in this from $\Sigma_{1}, \Sigma_{\ell}, r$ to Σ_{1}, Σ_{9} and \mathbf{R}_{2}, and integrate out Σ_{1} and Σ_{2}, we know from section (4) the answer This can be done because (kv), whle it contains R_{2}, does not contain Σ_{1} and Σ_{2} directly. The result is then - -

Now

$$
\begin{aligned}
\overline{\mathbf{Y}}_{n}^{\prime} & =\overline{\mathbf{Y}}_{z}-\mathbf{R}_{2} \mathbf{X} \\
& =\bar{y}_{a}-m_{2}-\rho \frac{\sigma_{2}}{\sigma_{1}}\left(x-m_{1}\right)-\left(\mathbf{R}_{2}-\rho \frac{\sigma_{2}}{\sigma_{1}}\right)\left(x-m_{1}\right) \\
& =y_{\infty}^{\prime}-R_{2}^{\prime}\left(n-m_{1}\right),
\end{aligned}
$$

where \bar{y}_{x}^{\prime} and R_{a}^{\prime} are the array mean and the regression coefficient measured from their respective mean values Hence ${ }^{\text {w }}$ whave.-
as the correlation surface between $\bar{y}_{a}{ }^{\prime}$ and $R_{R}{ }^{\prime}$ This surface is a somewhat complicated one in R_{2}^{\prime}. We note, however, that for R_{2}^{\prime} constant, \bar{y}_{x}^{\prime} followi a dormal distribution whth a hnear regression, i e,

$$
\text { Mean } \bar{y}_{n}^{\prime}=\mathrm{R}_{2}^{\prime}\left(x-m_{1}\right)
$$

but the syatem is heteroscedsastic with a etandard devistion given by

$$
\sigma_{Z^{\prime}}=\frac{\sigma_{8} \sqrt{1-\rho^{2}}}{\sqrt{M}} \sqrt{1+\frac{R_{8}^{\prime 2}}{\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}}\left(1-\rho^{2}\right)}}
$$

The distribution of $\mathbf{R}_{\mathbf{\prime}}$ for a givan \bar{y}_{a} is less easy of intarpretation.
If we integrate from $\bar{y}_{b}^{\prime}=+\infty$ to $-\infty$, we obtain at once the curve already givan as the frequency distribution of $\mathbf{R}_{\mathbf{\prime}}^{\prime}$. If we could integrate with regard
to R_{2}^{\prime} we ohould obtand the frequency distribation of \bar{y}_{a}^{\prime}. To simplify the required integral, take

$$
\mathbf{R}_{\mathrm{a}^{\prime}}=\frac{\sigma_{\mathrm{g}}}{\sigma_{1}} \sqrt{1-\rho^{\overline{2}}} \tan \theta,
$$

and we heve

Accordingly, writing $a=\sqrt{\bar{M}} \bar{y}_{\sigma}^{\prime} / \sigma_{g} \sqrt{1-\rho^{2}}$ and $b=\sqrt{\bar{M}} \frac{x-m_{1}}{\sigma_{1}}$, wo have for the required integral:

$$
I(a, b)=\int_{-1 r}^{+4 r} e^{-i(a \cos \theta-b+\tan \theta)} \cos ^{x-1} \theta d \theta
$$

By expandung first the exponential and then the resalting binomals it is possible to express this integral in a double senes of complete beta-functions as coefficients of a series of powera of a^{2} and b^{2} and their products, but the series is not rapidly convergent."

I have therefore approached the problern from another atandpount. If we multiply the expression in (xix) by $\left(\bar{y}_{\mathbf{r}}^{\prime}\right)^{\prime}$ and integrate with respoct to $\bar{y}_{\text {, }}$ from $-\infty$ to $+\infty$, and θ from - $\frac{1}{1} \pi$ to $+\frac{1}{1} \pi$, we shall find $N_{\mu_{0}}$, where N is the number of samples and μ, the $p^{\text {dh }}$ moment coefficient about the mean. These integrationa are feamble.

Writing $U=\bar{y}_{r}^{\prime} \cos \theta-\frac{\sigma_{2}}{\sigma_{1}} \sqrt{1-\rho^{2}}\left(x-m_{1}\right) \sin \theta$ and transforming from i_{z}^{\prime} to U , we have :

$$
\begin{aligned}
& \cos ^{x-1-p} \theta d \theta d U .
\end{aligned}
$$

If p be odd $=2 q+1$, this will depend on integrals of formas which contain either an odd power of U or an odd power of ein θ; in both cases the integrals vanish or we conclade that $\mu_{\varepsilon_{0}+1}=0$; all odd moment-coefllcients vanish, or the curve of distribution of \bar{y}_{x}^{\prime} is symmetrical.

Profesar G N. Wataon kindly senda me the expanaion

$$
I(a, b)=\underset{m=0}{\infty}(-1)^{m} B\left(b M_{1} m+\frac{1}{b}\right)\left(a^{1}+b^{2}\right)^{m} F\left(-m,-\frac{1}{(}(M-1), \frac{1}{b}, \frac{a^{9}}{a^{2}+b^{0}}\right)
$$

where F is the hypergeomotrioal eerdet, bat as a^{2} and b^{4} both contain the feotor M, uavally large, thia does not seam Ukely to work In our aneo.

If $p=0$, then :
$\mathrm{N}=2 z_{0}^{\mathrm{lv}} \sqrt{2 \pi} \frac{\sigma_{Q} \sqrt{1-\rho^{2}}}{\sqrt{\mathrm{M}}} \int_{0}^{\operatorname{tr}} \cos ^{\mathrm{M}-2} \theta d \theta=z_{0}^{\mathrm{Iv}} \sqrt{2 \pi} \frac{\sigma_{2} \sqrt{1--\rho^{2}}}{\sqrt{\overline{\mathrm{M}}}} \mathrm{B}\left(\frac{1}{1}, \frac{1}{3}(\mathrm{M}-1)\right)$
If $p=2$, then
 since the odd term in U vanishes. Hence:

$$
\begin{aligned}
& N \mu_{2}=z_{0}{ }^{l} \sqrt{2 \pi} \frac{\sigma_{2} \sqrt{1-\rho^{2}}}{\sqrt{M}}\left\{\frac{\sigma_{2}{ }^{2}\left(1-\rho^{2}\right)}{M} \mathbf{B}\left(\frac{1}{2}, \frac{1}{1}(M-3)\right)\right. \\
& \left.千-\sigma_{2}^{2}\left(1-\rho^{2}\right) \frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}^{2}} \mathrm{~B}\left(\frac{y}{2}, \frac{1}{2}(\mathrm{M}-3)\right)\right\}
\end{aligned}
$$

and hence by (xxi) :

$$
\begin{equation*}
\mu_{2}=\frac{\sigma_{2}^{2}\left(1-\rho^{2}\right)}{M-3}\left(1-\frac{2}{M}+\frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}^{2}}\right) \tag{xxul}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma_{j}=\frac{\sigma_{2} \sqrt{1-\rho^{2}}}{\sqrt{\bar{M}-3}}\left(1-\frac{2}{M}+\frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}^{2}}\right)^{2} . \tag{1/4}
\end{equation*}
$$

This agrees with the usual value for large.samples, $i e$,

$$
\sigma_{f_{1}}=\frac{\sigma_{2} \sqrt{1-\rho^{2}}}{\sqrt{\bar{M}}}\left(1+\frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}^{2}}\right)^{2}
$$

The formula indicates that $\sigma_{\bar{j} \text {. gets larger and larger as we pass away from }}$ arrays near the maan.

$$
\text { For } p=4
$$

$$
\begin{aligned}
& N_{\mu_{4}}=2 z_{0}{ }^{1 \pi} \int_{0}^{p+1} \int_{-\infty}^{+\infty} e^{-\frac{1}{\sigma} \frac{M U 1}{\sigma_{1}\left(1-\rho^{2}\right)}}\left\{U^{4}+6 U^{2} \sigma_{2}^{2}\left(1-\rho^{2}\right) \frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}^{2}} \sin ^{2} \theta\right. \\
& \left.+\sigma_{2}^{4}\left(1-\rho^{2}\right)^{2} \frac{\left(x-m_{1}\right)^{4}}{\sigma_{1}^{4}} \sin ^{4} \theta\right\} \cos ^{\pi-\theta} \theta d \theta d U \\
& =2 z_{0}{ }^{67} \sqrt{2 \pi} \frac{\sigma_{2} \sqrt{1-\rho^{2}}}{\sqrt{M}} \sigma_{z^{4}}\left(1-\rho^{2}\right)^{2} \int_{0}^{i=}\left\{\frac{3}{M^{2}}+\frac{6}{M} \frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}^{2}} \sin ^{2} \theta\right. \\
& \left.+\frac{\left(x-m_{1}\right)^{4}}{\sigma_{1}^{4}} \sin ^{4} \theta\right\} \cos ^{2} \theta \theta d \theta \\
& =z_{0}{ }^{\boldsymbol{\sigma}} \sqrt{2 \pi} \frac{\sigma_{2} \sqrt{1-\rho^{2}}}{\sqrt{M}} \sigma_{4}^{4}\left(1-\rho^{2}\right)^{2}\left\{\frac{3}{M^{\mathbf{2}}} B\left(\frac{1}{2}, \frac{1}{1}(M-\delta)\right)\right. \\
& \left.+\frac{6}{M} \frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}{ }^{2}} B\left(\frac{5}{2}, \frac{1}{2}(M-\sigma)\right)+\frac{\left(x-m_{1}\right)^{4}}{\sigma_{1}^{4}} B\left(\frac{7}{2}, \frac{1}{3}(M-\sigma)\right)\right\} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \mu_{4}=\sigma_{\mathrm{B}}{ }^{4}\left(1-\rho^{8}\right)^{2} \frac{3}{(M-3)(M-\delta)}\left\{\left(1-\frac{2}{M}\right)\left(1-\frac{4}{M}\right)\right. \\
& \left.+2\left(1-\frac{2}{M}\right) \frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}{ }^{2}}+\frac{\left(x-m_{1}\right)^{4}}{\sigma_{1}^{4}}\right\} \\
& =\sigma_{2}{ }^{4}\left(1-\rho^{2}\right)^{2} \frac{9}{(M-3)(M-\bar{M})}\left\{\left(\frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}{ }^{2}}+1-\frac{2}{M}\right)^{2}-\frac{e}{M}\left(1-\frac{2}{M}\right)\right\} \\
& \text { (xuiii) }
\end{aligned}
$$

Thus, we have for $\beta_{z}=\mu_{4} / \mu_{4}{ }^{2}$,

$$
\begin{align*}
\beta_{2} & =3 \frac{M-3}{M-\delta}\left\{1-\frac{\frac{2}{M}\left(1-\frac{2}{M}\right)}{\left(\left(\frac{x-m_{1}}{\sigma_{1}}\right)^{2}+1-\frac{2}{M}\right)^{2}}\right\} \\
\beta_{2}-3 & =\frac{6}{M-\sigma}\left\{1-\frac{\left(1-\frac{2}{M}\right)\left(1-\frac{3}{M}\right)}{\left(1-\frac{2}{M}+\left(\frac{x-m_{1}}{\sigma_{1}}\right)^{2}\right)^{2}}\right\} . \tag{xxiv}
\end{align*}
$$

It is easy to see that the seoond termin the curled bracketa is less than unity, so that $\beta_{\mathrm{g}}-3$ is alwaya posituve. Hence, the distribution of $\bar{y}^{\prime}{ }_{x}$ as far as the first four moments are concerned can be expressed by a leptokurtic curve, Type vii. But an investigation of the higher even moments indicates that the moment-coefficients of the distribution for $\tilde{y}_{\mathbf{\prime}}$ do not satisfy the intermomental relationa for Type vil. It that curve be

$$
z=\frac{z_{0}}{\left(a^{2}+x^{2}\right)^{n-2}},
$$

then we have

$$
\begin{array}{ll}
\mu_{2}=\frac{1}{n-3} a^{2} \mu_{0}, & \mu_{4}=\frac{3}{n-5} a^{2} \mu_{2}, \\
\mu_{0}=\frac{5}{n-7} a^{2} \mu_{4}, & \mu_{8}=\frac{7}{n-9} a^{2} \mu_{0}, \text { and so on. }
\end{array}
$$

But for $\overline{\boldsymbol{y}}_{x}^{\prime}$ the momental coefficients are:

$$
\begin{aligned}
& \mu_{8}=\frac{\sigma_{1}^{2}\left(1-p^{2}\right)}{M-3}\left\{1-\frac{2}{M}+\frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}^{2}}\right\}, \\
& \mu_{4}=\frac{3 \sigma_{p^{4}}\left(1-p^{2}\right)^{2}}{(M-9)(M)}\left\{\left(1-\frac{2}{M}\right)\left(1-\frac{4}{M}\right)\right. \\
& \\
& \\
& \left.\quad+2\left(1-\frac{2}{M}\right) \frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x-m_{1}\right)^{6}}{\sigma_{1}^{4}}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{\mathrm{a}}=\frac{3 . \mathrm{B} \cdot \boldsymbol{a}_{\mathrm{g}}{ }^{0}\left(1-\rho^{2}\right)^{2}}{(M-3)(M-\bar{E})(M-7)}\left\{\left(1-\frac{2}{M}\right)\left(1-\frac{4}{M}\right)\left(1-\frac{6}{M}\right)\right. \\
& +3\left(1-\frac{2}{M}\right)\left(1-\frac{4}{M}\right) \frac{\left(x-m_{1}\right)^{2}}{a_{1}^{2}} \\
& \left.+3\left(1-\frac{2}{M}\right) \frac{\left(x-m_{1}\right)^{4}}{\sigma_{1}{ }^{4}}+\frac{\left(x-m_{1}\right)^{0}}{\sigma_{1}{ }^{6}}\right\}, \\
& \mu_{8}=\frac{3 \cdot 5 \cdot 7 \cdot \sigma_{2}^{A}\left(1-\rho^{2}\right)^{4}}{(M-3)(M-5)(M-7)(M-0)}\left\{\left(1-\frac{2}{M}\right)\left(1-\frac{4}{M}\right)\left(1-\frac{6}{M}\right)\left(1-\frac{8}{M}\right)\right. \\
& +4\left(1-\frac{2}{M}\right)\left(1-\frac{4}{M}\right)\left(1-\frac{6}{M}\right) \frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}{ }^{2}} \\
& +6\left(1-\frac{2}{M}\right)\left(1-\frac{4}{M}\right) \frac{\left(x-m_{1}\right)^{4}}{\sigma_{1}{ }^{2}} \\
& \left.1-4\left(1-\frac{2}{M}\right) \frac{\left(x-m_{1}\right)^{8}}{\sigma_{1}{ }^{8}}+1-\frac{\left(x-m_{1}\right)^{8}}{\sigma_{1}{ }^{8}}\right\} \text {, and so ou. }
\end{aligned}
$$

If we put $\phi^{2}=1-\frac{2}{M}+\frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}^{2}}$ we have

$$
\begin{aligned}
& \mu_{2}=\frac{\sigma_{2}{ }^{2}\left(1-\rho^{2}\right)}{M-3} \phi^{2}, \quad \mu_{4}=\frac{3 \sigma_{2}^{4}\left(1-p^{2}\right)^{2}}{(M-3)(M-5)}\left\{\phi^{4}-\frac{2}{M}\left(1-\frac{2}{M}\right)\right\}, \\
& \mu_{0}=\frac{15 \sigma_{2}{ }^{6}\left(1-\rho^{2}\right)^{8}}{(M-3)(M-5)(M-7)}\left(\phi^{6}-\frac{6}{M}\left(1-\frac{2}{M}\right) \phi^{2}+\frac{8}{M^{2}}\left(1-\frac{2}{M}\right)\right\},
\end{aligned}
$$

and so on.
Thus, as M increases, the dominant term in the series of curled brackets is the firat, and the momental coefficients approsioh closer and closer to a ourve of Type vin, or the distribution of $\bar{y}^{\prime}{ }_{x}$ will follow taen with considerable accuracy the ourve of Type vil:

$$
z=\frac{z_{0}}{\left(\sigma_{2}{ }^{2}\left(1-\rho^{2}\right)\left(1-\frac{2}{M}+\frac{\left(x-m_{1}\right)^{2}}{\sigma_{1}^{2}}\right)+\bar{y}_{x}^{\prime} x^{\prime N}\right.}
$$

and will ultimately pass over into the normsl distribution

It is, perhaps, desirable to remind the reader that the actual value of the mean of the x array of y 's is:

$$
\bar{y}_{\infty}==\bar{y}_{2}^{\prime}+m_{2}+\rho \frac{\sigma_{y}}{\sigma_{1}}\left(x-m_{1}\right) .
$$

I have not succeaded-except as a double summanon-in showing what the frequency curve for \bar{y}_{x}^{\prime} is whatever be the value of M. That remains a problem for the mathemationan who can exhibit in ocompact form the result of integrating

$$
I(a, b)=\int_{-\frac{j \pi}{t} \pi}^{+\frac{t}{t}} e^{-\frac{f}{f}(a \cos \theta-\phi n \ln \theta)^{2}} \cos ^{m-1} \theta d \theta .
$$

The object of this paper has been to indicate how regression lines far from straight, and correlation surfaces far from normal,* may arise in the case of compound characters even if we are sampling frome normal population. Thus we see how readly the ald theory of "probable errors" may mislead us.

> Further S'pectoscopnc Studies on the Luminous Vapour Distilled from Metallw Arcs.

By Lord Rayleiga, FR:
(Recerverl June B, 1926)

Plutiss 1-3

This paper contmues the inveatigation of a previous one \dagger entitled " Lummous Vapour from the Mercury Arc, and the Progreasive Changes in ita Spectrum " Seversl points (it is hoped) are cleared up, and new phenomens are described Needless to say, much remains to be done. The present work is an instalment only.
\& L. Condzeons for the Appearance of Hegher Members of Spedrum Semes.
It was [ound \ddagger that the lunes of the diffuse serice from $M=12$ upwards, $1_{p_{1}}-12 d, 1 p_{1}-1 d d$, etc, were seen in the distilled mercury vapour, but not in the arc from which the distilled vepour oane. This point has now been exsmuned more closely

In the first place the spectra in question have baen photographed with a

[^0]larger quarts apectrograph instead of the amall one used before. The point is brought out still more clearly. See Plate 1. I is the distilled vapour spectrum, and II the aro spoctrum. The diffuse series lines are indicated on the atrip separating the two.

To examine more closely the transition between the arc, in which these lines do not appear, and the jet of luminous vapour in which they do, a special arrangerment was set up (fig. 1). The arc wea produced in is porcelain tube A of 1 cm . unside dameter. The top of a barometno column B formed the cathode as ubual The anode was a cap of ateel tubng $\mathrm{C}, 075 \mathrm{~mm}$ thick, with a aide hole to the left 1 mm . dinmeter. The cap was kept cool with water as shown It was deeired to inake the nuetal wall umnedintely round the hole the effective anode The porcelanin tube was cut away under thas portion, to expose it, and it alune, to the vapour column. The end of the porcelan tube was covered with a micu dise The whole was assombled in a T tube of sulica D, the jounts being made with induarubber vemouted on The mercury vapour issued through the amall bole into the side silcas tube F : where ite lumunosity could bo observed. Near the hole it was concentraled, but broadened out in a dstauce comparable with the dameter of the tube untal it filled the latter The appearance of the self-luminous vapour is indcated

Fia. I as well as may be in 6iga. I and 2. E (fig. 1) was attuched to a vessel for eatchung diatilled mercury, and to the arr pump

The advantage of the arrangowent was that there was no trouble from stray light. The porcelain tube contaning the aro was sufficiently opaque, at any rate in the ultraviolet, and the only place where the light of the aro could assue was the small hole. Observing as near as possible to the hole, and across the horizontal issuing jet of vepour, the light from the latter was not appreciably contaminated with light from the are The spectroseope slit was vertucal, and
the jet was focussed upon il by a quartz-fluorite achromat Thus the central part of the length of each spectrum line came from the core of the luminous jet, and the extromities of this han from the expanded and much less intrinsically Inminous vapour around thes core sce fig. 2, which showa the amage of the isuuing jet of vapour and the wall of the steel tube (a, fig. 1) as dopicted on the plane of the spectroscope slit

The result is instructive. It is seen (Plate 1 , No. III) that the lines of the diffuse seriea $1 p_{1}-9 d$ upwards are very broad at the centre, and fine out above and below The central broadening is not due to photographic overexposure This is clear if we compare these lunes with, $c y$. , the lunc $2576 \cdot 29$ l $p_{2}-3 \mathrm{~g}$, The lattor, though more intense, is narrower. Fia 2. It 18 certain, thercfore, that the broadening of $1 p_{1}-9 d_{\text {, etc }}, 19$ resl.
Tho breadth increases as we go up the senes, and at l $p_{1}-11 d$ upwards the breadth has become so great that the succesave luias tend to encroach on one another

It seems pretty clear that the broadening is due to the Stark effect, mereadity as at does as we proccol up the serics The case is interenting bocause here we have no external electric field at all, and the effert must be due solely to the interatomic fields In accordance with the it dumimshes as the luminous vapour expands, and the luminous centres get further apart

It appears then that the fanlure of these high mernbors of the rlaffuse series to appear in the are is simply due to the fact that at the high coneentration of lumnous vapour, which prevails there, they are broadoned to the point of becoming unrecogmasable, the higher members actually overlapping ono another. It is therefore ampossible to resolvo them

In the case of the seconil members of the diffuse iriplets, of the type $1 p_{\nu}-m u d$, the same broadenung may be observed in the more connmatrated region of the distilled glow In the expanded vapour the meries can be traced on my negatives 7 or 8 members further than in the arc.

The same cause of broadening and consequent enfeeblement of the lines acts in the case of the sharp series, but less powerfully, and here the distilled vapour has not so great an advantage over the aro in bringing up the highei members.

$\infty=0$
$+\infty$
$m m$
$N W$
25763

III

The same phenomenon may be seen at the limits of the principal triplets, and of the diffuse and aharp singlets. It appears to be general.
32. Appearanoe of enhanced lines in the vapour jets from mercury, magnestum and oalovern. Relative duration of these and of the are lines, Relatwe duration of resonarice lines.
In the investigation of last year* certann lines were hated as present in the arc but apparently absent in the distilled vapour. I recapitulate the hat, partly beanuse there were some errors in it, and partly because further search of the literature has enable me to add notes about the character of the lines.
9984 Enhanced (Steinhausen).
3860 Belongs to many lined spectrum (Stiles).
3820 Enhancod (Steinhausen).
3770 Enhanced (Steinhausen). Many bned spectrum (Stiles).
3752 Enhanced (Steinhausen).
3561 Enhanced (Stemhansen)
9544 Enhanced (Steinhausen).
3980 Enhenced (Steunhausen).
3382 Not traceable in tables
3278 Many lined spectrum (Stiles)
2848 Enhanced (Steinhausen). Subordinate series of spark spectrom (Carrol).
2820 Enhanced (Steinhausen). Many lined spectrum (Stiles).
2775
2791
2686 Many linod spectrum (Stiles)
2003
1074
1943 Principal series of spark spectrum (Carrol). \dagger
That the intensity of the lines listed above 18 at any rate very small in the diatulled glow is olear from the reproduction in the former paper. These show spectre of the arc and of the dustilled glow in comparison. The triplets are of equal intenaty in each, but the lines of the above list are apparently hmited to the are, and do not noticesbly distll out of it The experimental arrangement

[^1][^2]of fig 1 allowed of a sharp isolation of the spectrudi of the distalled vapour without ambiguaty from atray hght Thes made possible a more searching teat for some of the above lines in the light of the distilled vapour without uinbiguity from stray light of the are. An exposure of about 1 hour was made on the brightent part of the issuing vapour, nenr the hole The plates were oiled with "Nujal" fur sensitiveness in the exiremo region of the quartz speutograph. Tho latter was put close to the silica tube, so that the source was approxmately in focus, and the bright part of the glow only produced short spectrum lunes as in photograph No III, though in the present ense no lens was used Tho shortness of a peectrum lue gave confirmatory evidence that the bright issuiog vapour was really its source, since the himts correspouded in the vertical direction

The series line 1850 (IS -- 1P) of the arc apertrum came out very defintely. This is important, suce in the former paper it was found to weak be in the vapour.
The lines 1974, 1943, 2003 also came out strongly, in the above order of intensily, different from the order of intensity in the are, in which 1943 is the strongest
Judgug by these examples, it would geem that there is no absolute datinction between lines which appeni in the arc ouly, and those whoh appear in the distulled rapour as well Theso lines in the remote part of the apectrum were only obtained when the exposure was so prolonged that the region of the atrong senes triplets was fogged by diffused light. It would therefore be more difficult to extend the test to the less refrangble lines in the abovo hat.
Mercury is not a very suitable metal for this particular part of the investigation, because the enhanced lueq are not very strong, and are not artuated in a very accessible part of the speotrum Experiments have therefore been carried out with magnesium and calcium The arrangement used for observing the jot of luminous vapour will be described in $\S 3$ of this paper, in another connection Here it is enough to say that it was aumiar in principle to the arrapgement used for mercury, encept that the vapour expanded into an open space, instead of being led along a allica tube

The photograph No. IV shows the spectrum of the magnessum jet focussed on the slit of the apectrograph, the vertical rnagufication of the reproduction being twofold as compared with the actual height of the vapour jet. It will be seen that the parr of enhanced lines 2795-2802 due to ionised magnessium appear at the base of the jet The arc triplats are marked at the top of the photograph by their series desugation and by the wave length of the middle
member It will be seen that as compared with these the enhunced par quickly fode out as the vapour moves up.
It is remarkable that the resonance lines (flame lines) of the magnesium spectrum $2852(1 \mathrm{~S}-1 \mathrm{P})$ and $4571\left(1 \mathrm{~S}-1 p_{\mathrm{g}}\right)$ Fade out quickly, like the enhanced lines.

In the case of $2852(19-1 P)$ this is seen in No IV, though with the amall dispersion used, the hne is somewhat involved with the triplet $1 p-4 d$ Nevertheless on the original negative it is quite clear that 2852, less refrangible than the triplet, is the line which quackly fades out.

The ammo is seen without complication in the case of $4571\left(1 S-1 p_{2}\right) \quad$ See V from another part of the same negative, showing 4571 in contrast with the diffuse series of singlets.

The behaviour of $1 \mathrm{~S}-1 \mathrm{P}$ and $1 \mathrm{~S}-1 p_{2}$ of magnessum is surprising, in the first place because the diffuse tripleta and singlets, which are intermedate between the resonance lines aud the spark lines in faculity of excitation, yet persist longer thas either of them In the second plaoe, it is surprising because mercury shows most atrongly the opposite behavour. The resonance line $1 \mathrm{~S}-1 p_{\mathrm{a}}$ of mercury 2537 grows cuntinuously in intenaity relative to all the mercury lines as the vapour moves away from the orfice *

In the case of calcum, the enbanced lines H and K are conspicuous in the distilled vapour They do not die out quickly like the enhanced lines of magnesium, but mantain their intensity approxmstely pan passu with the triplets of the aro spectrum. The resonance lino 4227 ($\mathrm{IS}-\mathrm{IP} \mathrm{)} \mathrm{also} \mathrm{dies} \mathrm{down} \mathrm{at}$ about the same rate ss the above. On the other hand, the resonance line 6572 ($1 \mathrm{~S}-\mathrm{l} p_{\mathrm{g}}$) gans intenalty relative to all the above, hehanng in this respect like the corresponding mercury line

It would seem that these facts must ultumately prove important, but they do not fall into any obvious generalisation at present.

§3 Exotation of a Metalhc Vapour by Contact wuth Another previonsly exched.

The amportance was early rocognised of determining whether other metallic vapours, introduced into the jet of glowing mercury, would be excited to lumbosity, and if so, under what hmetations Thes question was considered in 1914, but, owing to the curcumstances of the time, no experiments were then made. Since then, the advance of knowledge has put tho whole subject in a much more defiute lught. The theoretioal considerations of Klein and

[^3]Rosseland* indicated that collizions " of the second lind '" should ocour between excited atoms and electrons, resulting in the transfer of energy from the excited atom to the electron, with gain of knetic energy by the latter. An extension of this conception lead Franck and his sohool to the idea of dreot acontation of one atom by another previously excited. The experiments of Franck and Cariot showed that mercury vapour emitting resonance radiation under the influence of $\lambda 2537$ could oxcite the line emisaion of thallium vapour mixed with it. The lenes excited had, however, in some cases a greater excitation potential than the 488 volts which the excited mercury atoms could afford. To explain this, supplementary hypothsses were made
Finally, Sahn and Surf auggested that active motrogen denved its power of exciting the spectra of other substances by this mechanism They regarded active utrogen as a molecule energised to the extent of about $8 \cdot 5$ volts §
The oxpermenta so long contemplatod have been recently carriod out. Luminows mercury vapour distilled from the aro in a salice tube apparatus (somewhat as shownin 'Roy Soc Proo,' A, vol 108, p 264) was passed over a prece of sodum As soon as the tube was heated so as to raise sodium vapour, a strong yellow glow was observed, starting from the sodium and proceeding down atream. It was observed nieually that lines of the diffuse and aharp series were present as well as the D line. Similar expenments were made with magnesuum and cadmum instead of sodum.
This experimental arrangoment, though it showed conclusively and at onos that the effect sought for rally occurs, was not very convement for its further study; for it was not well applicable to obtaining a jet of luminous vapour from metals other than mercury and the quartz tabe was obscured by formation of an amalgam of the metal under investigation, thus only an intermittent and unsatisfactory new was obtaned.
I have previously described|| a method of observing these luminous jets with the more volatile metals in general The are was produced in a silica or quek-

[^4]lime tube with a metal cap as anode The vapour raised by the heat of the aro was allowed to rush out through a hole in the anode into an evacuated bell jar, in which the alica tube was mounted. In returning to the study of the luminous jets, various improvements of \int technique have been made, and the methods are worth recordung, though no doubt capable of further mprovement The following description should be read whth the help of the three

dagrams, figs 3, 4, 5 (one-quarter actual scale). Fig 3 shows a section through e vertical diametral plane of the apparatus.

Fig. 4 showe a section through a diametral plane at right angles to the former
Fhg. \bar{b} ahows the elevation in the same aspect as fig. 3.
The aro is produced in e silios or alundum tube A, figs 2 and 3 . This tube contains the metal under investigation B, the surface of which serves as cathode. The mokel plate $\mathbf{C O}$ serves as anodo. A rests in the steel tube \mathbf{D},
into whioh it is packed whth mica D fits on to a solid ateel cylinder E , from which the cathode connection is led out airtight and insulated as shown. C is supported by the tubular brass pillars F and $G(f i g 3)$ and the anode connection is made to the body of the apparatus The latter is in two parts, united by a rubber slecve H (fig. 3) This is made artight by rubber solution and by thin steel wires. Each wire takes one complote turn round it, and is kept in tension by flastic bands attached to fired supports (not shown) The metal caang 1s kept cool by three ring water-jackets KKK A stream of cold water gors through these in series The vacuum 18 muntained by exhaustion through \mathbf{C}. The lumunous vajour issues through the hole in C into the apace above it is observed through the ailica window L, fastened on with anft cement At M there is a sltt in the man vessel, affording only lumited access to the ade tube carrying tho window L This is designed to avoid the obscuration of L by a film of deposited metal, and succeeds farly well in most cases. The rod N, tig 3, serves to strike the arc For thus purpose it 18 pulled down for a moment unto the discharge tube \mathbf{B}, to make contact between cathode and anode The rubber tube P, kept from collapsing by a spral spring, can bè atretuhed to allow of this movement N is tipped with tungsten to prevent the end fusing into a knob It is turned aside when out of use, so as not to interfere with the 1ysulung vapour. Light is reflected into the apparatus, with a piece of mirror ghlass whrn using the striker

This completes the arrangenents whon the glowing jet from any one metal is to be examined (sec above, p. 16) The electre rebstance furnace \mathbf{R} (fig 4) is to affiord the (non-luminous) vapour of a second metal \mathbb{S}, which issues transversely from the amall hole and maxes with the luminous vapour of the first metal B In some cases the spectrum of S is excited thereby. The furnace $\mathbf{R}_{1 \text { s made on an alundum tube, and the nichrome winding is lagged }}$ with alundum cement

It will be noticed that indiarubber was freely used in the apparatus, and it greatly facilitated the work. Any vapour that comes out of it is of emall consequence compared to the large quantity of gas that comes out of the metala vaporised in the expenment. A Gsede rotating mercury pump was used and served the purposs, though more pumping power would sometimes have been desirable for rapidly removing this gas. The vacuum required in the experiments is not high. About $\cdot 2 \mathrm{~mm}$. of mercary 18 quite good enougb. A glass speotrum tube connected with the pumping syatem, and excited by a amall induction coil, forms a convenient gange of this, and gives warning by the speotram whether sur is leakung in.

The solderad joints of the metal vessel were coated with rubber solution to protect them when mercury was evaporated in the apparatus.

To conlrol the amount of the matal \mathbb{S} evuporated from the furnace \mathbf{R} (fig 2) the furnace was wesghed before and after the expenment

If an experiment of this kind upparently gives a positive result, anmiety is naturally felt as to whether the vapour of the metal $\$$ or condensed metallic purticles from it have not geined admission to the chacharge tube A If thas happened, the reault would be made ambiguour, because the are would pars through the vapour of the metal S mused with the vapour of B and S would be subject to direct electrical excitation

After trying various methods, I cane ultimately to keeping the arc running continuously in the discharge tube throughout an expernment This ensured a constant ontward stream of the vapour of B, and serms to u fford satisfactory security that the vapour of S could not enter the discharge tube to any appreciable entent. The latter vapour was only generated by closing the current in the heating circuit of the furnace after the arc usis started

In some cases it was possible to oheck the sucoms of these precautions by observing or photographing the apectrum of the are in the diacharge tube simultaneously with that from the glowing vapour aboveit in the external versel. This rould be done when the metal B was ance cadmium or mercury, for in these cases the arc was produced in a translucent alliea tube, which was not chemioally attacked, and allowed the are to be observed through it in conveniently reduced intenaity. The absence of lines of the metal S was then observed in the discharge tube, combined with their presence in the space sboves the hnes of metal B showing in comparable intensaty in each In other cases when the walls of the discharge tube were opaque, it was imposable to apply this test But it always proved reassuring in the osses where it could be applied See the photograph No VI, which shows the spectrum of the cadmium arc below (intenssty reduced by the translucent allica tube) and the luminous cadmiun vapour jet above, into which ano vapour is introducod, and which ahows the zinc linesin ardition Cadmium wave lengtha are marked below, mino wave lengths above

In carrying out the experimonts there wes a danger of misaing the opportunity when vapour of the metal S was coming off in the most favoursble quantity for its lines to be excited strongly. To svoid this, succesave exposures ware talien continuously during the expenment. Esch exposure was usually of one or two minutes' duration, though in some cases more. Visual examingtion of the speotrum often indicated when the conditions were nght, but with a
continuous photographic watch, this was merely supplementary. It does not, of course, show what is happening in the ultraviolet region, which is often the most important

The photographs were taken with a small eize Hulger quarti spectrograph, using a quartz-fluorite achromat to produce on the alit a reduced 1mage of the ssaung jet of luminous vapour The reduction was about fivefold, and allowed nearly the entire height of the jet as lumited by the window (5 cm .) to be projected on the slit if necessary. It was often more convenuent, however, to limit the length of the spectrum lines to the bright part of the glow.

Each anperiment was continued from 10 to 20 minutes, and in most cases there was no difficulty in mamtaning the lummous jet for so long. Obscunng of the window by deposited metal was a reaidual source of trouble; the arrangements for mitigating it were usually adequate, but least so when sodum was in use

It was not desirable to let the vacuum in the apparatus become too good, since in that case the jet becomes very large and diffuse, and its intrinsio brightoess 18 dimunshed. Moreover, there is danger of paraqutic discharges takiug place outside the discharge tube proper By checking the pumpng when necessary, the jet would be limuted to a height of 1 or 2 cm . It was then very bright and well defined, and this was the condition best suited to the exjeriments The arc current was usually about 10 amperes, which was necessary to maintain the evaporation In the special case of mercury muoh less is desurable

The following tables give the lines observed to be excited in the various cases, together with the calculated excitation potentrals. They are arranged ao as to bring together the results for the metal \mathbf{S} (in tho nomenclature used above) when the metal B distilled from the arc is variod.
The various triplets of magnesium calcium and mercury are denoted each by its inddle member but it is to be understood, of course, that when this was present its companious were present as well.

Ercitation of Bodıum.

Exoitling Motal	Ionusation Potentjal of Elame	Princlpal [Joubleta	Difilige Doubleta	Sharp Doublets
Cadmum	985 volts	$\begin{aligned} & \text { to } 1 \sigma-4 \pi \\ & \times 2880 \\ & 460 \text { volta } \end{aligned}$	$\begin{aligned} & \text { to } 1 \pi-68 \\ & \lambda 4066 \\ & 472 \text { volts } \end{aligned}$	$\begin{aligned} & \text { to } 1 \pi-5 \pi \\ & \lambda 4750 \\ & 409 \text { volta } \end{aligned}$
Mereury	104 volts	$\begin{aligned} & \text { to } 1 \sigma-3 \pi \\ & 42353 \\ & 432 \text { volta } \end{aligned}$	$\begin{aligned} & \text { to } 1 \pi-48 \\ & \lambda 4980 \\ & 457 \text { volta } \end{aligned}$	-

Excitation of Magnessum

Enoiting Metal	Ionlantion Potential of Esme.	$\begin{gathered} 18-1 p_{1} \\ \lambda 4571 \\ 270 \text { volts } \end{gathered}$	$\begin{gathered} 18-1 P \\ \lambda 2832 \\ 433 \text { volta } \end{gathered}$	Diffuse 'Iripleta	Bherp TrıploL	Diffuse Sinuleta	Spark Hpeotrum 2795 2802 120 volta
Bodiam	3 12 volts	--	Manked, if present	--	-	-	-
Cadmlum	890 volls	-	Masked, it prosont	$\left\|\begin{array}{c} \text { to } 1 p \rightarrow r d d \\ \text { A } 2734 \\ 7 \cdot 20 \text { volten } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \text { to } 1 p-4 \theta \\ & \text { A } 2278 \\ & 713 \text { volta } \end{aligned}\right.$	$\begin{gathered} \text { to } 1 \mathrm{P}-6 \mathrm{D} \\ \lambda 4167 \\ 7 \text { 28 volts } \end{gathered}$	Proment 120 volta
Mercury	104 volla	-	Premont 133 volts	$\begin{aligned} & \text { to } 1 p-3 d d \\ & \lambda \text { nons } \\ & 0 \text { t } 47 \text { volts } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { to } 1 p-1 \mathrm{p}-1 \mathrm{~s} \\ & \mathrm{~A} 5172 \\ & 507 \text { volts } \end{aligned}\right.$	-	-

Kxcitation of Calcium

$\underset{\text { Motal }}{\text { Enoth }}$	Ionlsation Potentaal of Beme.	$\begin{gathered} 1 S-1 p_{2} \\ \mathcal{A} 0.2 \\ 1 \text { BO volts } \end{gathered}$	$\begin{gathered} 1 S-1 P \\ \text { A } 422 \theta \\ 282 \text { volta } \end{gathered}$	Diffuse Tripleta	Sharp Tripleta	$\begin{gathered} \text { Spark } \\ \text { Speotrum } \\ 3934 \mathrm{~K} \\ 3908 \mathrm{H} \\ 19 \text { volts } \end{gathered}$
Magneaiom	761 voltas	-	$\begin{gathered} \text { Prosent } \\ 2 \quad 82 \text { volts } \end{gathered}$	$\begin{aligned} & \text { to } 1 p-3 M \\ & \text { A } 3631 \\ & \text { s } 26 \text { volts } \end{aligned}$	--	-
Cadmium	888 volta	$\begin{aligned} & \text { Present } \\ & 189 \text { volta } \end{aligned}$	$\begin{aligned} & \text { Prosent } \\ & 2 \text { 日2 volte } \end{aligned}$	to $\mathrm{lp}-\mathrm{Dd}$ 人 ${ }^{2} 215$ $\sigma 71$ voltas	$\begin{gathered} \text { to } 1 p-3 d \\ x y 478 \\ 543 \text { volta } \end{gathered}$	Present $\theta 19$ volta
Zino	0.35 volts	Not argmined	$\begin{aligned} & \text { Preaent } \\ & 2 g 8 \text { volts } \end{aligned}$	$\begin{gathered} 1 p-2 d \\ \lambda 4435 \\ 4 \text { UJ volts } \end{gathered}$	-	010 volta
Meroury	$10 \leqslant$ volta	Not examined	Present 292 voltu	$\begin{aligned} & 1 p-2 d \\ & \mathbf{\lambda} 4435 \\ & 484 \text { volts } \end{aligned}$	-	Preant 819 volta

Excitation of Zine.

Exciting Metnl	Innisation IPotential of Siane	$\begin{gathered} 181 p_{\mathrm{a}} \\ \star 307 \mathrm{~s} \\ 001 \text { volta } \end{gathered}$	$\begin{gathered} 18-1 P \\ \lambda 2139 \\ \text { i } 77 \text { volte } \end{gathered}$	$\begin{gathered} 1 P-20 \\ \times 6362 \\ 7 \text { 69 volts } \end{gathered}$	$\begin{gathered} 1 p-2 d \\ \lambda 8302 \\ 744 \text { volta } \end{gathered}$	$\begin{gathered} 1 p-7_{6} \\ \mathrm{~A} 3684 \\ 8 \mathrm{OO} \text { volta. } \end{gathered}$
Sodurm	6 I 2 volte	-	-	-	-	-
Megnusiuin	7 Bl volth	-	--	-	--	-
Cudulun	8105 volts	Erearait 401 volta	-	-	--	Doubtital
Merrury	10) 4 volls	Prosent d 11 voltes	Prement 577 volta	Prement 7 65 rolta	lreachl 774 voltm	Present 800 vulta

bixetation of Cadmam

Hinoting Metal	Ionisation Potential of Rame	$\begin{gathered} 15-1 p_{1} \\ \lambda 32 \mathrm{HI} \\ 3 \mathrm{zB} \text { solts } \end{gathered}$	$\begin{gathered} 1 \mathrm{~s}--1 \mathrm{P} \\ \lambda 2248 \\ \mathrm{E} \text { J0 volts } \end{gathered}$	$\begin{gathered} 1 P-21) \\ \text { ^ } 8438 \\ 70 \text { volta } \end{gathered}$	Diffuse 'Tripleta to $1 p-4 d$ $\lambda 2077$ 838 volte	Sharp Tripleta to lp-3* A 2775 822 volta
Sorlum	312 valtes	Prebent 378 volth	-	-	-	-
Megnemiam	761 volte	Prenont 3 78 vollh	Prphent 3 Jit volta	Present 730 volta	Present 838 volts	$\begin{aligned} & \text { Present } \\ & 8 \cdot 22 \text { volta } \end{aligned}$
Zinc	035 volts	Present 378 volta	l'rabenl 538 volta	Prement: 730 volta	Present B 38 voltn	Prement A 22 volta
Meroary	$10 \pm$ volt	$\begin{aligned} & \text { Prenent } \\ & \text { on volts } \end{aligned}$	Present fi 48 volta	Present 730 volta	Preapnt 888 volta	Present 822 volta

Fixctation of Meroury				
$\underset{\text { Metal }}{\text { Exciting }}$	Iombation Potontial of thame	$\begin{aligned} & 15-1 p_{1} \\ & \text { त } 25 y 7 \\ & 486 \text { volta } \end{aligned}$		$\begin{gathered} 1 p-2 d \\ \lambda 8130 \\ \mathrm{y} \text { 80 volta } \end{gathered}$
Sodium	512 volla	-	--	\cdots
Megneadum	7 Hl volta	-	-	-
Cadmium	895 volta	-	Present 770 volta	-
Zino	035 voltr	Prearent 846 volta	$\begin{aligned} & \text { Present } \\ & 7 \cdot 70 \text { volta } \end{aligned}$	Present 8 80 volt

In addition, it has been found that neither hydrogen nor helium showe any visual line when introduced into the mercury vapour jet. Hydrogen requires
more than 15 volts to excite it, whle hehum requires more than 20 volta Singly loused mercury can only supply $10 \cdot 4$ volts,

It will be noticed that so far as lines of the fo spectrum are concerned, the excitation potential of the observed lues rarely exceeds the ionisation potential of the exciting metal. It is natural, therefore, to regard the cxcitation as due to single collisions with ionised or excited atoms of the latter metal

There was, however, one distinct exception In the case of cadmum the series triplet $1 p-4 d$ requing 838 volts was excited by magnesum, which has an ionisation potential of 7.61 volts only.
The data of the present investigation are not adequate to aettle the explanation of this. Franck and Cario (loe cet) hnve given reasons for beheving that the kmetic energy of translation of the interacting atoms should be added to the energy of the exciting atom in order to determine tho total energy available Having regard to the temperatures involved, this cause would probably be enough to contribute the energy of less than one volt which is needed to make up the deficency. There is, however, another posmble explanation, the emmasion of the Mg^{+}lines 2795 and 2802 shows that some of the magnesium atoms carry an energy of 12 volta, and if these come into artion thair energy is, of course, more than enough to satisfy the requirements

The question arises, how much stress can be laid on negative resulta as a general confirmation of the point of vew that excitation is determined by the ionisation potential of the exciting metal It is difficult to give any definite answer. If excitation is not ohserved, the possiblity always remaina that longer expoaure or more favourable experimental conditions mught bave brought it out. and the technique of the present work, so far as developed at present, hardly admits of a variation of, eg., the densities and relative proportions of the interactung metals over wnde limits. In this work we have no evidence so aatisfactory as, for instance, the abrupt appearance of a line at a certann excitation potential, which gives definite significance to its non-appearance below that potental
Speaking generally, if the spectrum of the metal B (fig 4) comes out very strongly on the plate, and if a gram or more of the metal 8 has been evaporated into the lumnous jet, the absence of any of the lines of $S_{2 s}$ probably a fairly releable indication that no excitation has taken place. It raust be admitted, however, that in certann cases when the conditions are apparently favourable, the exvitation is by no means atrong. For example, the excitation of mercury by the cadmium jet is very feeble, though quite definte both by nisual and photographic observations. It would not seem that this faintness can easily
bo brought into relation with the excitation potentials. For the resonanos line $1_{1} \mathrm{~S}-\mathrm{I}_{\mathrm{g}}$ (2537) of low excitation potantal was not eeen at all. Yet it is ondinarily as antense es the triplet of much higher potential aotually obsarsed. Indeed, it was expected that this resonance line would readily appear alona, that in to asy in the absence of other meroury lines, when a metal like sodium of low ionisation potential was used to give the lummous jet: but this wan never ohserved with mercury The analogous experiment with cadmium ded aucoead, however, as the table shows. The expenments uning a soduum jet were leas satisfactory and less often repested than I could wish, owing to laok of adequate air pumps to carry off the large quantities of gas given off by this metal. Many attempted experiments failed from this cause.

In certan cases enhanced lines of the metals are excited. Thus it was observed that the magnessum hnes 2795 and 2802 were excited by cadmium, and that the H and K hnes of calcium were exaited by either cadmium or mercury It seems imposaible that the magnestum line mentioned conld be excited by collision of the normal atom of magnessum with the singly ionised stam of ondmum unless the latter had itself undergone further exoitation; but the spectrum obtanned with cadmium slone does not show any of the (strong) spark lines of this metal. It would seem, therefore, that we are thrown back on the alternative of iomsation and further excitation of the magoeninm in two separate stages. There are, however, daffloulties in uaderstanding the appearance of the enhanced lunes in the lumunous jet of magneasium ulone, which appear to aggravate those dwelt upon last year (loa, cit., p. 277). I oannot help thankug that we have much more to learn before the theory of metastable states can be considered to be on a satisfactory basis.

My assistant, Mr R Thompson, has given valuable help in carryng out thees expenments.

84. Summary.

In thas paper observations are described on the jeta of luminous vapour distilled from reetallio arces further to those in 'Roy. Soc. Proc.,' A, vol. 108, p. 262 (1905).

It is shown that the appearance of hagh series members in the luminous vaporr is due to their narrowness In the aro these lenes are so broad as to overlep one another. As the vapour emerges and expands, they beoome narrow and can be resolved.

Enhanced lines occur in the distilled vapour though in diminiahed intanaty selative to the aro lines. In some cases, e.g., magnealum, they fade ont very rapidly compared with the aro lines.
發

Luminous Vapour Distilled from Metallis Arcs.

The resonance line of mercury $18-1_{p_{2}}$ gains intenaity relative to all other lines es the vapour matures. The same is true of calcium, but the corresponding line of magnesiom behaves in the opposite manner, dying out more quckly than the series lines in general.

A lominous jet of one metallio vapour is able in many cases to exoite the vapour of another metal injected into it. As a rule such excitation does not take place anleas the iomsation potential of the Arst metal exceeds the exoitation potantial of the spectrum line in question. There are, however, some exceptrons to thus rule, and possible explanations are discussed.

DESCRIPTION OF PLATES.

Plate 1

I.- Speotrum of mercury vacolum arc
II.-Bpectrum of mercury vapour diatillod from the aro, Linos of the diffues senea $\mathrm{I}_{\mathrm{p}_{1}}$ - md are marked on the etrip between I and II. Note development of higher member of the erriea in the vapour
IIL-Speotrum of glowing meroury vapour. The middlo of the length of each apectrum Une us from the dense vapour umedistely it has left the aro. The ends of tho linee are from the expanded vapour. Note the dimmesing breadth of lune of the diffue sernea

Plati 2

IV.-Spectrum uf a jet of ylowing magneanum vapour an it emerges from the arc into a fold free upace. The spectrum is in foons with the jet itsolf Note that the spark lnoe die ont much more quickly than the series tripleta. Vertical magnification sbout twotold
V.-Another regfon of the eame speotrum Note the short axtension (and therefore durstion) of the resonance line $18-1 p_{1}$.

Plate 3
VI.-Fheitation of eino veporr by injeoting it into cadmiam vepour previoully excitad The aro apeotrum below. Cadmium Iinea marked The dirtilled vapour apeotram above. Zinc linea marked.

The Freezing of Gelatin Gel. By T Moran.

(Food Invuatigation Boaid of the Department of Reientifie and Induatrial Rosearoh and Jow T'omperature Rowcarch Station, Cambridge)
(Communicated by Sir Willam Hardy, F Il S -Received June 10, 1926)
[Plate 4]
"Ash-free" gelatin supphed by the Enstman Kodak Company was used throughout The actual content of axh was found to be 005 per cent of the dry weight To prepare gels of known strength, the requisite amounts of gelatin and water were left together overmght and then heated at 60° to $80^{\circ} \mathrm{C}$ on a watpr-bath for the lenat time required to produce a homogeneous solution When dissolved in distilled waler, the hydrogen-ion content of the gel was found to be 10^{-67} gram ions per litre $\left(2 r, p_{\mathrm{B}}=4 \cdot 7\right.$), which is the iso-electric penat for gelatu.
Save where the contrary is stated, dises of gel as nearly as possible 1.5 cms in diameter and 03 cm in thickness were used
The behanour of the gels on freczing and thawing was examed from threo standpoints. -
(1) The micro-structure produced by freenng
(d) The quantitative detarmination of the ice which separates
(3) The volume changes,

No assumptions were made as to the structure of the gels, although a cortan amount of evideace was obtaned as to the molecular nature of the indindual gelatim-water complexes,

1 Micro-Structure produced by Freezing.

A 4 is well known, fteezing and thawing alter the configuration of colloidol systems whether gels or solp, and the resulting structure depends upon the rate of freezing. Stules* has summarised the work of previous unvestigators. The structure is due to the fact that on frcezing a gel ice soparates, leanng relatively dehydrated g^{l}, and on thawing all the water is not at once or mideed readuly reabsorbed

[^5]Only a qualitative aturly of the anlject was attempted under thas heading Cooling was not measured, but was broudly classificd as very rapid when the freczing agent was liquid air or in air at $--19^{\circ} \mathrm{C}$, as medium in air at $-11^{\circ} \mathrm{C}^{\circ}$, and slow in air at $-3^{\circ}{ }^{\circ}($ The structure produced was found to depend upon the rate of frea\%ng and the strength of the gel. the latter is given in percentages, namely, grams dry gelatin 1 in 100 grams gel

Sections were cut at the freening trmperature ($-3^{\circ},-11^{\circ}$ or -19°), ase when liquid ar was used, all the mplements being at the temperature, and were then at once dropped into 40 por cent. forinaldehyde at the freczing temperature.

After freezing by dropping the diges into liquid air they were removed to $-11^{\circ} \mathrm{C}$ and sections cut at that temperature The following 14 a breef description of tho results obtamed -

Gel 12 per cent --(a) Frozen in air at -11° (' (fig 1). In the interior of the gel are a number of irregular spaces each of which contans a aponge of gel Betwenn those apacos in homogeneous gel Freezing obviously must bave started at a relatively small number of centres in the interior Freazing also starts on the surface of the gel because it was found to be covered by a thin shell of ice
(b) Frozen in liquid aur (6g 2) The interior of the gel is now occupied by a large number of clear spherical span eq earh about " $3 \mu^{*}$ in diameter and arranged in rows Each space represents a distinet centre of cryatallusation. No detectable quantity of ice formed on the surface of the gel
(c) Frozen in alr at $-3^{\circ}(\mathbf{\prime}$ No spaces are found in the interior Freezing takes place wholly on the surface, where a thick she'l of ice forms whinh encloses a core of dehydrated gel

These observations prove that there are two groups of possible centres of cryetallisation, external and internal, and that the former ure prepotent because, when the degree of overcooling is not too great, they alone function Theexteran centres may be supposed to be situated in a layer of insensible thickness of vory dilute solution of gelatin covering the surface.

At medum rates of coolug the exterual and a fow only of the internal centres function.

[^6]Freezing at $-19^{\circ} \mathrm{C}$. in air was found in effect to be very papid cooling, the resulting structure resembling that given by liquid air.
It should be mentioned that whereas the appearanoe shown in figa، 1 and 2 pernisted for some days at least in the thawed atate, the core of the diso frozen at $-3^{\circ} \mathrm{C}$. was perfoctly clear and transparent and readily reabsorbed water until its concentration was agann 12 per cent. , in other words, it was completely reversible.

Gels weaker than 12 per cent.-The important difference was that at $-9^{\circ} \mathrm{C}$. some internal centres were aotive, the sppearance being that shown in Gig. 1. Therefore the weaker the gel the alower must the rate of cooling be wholly to suppress internal centres of crystallisation.

Strong Gels- 38 per cent -Frozen in air at $-11^{\circ} \mathrm{C}$. An entirely new form of freazing now appears The irregular growth of ice crystals resulting in the irregularly shaped spaces, shown in fig. 1 , with their contained sponge 18 repleced by a regular disposition of shells of alternato ice and gel disposed concentrically about the original centre of crystallisation. The spheres so formed are ahown infig 3.
The structure of a aphere was deteoted by dissecting out one whilst stall froven, fixng it with 40 per cent. formaldehyde, and cutting sections, the whole operation being carried out at $-11^{\circ} \mathrm{C}$ The concentrio layers of 100 and gel are ahown in fig. 4
The effect of rate of cooling apon the growth of these larger apheres is complicated Another sample of the same gel was kept at $-11^{\circ} \mathrm{C}$. untll the epheree just began to appear. It was then transterred to $-3^{\circ} \mathrm{C}$. to complete the treezing. The spheres now no longer had the atructure shown in fig. 4, There was presumsbly a central nuolens of concentric shells of ice and gel as described above, and no doubt formed at the higher rate of cooling, and about this a thick shell of continuous ice. The arrangement of concentric shelle therefore appears to need for its formation a rate of cooling lying within certain limits. At the lower rate it was replaced by continuous ice formation.

Rohonyi" obtamed by an artiffe concentric shelle even in dilute gels (2 to 5 per cent.). In his experimente the gel was traneferred alternately from $-10^{\circ} \mathrm{C}$. to $+1^{0} \mathrm{C}$
Fig. 5 gives a clae to the mode of formation of these ringe. It repreaents the ohanges in volume of $6 \cdot 56$ grams of a $\mathbf{4} 3.7$ per cent. gel which anpercooled to $-11^{\circ} \mathrm{C}$. and finally froze at the same tempartsore, giving the same ise formation ss in fig. 3. The progress of the freecing was followed dilato* ' Blochem. Z ;' vol 65, p. 210 (1013).

Fiw :
(. 11 : diam)

J"m 4

1. 27 (hinme)
metriodiny (thet twohnique of which is described later) and the ordinates represent capillary readinge. It will be observed that complete equilibrium was only

Fite. s .

Fia, 6.
attainad twanty-six days after freening had begun. Let it be supposed that a tretercgandebus mass of amall ice crystals and particles of concentrated gel forms abopt each internal eontre of crystallisation. As is shown in the next section,
the concontration of the gelatin particles will bo greater the lower the temperatire

Owing to the low duflusivity of the gel and the latent heat of fusion, the temperaturo at which the muxture of gel and ice forins will be higher than the external temperature (-11°) Lat us suppose that it is as high as $-1^{\circ} \mathrm{C}$, The curve in fig 6 shows that, at this temperature, the concentration of gel in equibrium with ice is approximately 50 per cent., whulst at -11° the equlibrium concentration is $64 \cdot 4$ per cent. Now let the mass cool to -11°. More ice will separate from the gel particles, and in this way, by alternate warming and cooling, shells of ice will form
The spheres (fig 3) gradually disuppear on thawing, leaving behind in each case a small hole in the gel
Gels from 12 per cent to 40 per cent.--Frozen in arr at - $3^{\circ} \mathrm{C}$, ice was formed only on the surface Moreover, it was found that this aurface ice formation is independent of the extcrual medhum and was obtnined when the discs were immersed and frozen in orgnnue solvents such as benzenc and toluene It does not depend, thercfore, on chance seeding by crystals of ice floating in the arr.

2 Phase Equilbrum between Ice aul Gel

The fact that with dsce of gel frozen at $-3^{\circ} \mathrm{C}$ contaming not less than 12 per cont gelatin, uce separated only at the surface on freezing was used to determine the ice-gel phase equolibrium at various temperatures. At concentrations of gelatin between 12 per cent and 40 per cent, with gela at the iso-elcetric point, it was found that on slow freezing in air at $-3^{\circ} \mathrm{C}$ water passed into the external ahell of ice until the gel had reached a constant composition of 543 per cent gelatin When equilibrum had been reached at this temperature, some of the discs were transferred to lowor temperatures, when more water moved from the core to the shell In this way the equilibrium concentrations of gelatin were obtumed for defferent temperatures, and the resulte are plolted in fig 6 .
The actual experimontal figures are given in the following table:-

Temperature	(rel Concentretion
C	Per oent
-3^{0}	043
$-0^{\prime \prime}$	$0_{0} 1$
-- 7^{0}	821
-11°	644
-10°	H5 2

Each point on this curve is the mean of eight separate analyses and represents a true equabriam value for the analyaes, which for any one temperature extonded over a period of days, showing no evidence of a trend, and the same point was reached whichever way it was approached nlong the ourve. For example, neveral discs of an 18 (per cent. gel were frozen at $-3^{\circ} \mathrm{C}$ and stored at that temperature for five days. Six were then transferred gradually to each of the temperatures $-5^{\circ},-7^{\circ},-11^{\circ}$ and -19° for seven days Another sux were plunged into lequid arr for a few minutes The discis were then all brought back to $-3^{\circ} \mathrm{C}$ for 24 hours. The ice lajer was then removed and the gelatin cores analysed. The core in every case was $54-3$ per cent wathin the experimental error. The drying of gelatin gel between $54 \cdot 3$ per cent and 655 per cent seems to be truly reversible The lower limit of concentantion is presumably that gel in which free water appears first, $i e$ the gel which on further swelling suffers no contraction of volume. Taffel* has shown that the contraction per 1 gram of gelatin is as complete in $\pi 25$ per cent as in 122 per cent gel. The concentration is therefore greater than 25 per cent It is shown later that in a 52 l per cent. gel which is reversible on freezing the last ice portion thaws at -08° C. Presumably the minimum concentration of gel which is reversuble on freezing with no hysteresis is approximately 50 per cent, in which case the complete form of the curve in fig. 6 is N -shaped.

The curve reaches a constant level at a concentration of 65 to 66 per cent gelatin, therefore when the water content falls to 35 to 34 per cent, there 18 no separation of ice at any temperature. This was confirmed by mamersing a $05 \cdot \delta$ per cent. gel in liquid arr, when it remained clear and transparent, showng that no ice had been formed All gels of lower conceatration become white and opaque in hqued an

This undoubtedly suggests that water is present in the gel in two states, which may be distingushed as "bound" water and "interstitial" water. Bound water is merely water which is incapable of being frozen. It is possible that the bound water is held by the gelatin molecules to form molecular compleros, and that the spaces between theas act as capillaries.

This theory has been applerl to the sulics molecule by Patrick \dagger and his coworkers to explain many of its properties, partioularly its adsorptivo power towards various gases and organic solvents. On the same bsais, that water in a gelatin gel which freezes below $0^{\circ} \mathrm{C}$ would be the capillary water. There

[^7]18, however, no evidence that a gelatin gel has n rapillary atructure. Thus in a gel of concentration 655 per cent, prosumably the capillaries are already in existence, and yet this gel will not absorb organio solvents Datil, therefore, more definite endence is brought forward, the most atisfartory ooncept is tn figure the gelatin molecule nr aggregate bring surrounded, first, by an envelope of oombined water, and then by successive layera of non-combined water up to a oritical diatance depending upon termperature and the presence of other solates, ie upon the dielectric constant of the aqueous phase This la virtually the micellar hypotheus of Nagrls (IA58)

Taffel* comments on the atriking curve obtained by Sheppherd and Swert \dagger for the relationship between the setting point and concentrations of gelatin gela Between 0 and 65 jer cent the curve 18 hyperbolic to the axis of concentration, butat a concentration of gel between 65 and 70 per cent there is a sudden change of direction in the curve, due, as he suggests, to the gelatin-water complexes tourhing ono annther and bringing into play force ficlds of considerable magnitude He nlen cites the observation of Shroeder, \ddagger who exposed a atrip of dry gelatin to saturatell water vapour for 20 daya and found that ita weight inereased from 0904 to 1318 grams, in other words, 1 gram of dry gelatin absorbs 0414 gram of water to form a 70 (per cent gol This water might be presumed to ba the absorbed or bound water The difficulty, however, in thes type of expenment is to mantain the vapour in the saturated state Unless most elaborate precautions are taken to ensure constancy of temperature, the humudty is often below the saturation point Morcover, it is not at all certain that the systen had reached equilinnum in 20 days

The hypothesis that chemically held water or water of true hydration may be put as high as 0) 53 gram per 1 gram gelatin rases many dufficultes. There as evidence for putting it much lower, namely, at about 0.08 gram Svedberg $\$$ has moasured the contraction in volume that occurs when 1 gram of gelatin in gels of various coucentrations is dissolved in 100 ce of water. The curve, fig 7 , has been constructed from his figures It showe the contraction in cubic mullumetres per gram of gelatin when different weights of water are dissolved in it $\left(t=35 \cdot 2^{\circ} \mathrm{C}\right)$. The curve shows a sharp change of durection at about 0.08 gram water per \mathbf{l} gram gelatm equal to a 92 per cent gel.

Morcover, if disca of a $65-5$ per cent. gel are immersed in anhydrous acetone

[^8](which is continually replaced), they rapidly lose water, but eventually reach oquilibnum at a concontration of gel in the neighbourhood of 94 per cent.

Fig. 7
A set of uotual figures are shown in Table II
Trable II

Number of days in acotons	Werght of gel山یя
	grams
0	() 2408
2	01742
6	01732
12	01716
15	01716

Likewise, ordinary Kodak gelatin (watcr content = 164 par cent) under the anme conditions gives a critical gel concentration of approxumately 92 per cent. (Table III)

Table III

Number of days in acotone	Waught of gel diso
$\begin{array}{r} 0 \\ 2 \\ 7 \\ 10 \end{array}$	$\begin{aligned} & \text { grams } \\ & 02154 \\ & 0.2021 \\ & 0.1968 \\ & 0.1067 \end{aligned}$

Fisher* also states that the rate of dryng of gelatin gels is a linear function of the gel concentration until the water content has been reduced to less than 10 per cent. (e e a gel conoentration >90 per cent).

It $1 s$ in the very earlest stages of absorption of water that the greater part of the heat of moxing of gelatm and water is given off Katz \dagger har calculated that at the mitial moment of awelling the heat libarated by 1 gram of gelatin for 1 gram of water absorbed is equal to 230 calories, whust Wiedemann and Ludeking f found experimentally that the average heat of awelling at $184^{6} \mathrm{O}$. is 57 calories per gram.

Possibly water combines with the large gelatin molecule at more than one point, as Jordan Lloyd§ suggesta, and that each has its own heat of combination and its own effect upon the specific volume

3. Changes in Volume of Iso-Electric Gels on Freezing and Thawing

An attempt was mado without much success to settle some of the difficulties raised in the last section by measurements of volume.

An ordunary glass bulb-capillary stem dustometer was used whth liquid paraffin (sp, gr 0880) as the displaced fluid. The capllary height could be read to 0.05 cm , and as 1 cm . of capllary had on the average a volume of 0015 c c the volume measuremonts were accurate to 00007 o.c.

The expansion and contraction of the liquid paraffin was perfectly linear between $+15^{\circ}$ and $-11^{\circ} \mathrm{C}$, but incressed more rapidly between $-11^{\circ} \mathrm{C}$ and $19^{\circ} \mathrm{C}$, , 0 that 1 gram of liqud paraffin at $-19^{\circ} \mathrm{C}$ contraoted 0.00118 c c. more then that given by extrapolating the straight line characteristic of the temperatures between $+15^{\circ} \mathrm{C}$. and $-11^{\circ} \mathrm{C}$. The cooling and warming curves were completely reversible, and thore was no evidence whatever of capillary " crerp."

Figs. 8 and 9 are the curves obtained with $23 \cdot 5$ per cent, and $52 \cdot 1$ por cent. gels respectively. The arrows indicate whother tempersture was fallung or rasing. Starting at A, the volume falls unformly until freezing beging in the super-coolod gel at B. Part of the water in the gel then freezes, acoounting for the expansion $B C$. When the freezing is complete the volume again falls unformly to D, the loweat temperature avalable for prolonged expoeure. With a 23 - 5 per cent. gel D appeara to be a true equlibrium point easily reached. No change of volume occurred in four days. With a $\mathbf{6 2}$. 1 per cent gel there is

[^9]a slow increase in volume at $-19^{\circ} \mathrm{C}$, which appears in figure as DD' The increase in volume took 18 days for completion. D^{\prime} is now a true equilibnum

Fig. 8.

Fig. 9.
point, for on placing the bulb of the dilatometer in solid carbon dioxide (temperature $=-78^{\circ} \mathrm{C}$) for a few hours, the same volume was attanned on
ro-warmugg to $-19^{\circ} \mathrm{C}$ This slow approach to equabrium with colloids has not been realsed sufficiently hitherto, but it is clearly an obvious point of criticism in all work of this nature, partioularly static investigations. Thus, as already noted, true oquubrium was attamed at $-11^{\circ} \mathrm{C}$. with a small sample of a 4.9 .7 per cent. gel in not less than 26 days
The storage time at each temperature for the two concentratious $23 \cdot 5$ per cent. aud 52 1 per cent aro given in the following table:-

Table IV.

Approximate lemperature	Storage time	
	235 par ceat	521 per cent
0	Days	Daym
87	2	2
1	,	1
- 3 *	1	1
-- 5°	1	1
- 7°	11	12
$-1{ }^{\text {u }}$	5	2
-10°	4	10
110	2	2
-70	2	3
- 5	3	4
-10	1	$\stackrel{2}{1}$
-10 $+1^{\circ}$	-	1
+ ${ }_{\mathbf{H}}$	4	3

At each temperature constant volume readnge were obtamed a few hours (or daya) cuiber than the stated storage time
The reverse curve in figs, 8 and 9 at first diverges slightly from the freezing curve, \imath e DE and $\mathrm{D}^{\prime} \mathrm{E}$ are not parallel to CD This has been observed for dfferent substances by other investigutors, nutably Foote and Saxton,* and is ascribod to the rupture of capllaries in the freeang process, with consequent increase in volume of the systerim as a whole

It will also be observod from the thawing portion (D^{\prime} EF') of the curve in fig 9 that the bulls of the ice formed in a very concentrated gel ($52 \cdot 1$ per cent) commences to thaw once a temperature of approxunately $-6 . \delta^{\circ} \mathrm{C}$ is reached. This is in agreement with the general shape of the curve in fig. 6 , which stecpens auddenly at about that temperature.

A sccoud effect of coucentration appears on thawing When the concentra" ' J. Amer. Cham Soo ;' vol. 38, p. 588 (1018), voL 34, pp 627, 1103 (1917),
tion ia high (e.g. 52.1 per cent. gel), the curve EF meets and fuses with the curve AB, but when it is low there 18 an increase in volume which persasts into the fully thawed state. This volume increase, which is presumably the result of atruotural breakdown, may be regarded as a measure of the irroversible changes in the gel $52 \cdot 1$ per oent, and $43 \cdot 7$ per cent. gels showed no visible altarations as a reault of the freening oycle, and for these gels the increases in volume per 1 gram of golatin are 0 and 00009 c.c. rimpectively The $11 \cdot 5$ per oent, and $23 \cdot 5$ per cent. were white and opaque on thawing, and, as would be expected, showed the greatest increase, namely, 0.0070 cc per 1 gram of gelatin in each case. This measure of the ureverable change merits further analysis. Apart from the concentration, the only other varnable is the rate of freezing. With concentrated gols freezing proceeds at a very alow rate, wheress with the more dulute gels equllbrium 18 reached quckly The obvious question therefore arises as to whether, other factors being constant, tho rate of freezing determines the extent of irreverability in gelatin gels. To test thes, disce of gel coutaning $5 \cdot 25$ per cent, $9 \cdot 58$ per cent, aud 11.5 per cent. gelatin were prepared and weighed and kept for 2 days, some at $-3^{\circ} \mathrm{C}$, others at $-5^{\circ},-7^{\circ},-11^{\circ},-19^{\circ} \mathrm{C}$, and some in liquid arr $\left(-190^{\circ} \mathrm{C}\right)$ for three munutes.

Fias. 10

The discs at -3° and $-5^{\circ} \mathrm{C}$. were seeded with 100 as soon as they were cooled to ensure freesing. All were then restored to $-3^{\circ} \mathrm{C}$. for 24 hours and thawed in distlled water of $p_{\mathrm{P}^{4}} \cdot \theta$ at room temperature, the $5 \cdot 25$ per cent. and $11 \cdot 5$ percent. gel disce for three days and the 958 per cent gel discs for two days. Each diso was then weighed after having loosely attached water rapidly blotted off with filter paper. The gann in weight then represents water absorbed by the gel, and this is plottedras a percentage against the temperature of froezing in fig. 10. The experiment was carried out, when necessary, under antiseptic conditions. The ourves show that the more rapid the rate of freesing the slower was the uptake of water, $\boldsymbol{i} e$ tho greater the freezing rate the greater the damage to the gel as determined by ats subsequent affinity for water A further point of notice was that in all cases the dises of gel wheh had been frozen at $-9^{\circ} \mathrm{C}$. and thawed were quite transparent and apparently unchanged, whereas those whoh had been frozen in liqued air were densely white and opaque. The obvious suggestion, omitting a capillary hypotheas, is that in some way part of the bound water is removed by rapid freezing with a consequent increase in volume of the syatern, as opposed to the decrease in volume during normal solution The reabsorption of this bound water, which will take appreciable time in the gel state, evidently precedes the further swelling of the gel. The valdity of thes auggestion is borne out by a detailed examination of the dilatometer curves

Analysis of Dilatometric Resulls.-It has already been suggested that the bound water in 180 -eleotric gels is approximately 0.53 gram per 1 gram of gelatin and that all the free and pseudo-froe water as frozen out at $-19^{\circ} \mathrm{C}$. Accordangly, an attempt was made to confirm these conclusions by calculating from the volume changes the amount of water unfrozen at $-19^{\circ} \mathrm{C}$. The physical constants employed are all taken from Landolt-Bornstein Tabellen.

The denarty of ice at $0^{\circ} \mathrm{C}{ }_{18} 0.91 \mathrm{Bb}$, ie, at $0^{\circ} \mathrm{C} .1$ gram of water in changing to ice increases in volume by 0.0907 oo This, however, is not true at $-19^{\circ} \mathrm{C}$,, since water and ice possess dufferent co-efficients of expanaion. Mohler gives the spocifio volume of water as low as $-13^{\circ} \mathrm{C}$. Extrapolating, the specific volume of water at $-19^{\circ} \mathrm{C}$ 18 100563 Further, from Roth's data, the density of ice at $-19^{\circ} \mathrm{C} .=0.0181$, e. specific volume $=1.0892$. Therefore, the increase in volume when 1 gram of water ohanges to ice at $-19^{\circ} \mathrm{C}$. $=0.08960 .0$.
Table V shows in detail the results obtained with four concentrations of gel.
The apparent increase in volume (column 6) was read off from the curves, and st the difference in capillary height between $A B$ produced and D (or D^{\prime}) multiplicd
Table V.

$\begin{aligned} & \text { Cone of } \\ & \text { geal } \\ & \text { Pex ceat } \end{aligned}$	Total grems of weter in gei.	$\begin{aligned} & \text { Total graman } \\ & \text { of dry } \\ & \text { gatama (a) } \end{aligned}$	Grams of Lnquid parnfin	Volume of 1 om . length al capillary	$\begin{aligned} & \text { Total } \\ & \text { merosel in } \\ & \text { volime it } \\ & -10^{n} \mathbf{C} \text { in } \\ & \text { ce. } \end{aligned}$	Incroser in volume due o romoval of weter from ged (1×0026)	Increase in volume due to water freeang (b)	Grams of watar fruean out $\frac{b}{0.0836}$	Grames of waber un. fromin.	Grams of water mm trusen per 1 gran of gelatin.
115	3328	0432	19.28	001 ā15	02848	00112	0274	3278	0050	012
29.5	2.823	0.808	1406	001576	0-2290	0.0234	0216	2.684	0339	0.38
43.7	3603	2886	1735	001331	0.2461	0.0745	0172	2057	1-636	057
691	2046	$2 \cdot 24$	1153	001498	0 1288	0 0578	0 068	0813	1233	055

by the volume of 1 cm of capillary. To this 1 a added a correctiou due to the expansion of the liquid parafinn ceasing to be heas with temperature.

Svedberg,* morcover, has shown that at $35^{\circ} \mathrm{C}$. the contraction in volume when a $65 \cdot 5$ per cent gelatin gel contaning 1 gram of gelatin is dissolved in a large excess of water 18 equal to 0020 cc ., s.e, this volume represents the contraction of interstitial water per 1 gram of gelatin at $35^{\circ} C$ In the present experiments the gel froze between $-7^{\circ} \mathrm{C}$ and $-11^{\circ} \mathrm{C}$., but no data are available as to the contraction in thes region Taffel gives 0065 and 0.073 cc . at $32^{\circ} \mathrm{C}$. and $15^{\circ} \mathrm{C}$ respectively as the total contraction when 1 gram of gelatn enters into solution. Assuming a similar proportionality for the contraction of unterstitial water, it is concluded that its value at $-7^{\circ} \mathrm{C}$ 1s 0.028 cc . The factor, mass of dry gelatin $\times 0026$, is the volume in c.c to be subtracted from the observod merease in volume (column 6) to obtain the increase in volume due to the water freezing It will be noted that for the purposes of caloulation it was first assumed that the unfrozen gel would be of concentration $65 \cdot 5$ per cent.
The table shows that with the $43 \cdot 7$ per cent and 52 l per cent gels the average amount of bound water per 1 grain of gelation is 0.56 gram, which oompares well with the previously obtancd value of 053 On the other hand, with the 11.5 per cent, aud 235 per cent. gels, the amount of bound water is diatinctly less It is inconceivable on a mass action basse that the extent of bound water should decrease with decreased concentration of gelatin. Some other faotor ${ }^{15}$ responsible It is suggested that dunng the frecang of the interstitial water in these two concentrations of gel, a portion of the more loosely bound water is meohancally torn away from the gelatin molecule Incidentally, this would explan the relatively large ncrease in volume of these two gels on thawng.

4. Effect of the H-Ion Content upen Ice Separation.

Gels contaning 20 per cent gelatin with varyang quantities of bydrochloric acid were moulded into duscs, frozen at - $3^{\circ} \mathrm{C}$., the external ahect of ice removed, and the concontrated gel dried to constant weight at $105^{\circ} \mathrm{C}$ The tume of storage in the frozen atate varied from five to ten days, and constant adalyses were obtamed over the whole period In calculating the weight of gelatin, the combined acid was allowed for on the ussumption that 10 grame of gelatin combino with 9 cc . of N . HCl .
In fig 11 the water per 100 grame of gelatin which does not freeze is plotted against the number of cubic centumetres of normal acid in the gel per 10 grams of

> Loc. cil.
> \dagger Loo. oit.
gelatin. At 9 c.o. of normal acid the curve tarns sharply upwards and, nccording to the figures given by Harria," Hitchcook \dagger and others, all the acid up to

Fig 11.
this point will bave combined to form gelatin hydrochloride. Along the ascending part of the ourve there was, therefore, excess acid, and the decreasing availability of water for freezing may be ascribed to the lowerng of the freenng point by the Iree acid.

So long as the aod is not in excess, the quantity added has relatively little effect upon the avaulablity of the water. The availability of water as greatest at the 180-eleotric point.

If the available water be identufied with the interatitual or free water of the gel, this result is in sharp contrast to the conclusions of Callow, \ddagger who found the velooity of crystallusation least at the iso-electric point and grealest at $p_{\mathrm{B}} 26$

[^10]which oorresponds to the inflexion point in the curve fig. 11. He conoludes from this that the amount of available water is least at the iso-electrio point.

Callow measured the rate of advance of the tips of the adrancing ice face along a cylinder of gel cooled to - $3^{\circ} \mathrm{C}$. and seeded with ice at one end, It cannot be supposed that there was equilibnum between ice and gel at these points On the contrary, behind the levels observed by Callow there would be left a muxture of ice and gel in which ioe formation would continue The velocity recorled by him would therefore have little relation to the time required to convert all the avalable water into ioe and cannot be used to determine when the available water is greatest or least. His velocities probably dopended upon differences in the gel structure due to variations in the state of aggregation of the gelatin-water complexes.

In conclusion, I wish to express my thenks to my assistant, Mr. H. P. Hale, for his help in the expermental work

Summary

I. The freezing rate and gel concentration determines (a) the dusposition of the ice in the frozen gel, (b) the extent of structural deformation in the gel.
II. When gels above a concentration of 12 per cent are frozen slowly, there is a clear-cut separstion into ice and more concentrated gel, and the concentration of the latter is determined by the temperature.

IIJ The excastence of this phase equibrium between ico and gel has been used to detormine the state of the water in iso-olectric and acid gels,

A Mioroscopic Study of the Freezing of Gel.

By Gir Wilham B. Habdy, F.R.B.

(Department of Bcientifio and Induytral Peomench, Low Temperature Research Station,
Cambrldge.)
(Received June 10, 1926)
[Plati 5]
The curious spheras described by Moran, consisting as they do of a succession of shells, afford unmistakable proof that the formation of the ice phase inside a gel may not only vary in rato but actually intermit. This study was undertaken in the hope of throwing some light upon this phenomenon It has revealed two unerproted facts, namely, that, save in vary dulute gels, the course of internal freezing is usually intermittent, and that, instead of pure ice, a solid solution of gelatin and see separates. Pure ice can and does sometimes form in the shape of rounded crystals scatiered throughout the gel, but in the common type of freezing, by spheres or rays spreading from centres of orystallisation, it 18 always a solid solution which separates

The current conception that the spongy structure found in gels after being frozen and thawed is due to oryatals of ice is wrong It is due to the de-solution on rise of temperature and fall of pressure of the solid solution mentioned above. Actually, so far as my observations go, when crystals of pure ioe melt, the water is re-absorbed at once by the surrounding gel, leaving only a tiny cleft.

Neither the optical properties nor the behaviour on thawing of the 100 phase sapport Moran's suggostion that it is at any atage a murture of ice cryatals and particles of dehydrated gel.

Part 1 -Miorosooprcal Observations.

Freezing was watched under the microscope in cold chambers at $-7^{\circ},-11^{\circ}$ and $-12 \cdot 7^{\circ}$ respectively. All applances and reagents were at the temperatare of the chamber. With the exception of numbers $1,2,8$ and 9 , the figures are from free-hand aketches made as carefully as the rigorous conditions permitted of.

The process was followed in plates of gel, roughly 0.5 mm , thick, prepared by placing a drop of melted gel on a slp of glass, covering it with a very thin sheet of glass, and allowing it to set at room temperaturs. Ordinary medianal
parsffin was run round the edge to prevent evaporation, and the preparations were stared at 0° for a few days before use

The following types of freering were found :-
(1) Circles.
(2) Rays
(3) Disseminated.

Curcles were undoubtedly the equivalent of the spheres obsorved by Moran. Each was about 0.5 mm . in diameter, and consisted of a central circular area surrounded by rings (Gig 1) With high magnification the ringy were seen to be

Fia. $\mathbf{J .}$

Fra. 2.

40 per oent. gel, frosen at -11° ($\times 100$ dismeters, from photographa).
Fra. 1.-A cirole Fro. 2,-Secondary arean forming in contrel part of a circho.
separated from one another by membranes ($\mathrm{fg} .3(\mathrm{3})$), about $0 . \mathrm{F}_{\mu}$ thiok, of dense gel, which were curved in a vertical plane. The structure, therefore, was that which would be produced by compressing one of Moren's apheres between two planes. The membranes separsted zones of optically homogencous material

Fig. 8-38 per ceant. gel, frosen at -11°. Papt of a olrole highly magniffed - (a) before, (b) eller, fapid thawing. To wave time, the seoondsry areas, whinh now completely opeupy sonen 1, 2 and 3 were aketohed in ouly in places
whioh appeared to be pare ioe (fig. 3 (a)), but which, on thawing, wes found to be a solid solution of ice and gelatin (fig. 3 (6)). Freering obviously had been intermittent.

Rays, like circles, were always producte of intermittent freezing, beng divded by ourved membranes into oompartments filled by homogeneous solid solution (fig. 5). Circles formed at first rapidy and then slowly In the first period, growth was too rapid, and in the eecond too slow, to be followed. Rays, however, advanced at a rate which allowed the process to be followed under a high power with esse.
Rays and circles are merely minor variante of the same type of freening Sometimes a circle would stop growng when the dameter had become aboat 0.5 mm . Others at or near this limat would continue growing by rays, which often advanced wath the same velocity, so as to preserve the circular contour. The membranes of the carole could be seon bulging into the base of the rays (fig. 6)

Fra. 4

Fia. δ.

Fic. 6.

Fig. 4.- $\mathbf{4 0}$ per cent gel, frozen at - 11°. Traneferred to 3° to allow mecondary arean to develop fully
Tha. 5.-Typ of a ray showing membranes (a), lumloous eowe (b), and Gine etohed line (c)
Tra. 6. -Sketah of a ofrole with a angle ray growing from it
Diseemanated freezung was of two types :-(1) The gel was everywhere oloeely stadded by crystals with rounded edges very regular in size, each being about 20μ in diameter. Eaoh crystal was of pare ice, and each began as a minute sphere whose growth was rapid in very dilute gels, and too slow to follow in gols from, nay, 20 per cent. upwards. Freezing did not appear to be intermittent.

Sometmes ciroles, with or without reys, would form at a few centres, say, 6 to 10 , and attar a while oease growth. Eight or more days later the remeinder of the gel woald be foand to be ocoupied by crystals.
(2) The gel was occupsed by minute spheres, all of the same size, namely, ebout 3μ in diameter (see Moran's fig. 2). This hand of freering was found by

VOL. 081.-A.

Moran only at temperatures below -19°, when cooling was very rapid. Probably in this second form of disseminated freeziog ioe begen to form during the fall of temperature, but ceased when the viscosity became too grest, in which case the two types are merely dufferent atages in the same process.

Nothing is known as to the nature of the centres of crystalliastion, but it is alear that they were in two classes, a few (not more than, say, a dozen in a square centimetre) whoh became active with moderate cooling and gave rise to circlea and raya, and othera, many hundreds in number, which in strong gela became active with moderate cooling only after a long latent period lestung for days and at once wilh great cooling (-19° or more). The less the degree of cold, the fewer of this second alass became active.

Prolonged stady would be needed to evaluate all the variables, eapecially as some unknown factor operates, All the preparations from the same mass of gel, for example, do not give the same results Thus, in ten preparations of 15 per cent gel exposed to -11° for one day, there was no freezing at all in one preparation, and circles, with or without attached rays, from two to five in number, in all the others. The following conclunions, however, appear to be certan -

Frecring is intermittent, with separation of a solld solution in gela from 2 per cent. to 40 per oent (the latter the strongest used) when exposed to temperatares from - 6° to $-13 \cdot 5^{\circ}$.

Freezing is always dasseminated and very rapid, whth separation of a multitude of orystals of pure ice, in gels of leas than 2 per cent. This same type of dissemunated freering may occur in stronger gels, but it takes a week or more to appear.
Exposed to $-19^{\circ} \mathrm{C}$ in gels between 15 per cent. and 40 per cent., freezing wha always disseminsted, and only munute spheres of ice were formed. Weaker gele were not tried.

At $-2 \cdot 6^{\circ}$ to -3°, no spontaneous freering occurred.
Callow found that when he removed gels in which spheres had begun to form at -11° to -3°, pure ice was deposited sbout them; therefore a solid nolution separates only at temperatures below -3°. It will appear later that the sold solution is unstable st -9°.
It mught be supposed that the separation of a solnd solution depended upon the rate of cooling. Slow cooling was tried, ten days being occupied in the change from 0° to $-10 \cdot 4^{\circ}$. Freezing was intermittent, and a aolid solution separated. Owing to the capacity for overcoolung, however, slow cooling does not imply slow freenng.

Membranes,-The and of a ray has a smooth rounded contour suggesting a surfece moulded by surface tension. The gel ends in a lurninous sone ($b, \mathrm{fig} .5$), whioh may be a diffreotion halo or may be a zone of denser gel. It is about $0 \cdot 5 \mu$ wide. Beyond it in the gel are finely etched lines (c in the figure). Sometimes lnes appear also to be within the Inmunous zone, but this appearance 18 probably due to the curvature of the surface in the vertical plane Fine etohed lines, similar to those described above, are also found in the gel at the outer edge of circles.

As growth prooeeds membranes may be seen to become detached, so as to divide the ray into compartments (figs, 5 snd 6), each of which is filled completely by optically homogeneous transparent matenal

It might be supposed that each compartment represented a single block of sohd solution and that the appearance of membranes is really due to diffraction halos at the surfaces separating them. This is negatived by the fact that the membranes are angly refractive, while the contents are uniformly doubly refraotive. With crossed Nicols the former arc dark against a lummous background The membranes also persist on thewing.

Sufficient cause is found in Part 2 why freezing should be intermittent, the pauses belng duc either to an increase in the internal fnction, or to the concentration of the gel at the ace face inoressing until it is in equilibrium with the ice phase The moroscope shows, however, that when a pause occurs freenng atarts again, not at the origual face but at anew face within the gel, thus leanng the characteristio membrane of dehydrated gel behind

The explanation probably 18 simple. During intermittence the temperature at the face will fall and the hydration of the gel rise. The fine lines described above show that closvage occurs in the gel owing to uncompensated stresses, and each cleft will be the loous of a thin layer of dulute solution. Such a solution will have a highar freezing point than that of the concentrated gel on either side, and therefore freesing will start in it. The lsyer of dilute solution will, luke the layer of furd of insensible thickness on the surface of overoooled gel referred to by Morau, be the locus of centres of crystallisation of higher potential then any in the intenor of the gel. The clefts at the end of a ray are seen as they appear after thawing in the photograph (fig. 9).

Thawing.-By a simple device it was possible to raise the temperature of a preparation on the atage of the mioroscope either quackly or slowly, and thus watah the ohanges.

Two distinct events happen-distnct because the first can happen without the second. They are a separation of the sold solution into ice or water and
concentsated gel at about -6°, and a violent transferenge of water from the eponge of concentrated gel so formed to the surrounding gel, which ocours at sbout $0^{\circ} \mathrm{C}$ The sponge oommonly desoribed in the interior of gele wholh have been frozen and thawed is due to the first of these changes of atate, and the final volume occupied by the sponge when thawing is complete 18 very much less than the volume of the ioe phase, owing to the second process. Neither process is arrestod by the use of atrong fixatives such as formaldehyde. Some years ago* I drew attention to the artifacta caused by firatives No more atriking instance could be furnishod than the false proture given by atrong fixatives of the process of freening in gels, even when used as Moran used them, in the most favourable fashion

As temperature slowly rises, small spheres appear in the sold solation, whioh elowly increase in eize In curcles they sppear first in the central area. Fig. 1 ahows a cirole at -11°, and fig. 2 a curole in which small droplets are beginning to appear at the centre owing to a slow nise of temperature.

As the word "sphere" has been used to denote an entire system, it will help to avord confusion if these apherical droplets are called secondary areas. The secondary areas are smaller and more numerous the more rapid the rise of temperature. One has therefore in the solid solution, as in enture mass of gel, a great number of contres or nuclei, of which the number whoh become actave is determined by the rate of change of temperature. Secondary areas can be developed to theur lunit of aze by taking a gel from, say, -11° and keeping it for a day at -3°. They are then found to ocoupy the whole distance between the membranes (fig 4)

Figs $3(a)$ and 3 (b) illustrate the effect of more rapid warming Very rapid warming or flooding with 40 per cent. formaldehyde or absolute alcohol-of course, after removal of the cover glass-pioduoes a fine-grained atructure composed of a multitude of secondary areas not more than 0.1μ in diameter The vanation of the size of the areas with the rate of warming provea that they are not preformed.
Secondary areas do not appear to communcate with one another-a fact which makes it duffioult to understand the expulaion of water which takea place on further nse of temperature. Itis imposable to follow this process; it takes place with such startling rapidity. The quantity of water lost is considerableraye abnnk by 30 to 50 per cent. of their volume, and the weter ao loest is at once taken up by the surrounding gel Figs. 7 (a) and 7 (b) ahow the appearanoe

[^11]of raya before and after rapid thawing. The sarrated edges indoate where the membranes have folded together.

Bra. 7.-15 par vent. gal, frozen at - 11°. Rayr before thawing (a), and after rapid thaving (b). The fine grained atructure produced by rapid thaming in indionted in only one of the latter

Expulaion of water from the sold solution occurs also in cucles, but a large part is trapped between the concentric lajers. The result is that the membranes are aplit. Thas is clearly ahown in figs. 3 (a) and 3 (b), whioh ahow part of a circle highly magnified before and after thawing.

The capacity of the gel for re-absorbing water 18 shown also in the case of disseminated freezing. Each ice orystal disappears, and in its place 18 left a amall cleft. The space occapred by the cryatal therefore vanishes almost entirely, bat, as might be expected, the collapsed walls do not join together. It is to be observed, however, that euch extensive re-absorption of water occurs only when the gel is fairly concentrated (20 per cent, and upwards) ; when it is very dilate (under 2 per cent), the spaces occupied by the crystals round up on thewing, with but little decrease of volume. The result is an open sponge, the spaces in whioh, however, do not appear, at any rate at first, to communicate with one another.

Polarised Light - Before any freezing occurs, the gel is angly refractave, even though it has been overcooled for some days. When freezing has taken place, that part of the plate unoocupied by carcles, rays or crystals is doubly refreotive ; the solid solution is also doubly refractive; the membranes are aingly refractive. After the formation of secondary areas their walls of concentrated gel are singly refreotive.

Even when thawing is complete the plate of gel remains doubly refrsctive. The molecular structure imparted by freezing thercfore perasta. Whether it ultimately vamahes was not determined.
These observations suggeat an explanation of a etriling fact discovered by Callow." He seeded cylinders of gel oyercooled to - 3° at one ond and observed

[^12]the rate of adrance of the ice. Up to a concentration of 2 per cent. the velocity was of the order found in pure water. At 2 per cent. it suddenly dropped from $960 \mathrm{~cm} / \mathrm{hr}$ to $40 \mathrm{~cm} / \mathrm{hr}$. My own observations were made entirely upon spontaneous freezing, but they showed that at some low concentration of the gel intermuttent freezing appeared and disseminsted freexing whth separation of pure ice became very infrequent. The drop in velocity noted by Callow may therefore have been due to intermittent freezing replanng a continuous process.
These observations throw some light upon Moran's dulatometer curve (fig. 9) ${ }^{\text {* }}$ which shows that as temperature nses there is a sudden contraction at between -6° and -7°. This is the temperature at whioh secondary areas appear ; it is, therefore, a decrease of volume due to de-solution of the solid solation. When thawing is complete, the volume does not always return to its original valuethere is persstent slight increase. This is probsbly due to the persistence of that molecular pattern into which the gel is thrown by the atreases set up about the places where actual separation of an ice phase takes place, and which is manifested by the persistence into the thawed stage of double refraction.
Attempta were made to determme whether the separation of a solid solution was due to the rate of treezing by exposing gels to -3°. They were not sucoessful owing to the overcooling. Gele from 2 per cent to 40 per cent. failed entirely to freeze at -9°. Callow obtained considerable nodules of ice in the interior of a large mass of gel in a test tube, but each was deposited about a minate aphere which had previously formed at -11°

My acknowledgments are gladly given to Mr. Hale for microphotographs taken under most trying condutions, and for malang all the preparations of gel needed

Part 2.—Theoredral.

Moran distinguishes between internal and external oentres of crystallisation and points out that ice formstion is confined to the latter when the overcooling is not too great. \dagger He aleo finds that when ice forme wholly on the aurface of the gel a true phase equlibnum between ice and gel is resched in what is, for the colloidel state, a short tume.

Phase equilibrium of the kind described is so rare in the case of oollondel systems (I cannot recall another instanos) as to deserve some thought. It is no doubt conditional equilibnum and not the absolute equilibrium whioh eimple solutions erhibit, because it will certainly depend upon the previous history of

[^13]\dagger Fide mara, p. 42.
the gel upon, for exsmple, the temperatare at whioh the gelatin was duseolved and the rate at which gelation took place, since suchi'things influence the struoture of gels. The point is that when the atructure had been finally eatabliahed the phase relations with ice became a pure function of temperature and, as will appear later, of preserse.
Moran took care to asaure humself that the phase relations observed by him were betwean pure ice and gel. The interfare was eflectively plane, for, in the thin ducs employed, the curvature of the rim was small and ita area only a small freotion of the whole aurface.
Comider the formation of ioe on the sarisce of one of his thin disas. The ioe face would edvence inwards at e rate equal to the mass of ice (m) deposited in unit time multiplied by its specific volume $\left(\mathrm{g}_{1}\right)$. The gel face would retreat at a rate equal to the same mase multuplied by the speoific volume of water ($\mathrm{S}_{\boldsymbol{\sigma}}$) if the minute contraction which coours whan gels of medium strangth absorb water be neglected. Sunce S_{1} is greater than S_{v} a pressure would be set up which would oraok the shell of ioe at the edges of the thin discos, and Dr. Moran tellis me that the ahell of ice always was found so cracked. We may therefore take it that the equilibnum obtained was not only at a plane feve but also censibly under conatant pressure.

When ioe is being formed we may, following H. A. Wilson, suppose that the water is being driven from the gel to the ice by a pressure A whoh is equal to the diffarence in the internal pressure W_{p} of the water in the gel and of the ice W_{1}. That is, $A=\left(W_{0}-W_{0}\right)$. This is the pressure whoh is equal in magnitude to that whoh would have to be appled to a piston ampermesble to ice to stop freesing. For amsil values of A it masy be put equal to the difference in the vapour pressures of gel and ice at the interiace multiphed by a constant."
The pressure A may be supposed to drive water on to the ice face through a Layer of gel of depth a proportional to the range of moleoular forces, againat a triotional reaistance η. The velocity of ice formation V will then be

$$
\begin{equation*}
\mathbf{V}=\frac{\mathbf{A}}{a \eta^{\prime}} \tag{1}
\end{equation*}
$$

Whah, for small overcooling, may be put $=C\left(\theta_{0}-\theta\right)$.
The effect of an external pressure apon the internal and vapour presenres of a gel is not, so tar as I am aware, known, bat, save perhaps for very concentrated gols of gelatio in which all the water is absorbed with considerable evolation of

[^14]heat and contreotion of volume, marease of pressure is certain to have much the same effeot as it has on water. Therefore, if both ioe and gel are subjected to an external pressare P instead of a pressure applied only to the joe, W, will be increased, but not to the amme extent es W_{6}. Theraiore, though P ean stop ice formation, it wall have to be much greater then A to do so.
The pressures A and Pare the only ones which havo to be considered if eather ioe or gel, or both, are free from external conatraint, as they would be, for example, if they were contained in a oylinder with frotionless wells open at one end This condition is practically realised when a oylinder of gel encolosed in s test tube is seeded at one end if the gel be dulute, because then its adhesion to the glase will be elight. This is the condition which obtaned in Callow's meserrements of the velocity of ice formstion."

When both ice and gel are under external constraint, as they would be if they wers enclosed in a ngid envelope, there is a third pressure π normal to the we faoe and due to the expananon of water on freezing. This pressure will diminich the effective overcooling by lowerng the freezing point untal freering ceasen, when the ice phase will be in equilibnum with gel at the temperature θ and the pressures P and π.

When freening occurs in the interior of the gel these conditions are realised, exoept that the interface is no longer plane and the rigid walls are replacod by the elastic mass of gel. Freeang must be atopped at some point by the elatio compression of the ice by the surrounding gel unless the latter is fraotured, which it never seems to have been. As a matter of observation, with moderate overcooling freering did start at only a few oentres in the interior, and after a relatively ahort time ceased.

When $10 e$ forms from water the direct influence of the ice ince may be supposed to end at the distance a measured along the normal. When it forms from gel, however, owing to the fact that the interisoe is impermeable or only slightly permeable to gelatio, a diffusion oolumn is formed beyond the hruta a

Let us oall the layer of depth a neart to the ice M and the duffusion columan N. The movement of water in the latter is due to a gradient in the internal pressure so that the velocity through any elementary layer is given by

$$
\begin{equation*}
\mathrm{V}_{\omega}=\frac{d W_{G}}{d x} \frac{1}{\eta} \tag{2}
\end{equation*}
$$

When η is the frictional resistance reckoned at the layer.

The expression $\nabla=\frac{A}{a \eta}$ differs from the amilar expression for the freezing of weber in two partioulars; the quantity A is a function not only of the degree of overocoling and the preanures P and π, but also of the concentration of gelatin in the lajer M. Thas follows from the phase relationsfound by Moran

The resistance η also is a funotion of concentration as well as of the degree of overcooling and pressure.
The internal preasure of water in the gel W_{ρ} is also a function of temperature, prossare and concentration, but the coefficient $d W_{\rho} / d x$ in eqnation (2) is either melependent of temperatore and pressures or is not the same function as the other quantities.

This must not be taken to mean thet if the magnitude of A is changed by, for example, a fall of temperature, the diffualon column N will not change It means simply that if the gradient of concentration $d c / d x$ be everywhere kept constant throughout \mathbf{N} and the temperature or pressure alone changed, there is no evidenoe to show that the gradient of internal pressure will change. We may therefore assume that $d W_{0} / d x$ is a pare function of $d c / d x$.

Let $\theta_{0}-\boldsymbol{\theta}$ be the overcooling, 0^{\prime} the concentration of gelatin in the layer M. We have then :

$$
\begin{gather*}
\mathbf{A}=\frac{\phi^{\prime}\left(\theta_{0}-\theta\right)}{\phi^{\prime \prime}\left({o^{\prime}}^{\prime} \mathbf{P}, \pi\right)^{\prime}} \tag{3}\\
\eta=\mathbf{F}\left[\left(\theta_{0}-\theta\right), c^{\prime}, \mathbf{P}, \pi\right], \tag{4}\\
\frac{d W_{q}}{d x}=f\left(\frac{d c}{d x}\right) . \tag{5}
\end{gather*}
$$

Let the efficiency of the dufiusion column have its olvious meaning, namely, the rate at which water is brought to the layer M. It is easy to sec that the velocity of freenng will depend not only upon expression (1) but also upon the efficiency of the duffusion column It as also obvious that if one of the variables, tempersture or pressure, be altered, the result wall depend upon tho rate of change of different processes such as the rate of addition of water to and of its removal from the layer M, it is therefore the second differentials talcen with respect to tume which arc of importance
The intermittent character of the ireenng is expressed algebraically by saying that $d V / d t$ is not always posituve. Moran's study of the phase relations showe that at these low temperatures it may even have a negative value. The value will be zero when the concentration of gel in layer $M_{\text {is }}$ high enough to be in equilibrium with the ice phase at the local temperature and pressure, but
erpressions 1 and 2 show also that it may become sensibly zero if the quantity η becornes large enough.
Consider, for example, the effect of a sudden increase in the degree of overcooling. The change would, by increasing η, decrease the efficiency of the diffasion column It would also, if not too great, increase the rate of removal of water from the layer M and the result of the two prooesses would be a rapid mse in the concentration of the gel in M.
The chuef cause of acoumalation of gelatin in the layer M with consequent rise of concentration 18 , however, the impermeability, or relatively slight permeability, of the interfisce to this substance It 18 easy to see that by reason of thas impermeability a plane face of $10 e$ would not advance along a oylinder of gel at a constant rate. Callow (loc. cut.), it is trae, found the velouts of orystallisation to be remarikably constant, but what he observed was the rate of advance of the ends of rays of ice along a oylinder of gel seeded at one end and not the total ice formation. The gels he used were of low concentration and the overcoolung alight. Probably owing to the low concontration the growing points of the rayi pushed aside the acoumulated gelatan. The ice face also was ourved and the efficiency of a diffurion oolumn is greater over a curved than over a plane surface.
The quantity η is an important one in the theory of freecing. The form of the ourve connecting the velocity of crystallisition with the degree of overcooling is determined mainly by it H. A. Wilson* points out that in onocomponent aystems the pressure tarm A uncreases more rapidly than η for amall overcooling, but when overcooling 18 great η becomes so large as to stop freering.

In a single component aystem η is the pressure needed to drive unit masa of the flusd at anit velocity through itseli. For a gel it is the presaure needed to drive unit mass of water through the gel in layer M at unit velocity. In reokoning the quantity, however, regard muat be had to the movement of the framework of the gel which the movernent of the water brings about. Owing to the impermeability of the interiace to gelatin, the intarnal pressure A is oalled upon actually to compress the framework. η obviously is a more complar term than it is in suggle componont aystemes, and in any complete analysia it would probably be necessary to express the frictaonal resistance by two terms.

Since η is taken to include the resistance of a sold framework bult of enormons hydrated molcoules of gelatin, it 18 likely to increase rapidly with fall of temperature; it is therefore not a matter of surprise that, save in dilate gols

[^15]containing much tree water, freezing ceases at a very early stage when the overcooling is only as much as 19°.

The framework of gela is not a purely paention atruature. In some gels, such as those of dillee or fibrin, the tremewort spontaneounly shrinks and water in expolled. Graham geve to this proces the name syzeereric Let ue obll the syneorean of such gels poative, In other gela aynaeresis in negative, up to a point-that is to mey, in contect with water suoh gola imblibe watar and increase in volume A gel of gelatin has negative ayosereala.

The aign of Ita aymaresta muat be an Important factor in the freealing of a gel, as is obvious If dehydration and hydration are taken in two stagee Let the gel first lose watar to tho 100. If aynseresis u poadive, rehydration by abtorption from neighboaring gel will be redsted. Synserede aota llie an laternal friction which may be very great.

Over the range of concentrations we are conoldering the aynaereale of gelatin gel may be taken to be negative. Nothing la tnown of the effeot of tamperature uponit, bat the extraondinery raphdity with which watar is rasbeorbed on thawing ahowe that it can by no mesn be negleoted.

In any case the framowork of a gel with no synsertesla is not one whinh offers no reelstanoe to ohange of lorm, beosuse aynsereass in a measure only of the intrinsio ospacity for sportaneova shange.

The internal presesure of water $W, i n$ the layer M next the ice face is a function of the concentration o^{\prime} of the gel in that layer, but for dilute gels in whioh some, of the water is "tree" it will be independent of conoentration, and become dependent only for more concentrated gels. The limit between dilate and concentrated, however, is unknown, but Moran's observations appear to fix it at about BO per cent. All the gels used in this enquiry were below that conoentration, but we oannot conolude that A was independent of concentration because the value referred to is the local concentration in the layer M at the face. All we oan ay is that it would be diffloult or perhaps imposable for local aocumulation of gelatin senously to decrease the quantity W_{0} when the concentration of the general mase of gel is very low, and this, no doubt, is one of the reasons why intarmittent freezing was not found in very dilute gels.
Two of the observed relations seem susceptible of simple explanstion. The prepotency of the oentres of crystallisation on the surface of a gel can be cocounted for by tho presenoe there of an insensible layer of very dilute solution, and to the absence of the normal pressure π; and the separation of a solid solution in the interior within certain limits of concentration and tempers. ture in due to the pressure π and the degree of overoooling, since Moran found pure ice deposited at -3^{0} on the surface only where $\pi=0$, but at lower temperstures pure ioe wis deposited on the surface and at the asme tume, as his figures show, solid solution in the interior, and the only difference between surfaca and interior was that π whe zero at the surface and had a
positive value in the interior. If, however, the apecimen was removed from, say, -11° to -3°, pure ice wes deposited in the interior sbout the spherea of solld solution.

Freezing at a Spherical Surface - Let a sphere of the ioe phase form inside a mass of gel large enough for the diatribation to be symmetrioal about its centre. The prassures it the surface of the sphore are A and $(P+\pi), P$ is the atmosphenc pressure. The pressure π gives rise in the gel to a radial' pressure and a curcumferential tension, both of which vary inversely with the cube of the rading.

Snce the internal pressure of water in the gel is incressed by pressure, the effect of this distribution of radial presoure will be to decrease the ateepness of the gradient of internal pressure of water in the difiusion colomn about the sphere of ice, so that, if the gradient of concentration remamed unchanged, the effect of introducing the radial pressure would be to decrease the rate at whioh water moved to the ioe face. On the other hand, the velocity of the diffusing water through each shell required to keep the rate at which it arrives at the ice face constant varies inversely with the square of the radurs. We therefore have as a consequence of the form of the surfaces two effeots of opposite sign, that with the negative sign being some function of the inverse cube, snd that with the positive sign varying with the inverse square of the radius.

Whilst the ice phase is forming heat will be libersted at the surface of the sphare. If the quantity formed in unit time were constant, and loss of heat by radiation be neglected, the aphere would be at a constant temperature. If the rate of formstion of $10 e$ varied about a mean value, the aphere would act as a reservoir of heat, so that oscillations of temperature due to variations of the rats * would decrease as its radus moreased.

The gradient of falling temperature about the aphere will have an important effect upon the efficiency of the diffusion column Let a given diffusion column at uniform temperature deliver water on to the ice face at a certain rate. Now let the externsl temperature be varred so that, whilat the temperature at the ice face remans constant, a gradient of tomperature falling from the ice face outward is set up. The result will be to incresse the fricional renstance η everywhere eacept at the ice face. From geometry it is obvous that the gradient $d \eta / d r$ $s 0$ produced about a spherical tace wall be greater than $d y / d x$ at a plane suriace If the diffurivity of the gel is the same.

If the difiusnity of the gel were very low, enough hest might acoumulate in the sphere to stop freeaing untal some of it was dusspated. This posability was explored. Mr. Adair was good onough to measure for me the effect of

concentration upon the duffusivity of the gel, and found it to be the same as that of atill water over the range of concentrstion examined.

Probably the most unportant offect of curvature of the ice face bes in its effect upon the redustribution of gelation The framework of the gel is being pushed back by the ice face and is slso retreating owing to the transference of water to the surface of the sphere. Therefore, when any shell in the gel expands from r_{1} to r_{1}, there will be motion of the molecules of gelatin both radially and tangeatially Since the greater part of the gelatin 18 contaned in a solid frameworl, the rate of redistribution will be rather that of a aolad then of a flud, therefore, unless the rate of ice formation is very low, low enough to permit of redistribution of the stresses, actual fractare of the structure is likely to occur. The microscope shows that frecture dues occur Clefts in the gel appear sbout the ice face (figs 8 and 9) and, much more rarely, radal olefta appear as fine radial lunes

Moran found that gels in which the concentration was greater than 055 per cent. could not be made to freeze. His phase curve becomes honzontal at this concentration. From thes he infers that at this concentration none of the water in the gel is available for freezing because it is bound chemically to the gelatin There is an alternative explanation It is atated in text books on colloids that the freesing point of water absorbed in swelling may be lowered as much at 100°. The statement has no particular significanco umlessit means that at, asy, -100° ice has been found to separate It is certain, however, that, in the strict sense of the word, the freezing point of water in gels of high concentration is lowered considerably At the same time the internal friction η increases as concentration increases and as temperature lalle, it is possible, therefore, that freezing ceases at high concentrations because the forces tending to form ice are not able to overcome the internal friction and that all the pointa on Moran's curve are determuned by this equation If this were the case, however, since η is of the nature of a friction, one would not expect the complete reversubluty which he found

Studies in Adheston.-I.

By Sir Willam Hardy, Fr.S., and Milicent Nottagr.
(Report to the Lubrication Committee, Department of Solentific and Industrial Reararch)

(Regerved June 11, 1926)
Friction measures the tangential reaction at an interface to external forces, and certain relations to time, temperature, pressure and chemical constitution have been described in earher papers It seemed worth while to oxamene the relations of the norinal reaction, but nothing has been attempted beyond a preliminary survey of what has proved to be an interesting field.

For the purposes of this paper the word sdhesion means simply the normal force needed to detach completely a cylinder from a plate Mcasurements of this force are describerl in an intereating paper by Budgett,* which will be referred to later

The difficulty in discovering the laws of adbesion lics in the fact that, when the lubricant is fluid, anything between zero and a high value can be obinined by varying the time relation and the method of placing the cylunder and lubricant on the plate To get comparable values one has to seek out mechancully " corresponding'" atates, to borrow the convenient notation of chemsts One of these states is dealt with in this paper.

Static friction, strictly speaking, is the tangential force per unit area which just fails to cause alpping It cannot be obscrved because, owing to the fallibility of our senses, a certan rate of slip enters into all observations What actually is observed in experments upon static friction is the force which produces a certan tangential acceleration and it is noticeable that the acceleration varies widely for different lubricants As a broad rule, it is high when the molecular weight of the lubricant is low, and low (meroly a gentle slide) when the molecular weight is high

Let R_{0} be the reaction to the traction just before slapping occurs, then the observed reaction 18

$$
\mathbf{R}=\mathbf{R}_{0}+\int_{0} d \underline{R} d v
$$

v mught be called the velocity of release.
As nothing exact is known of boundary conditions in kinetic friction we cannot

[^16]say whether \mathbf{R}_{0} really does carry over from the statio to the kinetic atate It may, however, be worth while enquiring what happens if it does The second term on the right then becomes, with the sign changed, the force producing scceleration.
\mathbf{R}_{0} therefore ($=$ minus the true atatic friction) would, on this assumption, be less than \mathbf{R} (observed) for lubricants of low molecular welght, and the two, \mathbf{R} and \mathbf{R}_{0}, tend to equalty as the molecular weight rises The enquiry cannot be carried further without more kuowledge denved from experiment

The fact that the observod atatic friction is independent of the quintity of lubricant on the plate, of whether the lubricant 18 sohd or fluid, and of ternperature withn the limita explored, is perhaps assurance that the observed value is very close to the hmiting value No such assurance, however, is forthcoming for studies of aulhesion It as difficult to settlo what exactly is being measured, save in one group of cases, numely, when a sold lubricant 18 employed, when the force needed to break the cylunder away from the plate without doubt measures the tensile strength of the joint, so that, though acceleration comps in as it does in static friction, the theoretical reaction 18 (lear.
Any value can be obtumed for the adhesion produced by a flud lubricant, for any normal force given time conough will, if it be sullicient to overcome the relatively alght resistance offered by the surface tension of the lubricant, lift the cylinder When the normal force reaches a certan value, however, the break away occurs instantancously, and this is a true limiting value because any addition to the force falls to alter the result. As it is a haiting valuo, it is identifiable. It as not the only identufiable value, that given by soldd lubricants, for example, is another. Under certain circumstances it becomes a corresponding value which we will call Valuo A.

Value A,

Methods - Both cylinders and plates were ground to " opticnl" faces Earh cylunder, no matter of what materisl it was made, weighed 5.6 grammes, and had a darneter of 1 cm . A normal force was applied by a cord attached to the cylundor in auch a way that the force was central, and led over a light pulley to a pan for carrying weights The normal force is the weight in the pan less the weight of the cylunder. The pressure between the faces was varied by placing weights on the top of the cylnder, these weights, with that of the cylunder itself, are called the load Unfortunately it was necessary to remove the added weighta before a measurement could be taken and, as adhesion decreases when the load is reduced, the recorded value is somewhat less than the true one The measurements were carried out in a chamber filled with clean dry arr

The lubricant was added in one of two ways: a large pool wes made on the plate and the cylunder then put into 1 it , or the cylinder was first put on the plate, a little fluid then placed touching its edge and, when flud had oeased to be drawn underneath by capillary forces, and when therefore fluid was visible all round the edge, more was added to form a large pool.
G. I Taylor has calculated the rate of fall of a flat disc through fuid on to a flat plate and his equation shows that it would take infinte time to get within molecular distance of the plate * This equation is abundantly verified by these experiments. If sufficient time were allowed the oylundor placed in a pool would fall untal its weight was borne by the Leskic pressure \dagger due to the attraction of the sold faces for the flund.
This equlibrium position can, however, be reached quickly by starting from the other end, that is to say, by placing the cylinder on the plate, and allowng the flud to run underneath The capillary forces then are enormous and equilibnum is reached in a fow seconds. Value A woas taken ahonys from this equilibrium postion- u is therefore the force needed to break the cylinder anoay instantaneously when the thickness of the layer of lubricant is such that the Leshe pressure carres the load For all the loads employed, thas thickness meludes hundreds, if not thousands, of molecules, as is proved by the fact that if the temperature be allowed to fall sufficiently to freeze the lubricant, and the cylunder be then broken away, the layer as found to be of sensible thickness to be measured in fractions of a millimetre rather than in μ even for the heaviest loads employed. This alone is proof, if further proof be needed, that the attraction field of the solids modify the state of the labricant throughout a layer many hundreds or thoussnds of molecules in thickness.
The Latent Penod is the interval which elapses between placing the cylinder in the pool, or forming the pool about it, and the time when adhesion attauns a ateady value It may be the time taken by the cylunder in falling or rising in the pool ; or the tume ocoupied in the orientation of the molecules of the labncant in the attraction fields of the solids When the cylunder is falling the value increases, and the opposite when it rises. The latent period of orientation is always a period of increasing values \ddagger

The latent period of onentation can be obtamed by following the normal

[^17]prooedure, namely, placing the cyltader in position and allowing the flud to run under. The following values were obtained --

Table 1-Lobd 56 grammes
Latent Period of Orientation

-	Mintutes	Viecosity'
Oelang	0	0 005 6 at 20
Cyoloherane	$1)$	0 OMAB
p-Cymene	11	
Methyl Ethyl Kewne	21	00042 at 310
Avetophenone	21	
Cyclohemanoin	20	00230 at
1-3 Methyl ('yuloheramone	20	
1-4 ",	20	
Bithyl Alcohol	20	(0)0108 it 2.5
Batyl ,	20	0 0206) m 27
Otyl ${ }^{\text {co}}$	20	0) 07215 - 25^{\wedge}
Menzyl Alchohol	25	
1-2 Methyl Cyc lohumanol	10	
1-3 Cramol	40)	(1) 1678at 30
Carpacros	40	
Heptylu Acid	610	0 Mids at 20
Cuprylic :	10	(1)0575 at 20

It might be aupposed that aome part of this latent period was occupied by the flowing of flud between the surfaces, but it must be remembered that the pool was not formed and the measuremeut was not taken untul flud bad ceased to be drawn in A simular latenl period was also found in the study of friction.
Octane, in which both ends of the carbou chain are aluke, and the saturated ring compound cyolohexane, gave no latent period of orientation, that is to say, the first value obtaned was always the samis as that found after an hour, no matter what the load mught be Why paracymene should show no measurable polarity muat be left to chemists to discuss.

The latent periods of orientation for static friction of the three 8 -carkon compounds are reproduced here for comparison Octane, none, Octyl alcohol, 15 minutes, Caprylc acid, 60 minutes
The latent period seemed to increase slightly with increase in losd, but this mught be due to the defective expenmental procedure which involved removal of added weights before a measurement could be taken.

Paracymene was chosen for the study of the latent period due to rise or fall in the pool, because it gave no measurable latent period of onentation. A pool was first made on the glass plate, a steel cylinder placed in it, and after a known interval the foree needed to detach itinstantaneously was measured. Cylunder VOL, CXII. $-\mathbf{A}$.
and plate were then oleaned and another measurement made after a longer interval. In this way the curves were obtained for loads $5 \cdot 6,116 \cdot 1$, and 259.6 grammes. The values of A for these loads-thatis, the value which would have been reached had the cylinder had time to fall to its equilibrium poastanare plotted at the end of the dotted lines It 18 obvious from the form of the curves that it would take a very long tume to reach these steady values, these curves, therefore, are completely in aucord with G. I. Taylor'a equation

A relation of great theoretical importance which confirmed a similar relation found in the study of friction was got by startang from the equilibrium condition and varyng the load.

> Steel on glass. p-cymene.

Load 259.6 grs. Loaded cylnder placed on the plate, flud then run under, and a pool formed: 254 grra , then removed and reading taken after the interval shown in the first column. Force needed to detach in night-hand column,

The figures are plotted in curve $\Lambda \mathrm{BC}, \mathrm{fig} 1$. The cylinder moved from one equilibrium position to the other, rising in the pool, in 3 minutes.

Cylunder in place, flud run under as before and pool formed Joad then increased from $5 \cdot 6$ to $259 \cdot 6 \mathrm{grs}$. and realings taken (curve DE, fig 1) - -

Value of A for load $259 \cdot 6$ grms. is 152 grs . If π is the Leale pressure, and P the normal pressure (load divided by area) the condition at the begunning of the first case was $P-\pi=-\frac{254}{.8}=-317 \cdot 5 \mathrm{grs}$, and of the second $P-\pi=$ +317.5 gra, , why, then, should equilibnum be reached so rapully when the cylinder rose and so exceedingly slowly when it fell ? The answer offered is the same as that given in the papers upon friction*-that when the cylinder rises flud of low viscosity is drawn in, when it falls it presses out lubricant whose moleoules are locked in place by the attraction fields of the solids. It is the difference between drawing in a light apirit and expressing a jelly. If this view be oorrect, the viscosity η in G. I Taylor's equation must be treated as a variable which is a function of tume and the distance between the solud faces.

The tame taken for tho cylunder to rise to the top of the pook and break away depends, as might be expected, upon the normal force. For example -

[^18]
Octyl Alcohol.

Steel cylinder placed on glass plate, the fud then run under and a pool formed. Load 56 gre.

Normal Pull.	Time	
0.4 grs.	Rose slowly to top of pool in 30 seconds,	
2.4	"	

The last of these ss the \mathbf{A} value
With the help of a telescope magnifying 10 dumetera, the rise of the cylunder was followed under sinall normal pulls It moves at first very slowly, but rapidly accelerates untul the final break away orcurs The impression is that of a pause followed by rapid movernent At the limutug value there is no apparent pause, and this gives the curious impression that there is no ressatance on the part of the cyluder This apparent dianppearance of resistance is characteristic of the A value and of great value in experiments by marking a sharp end point

The A value probably 1 not a measure of the tensile atrength of the lubricant. Worthington found the tensile atrength of alcohol to be 8,165 grammes per square centimetre The A value for ethyl alcohol for a load of $5 \cdot 6 \mathrm{grs}$. was only 9 grs per square centimetre The elast ingive of the lubricant appears to be sufficient to allow of a tangential flow bewg estableshed before rupture takes place The A value in that case is a massure of the precosity of the lubricant, the time value being arbitrarily fixed by the condition "instantaneous." This question can be more profitably pursued, however, when the adhesion produced by solud lubricants has been described

Sleady Values.

The A value for a number of substances with different solida and loads are given in grammes in Table II The viscosity of the lubricant in mass at a tempersture of $20^{\circ} \mathrm{C}$ is given in the second column, the figures being taken from various sources. In the third column are the loads in grammes,

The value > 110 means that the adhesion was higher than the apparatus would measure.

Teble II.-Value A

Tern poratiate 18° enoept whers mentioned			Steel on Olans	Steel on Steel	Copper on Glam	Copper on Abeel	Copper on Copper
	7	L	A	A	A	A	A
Ootene	0005	56 1151 2068	$\begin{array}{ll}1 & 2 \\ 3 & 0 \\ 3 & 8\end{array}$	$\begin{array}{ll}1 & 1 \\ 2 & 8 \\ 3 & 3\end{array}$			
Ethyl alcohol	0000	56 1161 259.6	72 221 330	62 142 292	27 77 122	17 47 78	
Batyl aloohal	0024	56 1181 2506	117 30 42.9	07		05	37
Undecyl alonhol	56			202		232	202
Ootyl alcohol	0 OOA	56 115 259	212 449 619	187 362 50		157	13.0
Heptylle aond	004.3	50 1151 285	$\begin{aligned} & 127 \\ & 507 \\ & 64,0 \end{aligned}$				
Oaprylio acid	0087	50 1181 2596	290 909 >110	18.0 789 970			
Cycloherano	0000	56 1151 258	37 77 117	35 74 118			
Undesane (51 ${ }^{\circ}$)		60		16			
Nomadicane ($51{ }^{\circ}$)		5.6		82			
Tetrecomane (81 ${ }^{\text {c }}$)		06		127			
Mo Et Ketone	0004	56 1181 259	$\begin{array}{ll}16 \\ 3 & 0 \\ 70\end{array}$	$\begin{array}{ll}172 \\ 3 & 2 \\ 5.7\end{array}$	10 27 46		
p-Cymene		80 115 209	17 $10 \cdot 3$ 152	42 42 157			
Acotophenone		56 $115-1$ 2096	48 80 127	70 72 115	$\begin{array}{rr}30 \\ 0 & 8 \\ 10 & 2\end{array}$		
Cyoloheranone		56 115 288 28	167 25 318				
1-3 Methyl Oyolohemapone		$\begin{array}{r} 56 \\ 1151 \\ 9506 \end{array}$	$\begin{aligned} & 17.7 \\ & 269 \end{aligned}$				

Table V-(contmued).

Tomperabure 18° oxoopt where montioned			Etrol on Glasi	Steel on Steenl.	Uopper on Gins.	Copper on Étool.	$\begin{gathered} \text { Ooppar } \\ \text { on Coppar, } \end{gathered}$
	\%	L	A	A	A	A	A
14 Methyl Oyolohexanose		56 1151 2596	58 248 340				
Banzyl aloohol	0046	56 $115-1$ 209.6	147 348 480	122 272 382	$9-7$ 108 27		
1-2 Mothyl Cyclohexanol		56 1151 2506	680 >110	609 1010 >110			
1-3 Cremol	0187	50 1151 2086	749 >110	879 048 >110	689 889 84 8		
Carvasrol		59	1050	080	008		
Cyolohexanol	0500	5 A	>110	>110			
Olyeol	$01732{ }^{\circ}$	56	>110	>110			
Glycorol	5413	50	>110	>110			

Fra. 2 -Load and Adhemion (oide Teble II)

Effed of the Pressure -Static friction when both faces are plane increases with the pressure (that is losd + area) but not so fast as the pressure. When the latter reaches a certann value the friction varies with the pressure so that the ooefficient μ ($=$ tangential force + load) becomes constant. This was attributed to the thinnung of the layer of lubricant untll a layer of great mechanceal stability alone remained *

In these experimenta on adhesion it was not possble to reach the pressures found necessary to make μ independent of the load, all values, therefore, he in the region of varying μ.

The curves in fig 3 show that the cuefficient $\alpha(\sim A+l o a d)$ docreases as

Fre. 3.

- ' Boy. Boo. Proo.,' A, rol. 108, p. 1 (1998).
the load increases. Whether it would become independent of the loed at higher pressures must be left uncertan.
Effect of the Nature of the Solid.-The velue of A depends not only upon the chernical conatutution of the lubricant but also apon that of the solide. The following order was always found glase $>$ steel $>$ copper

In the case of friction the effect of a change in the nature of the solids was merely to shift the curve for μ and molecular weight parallel to itself, and the curve for two duferent solids was half-way between the ourves for each solid by itself.* These same relations seem to hold for the A value, as the curves in fig. 4 show. The equation for the coefficient $\alpha(A+$ load $)$ is

$$
\alpha=\frac{\left(r_{1}+r_{s}\right)}{2}-s M,
$$

where $r_{\text {if }}$ a function of the nature of the eolid, the load, and the temperatare, os function of the chemical series, and M the molecular weight.

Fra. 4.
The influence of the nature of the sold wall is so atrikang as to make it a matter of surprise that it is not taken into acoount in certain of the standard methods of measuring the visoosity of fluids.

Effect of Molecular Werght.-The valuea for the normal alcohale and normal

[^19]parafilis are plotted againat thar molecular weight in figs. 5 and 6 The relation, hire the umiler one in statio friction, is lenear for the ame chemical senes.

Fra 5

Fio. 6.
The value for catyl alcohol was calculated from measurements made at 51° and 78° by using thear lineation to tempersture. Since these measurements
were made with ateel on steel it was necessary to apply a correotion to bring the value to that for steel on glase. The value plotted for cetyl alcohol is therefore for the fluid state

Effect of Temperature.-The value of A for octyl and cetyl alcohols at different temperaturea are given in Table III and plotted in the curves fig. 7.

Table III.

Tomp.	Cyluder,	Plate	Losd 8.8 gra	1151 mro	2598 gran .
Octyl Aloohol					
	Steel Coppor Coleel Steppor Cot Stoel Copper Stoel Copper	Stoel ". $"$. $"$ $"$ $"$	187 157 109 182 122 02 02 82 42	362 363 218 318 92 27 27.8 18.2 22.7 132	609 809 38.9 45.9 30.9 41.9 26.2 34.8 107
Cotyl Alowhol.					
$\begin{aligned} & 61^{\circ} \\ & 61^{\circ} \\ & 76^{\circ} \\ & 75^{\circ} \end{aligned}$	Hteel Copper Steel Copper	Stool " "י	30.7 207 96.7 282	369 480 809 409	789 88. 71.0 86.0

It will be seen that the curvea for different solds are parallel, but the position of the curve for the same solid varies with the losd The slope of the curves depends upon temperature and the load. The curves are linear.

The equation therefore is

$$
A=\alpha-\beta \theta,
$$

where α is a function of the nature of the solid and the load and where β is a function of temperature and load.
These relations are similar to those found for friction in the comparable region where the pressure was not great enough to make the coeflicient of friction independent of the log. When that coefficient is independent of the lome it is also independent of temperature*

[^20]

Fig 7

Stimmary

1 Any force, if it be great enough to overcome the slight resistance offered by the surface tension of the lubncant, can lift a cylunder standing un a pool of lubricant upon a plate, certain values of adhesion are, however, identafiable, and one of these $1 s$ the normal pull required to break the cylnder away instantaneously. Adhesion here mesne sumply thes notmal pull
2. In order that the value ahall be comparable, cylinder, plate and lubricant must be in a mechanically corresponding relation. One such is when the load is in equilibrium with the Leale pressure. To the identifiable value for this corresponding atate the name A value is given.

3 The latent period whioh elapses before this state is reached 18 due either to orientation of the molecules of the lubricant or to the oylunder naing or talling in the pool.
4. The A value is a function of the chemual constitution of the lubricant and of the solids, of the load, and of tempersture

Atomio States and Spectral Ternis.

By Prof. J. C Mclennan, F R.S , Mr. A. B. Mclay, M A., and Mr. H Graybon Smith, Ph D., Unversity of Toronto.

(Recelved June 24, 1926)
Through the recent brilliant work of Paul,** Hesenbergt and Hund \ddagger the foundations have been lad for the interpretation of spectra in terms of atoraio states, and it appears that we can now predict, almost with certanaty, the structure and chief charactenstios of any optical apectrum of the atom of any element when the extra-nuclear electronic configuration that gives nise to it is known. Conversely, if the charactemstios of any optical apectrum of an atom be known, it ia possible likewise defintely to desonbe the extra-nuclear electronce states of the atom involved in the prolluction of such spectrim.
The writere were engaged recently in a study of the optical apectra of a number of the elemente, including manganese, gold, platinum and palladium, and by applying the ideas of Hessenberg and Hund suoceeded in unravelling the arc spectra of each of these clements, and also, in part, those of a number of other elements. In the course of this work we had the advantage of several consultations with Dr Laporte dunng a visit he very kindly made to the Phyaical Laboratory at Toronto, and we wish to acknowledge here our appreciation of his help
The present communcation§ is intended primarily as an introduction to the papers that follow, dealing with the chief characteristices of optical apectra of the elements of gold and palladium. The man features of the theory expounded are wholly due to Heisenberg and Hund, and the paper in so far as it doals with these contans nothing original Certain details in the method of applying the theory appear to us to be novel, and have been found by us to be extremely helpful in dealing with complex apectra Some amplifications in the notation have also been introduoed which seem to be desirable.

Daring the study referred to above we found it of interest to seek to determine, if posable, the specuic spectral term that corresponded to what, from the

[^21]experimental data then available, appeared to be the most atable electronc configuration of the atom of each element.

The results of this application of the Heisenherg-Hund method are given in Table I A similar table in alghtly different form was published recently by

Kloment	$\begin{array}{\|l\|l} A_{1} \\ \mathbf{N o} \end{array}$	A lomie Weight	Extra Nuclear Electronc Conligurationa							Lownot Speutral Term
			$\underset{i_{1}}{K}$	$\underset{21}{1} \begin{gathered} 1 \\ 2, \end{gathered}$	$\underset{3_{1}}{\mathbf{3}_{2} 3_{3}}$	$4_{1} 4_{1} i_{3} i_{4}$	$\frac{0}{\sigma_{1} \sigma_{2} 5_{3} \sigma_{1} \sigma_{0}}$			
$\begin{aligned} & \mathrm{H} \\ & \mathrm{He} \\ & \mathrm{LI} \\ & \mathrm{Be} \end{aligned}$	1 2 3 4 4		1 2 2 2 2	$\frac{1}{2}$						
$\begin{aligned} & \mathrm{B} \\ & \mathrm{U} \\ & \mathrm{~N} \\ & \mathbf{O} \end{aligned}$	1 7 8	10 120 120 140 10	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{lll}2 & \\ 2 & 1 \\ 3 & 2 \\ 2 & 3 \\ 2 & 4\end{array}$						
$\begin{aligned} & \hline \mathbf{F} \\ & \mathrm{No} \\ & \mathrm{Nu} \\ & \mathbf{M} \mathrm{~B} \end{aligned}$	0 10 11 12	190 190 202 230 24 34	2 2 2 2 4	$\begin{array}{lll}2 & \\ 2 & 0 \\ 2 & 3 \\ 2 & 6 \\ 2 & 18\end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$					$\begin{aligned} & -P_{12} \\ & x_{12} \\ & x_{1} \\ & N_{1} \\ & n_{1} \\ & \hline \end{aligned}$
$\begin{aligned} & A 1 \\ & A 1 \\ & \mathbf{N} \\ & \mathbf{P} \end{aligned}$	$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	271 283 $\begin{array}{ll}31 & 04 \\ 32 & 06\end{array}$	2 2 2 2 2	$\begin{array}{ll} \hline 2 & 0 \\ 2 & 0 \\ 2 & 0 \\ 2 & 6 \\ \hline \end{array}$	$\begin{array}{ll}2 & 3 \\ 2 & 2 \\ 2 & 3 \\ 2 & 4\end{array}$					${ }^{2}{ }^{2} 16$ ${ }^{3}$ Pota 42 ${ }^{1}$ POIE
$\begin{aligned} & \mathrm{Cl} \\ & \mathrm{~A} \\ & \mathrm{~K} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	$\begin{array}{ll} \hline 38 & 46 \\ 39 \\ 39 & 88 \\ 39 & 1 \\ 40 & 07 \end{array}$	$\begin{aligned} & \overline{2} \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{ll} \hline 2 & A \\ 2 & 6 \\ 2 & 0 \\ 2 & 0 \\ \hline \end{array}$	$\begin{array}{ll} \hline \mathbf{2} & 1 \\ 2 & 1 \\ 2 & 11 \\ 2 & 1 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$		1		
$\begin{aligned} & \mathrm{No} \\ & \mathrm{Ti} \\ & \mathrm{~V} \\ & \mathrm{Cr} \end{aligned}$	$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\begin{aligned} & 441 \\ & 481 \\ & 8106 \\ & 520 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{ll} 2 & 0 \\ 2 & 0 \\ 2 & 0 \\ 2 & 0 \end{array}$	$\begin{array}{llll}2 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 1 & 3 \\ 2 & 8 & 5\end{array}$	$\begin{aligned} & \hline 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$				
$\begin{aligned} & \mathbf{M n} \\ & \mathrm{Na} \\ & \mathbf{C o} \\ & \mathbf{N o}_{1} \end{aligned}$	$\begin{aligned} & 25 \\ & 24 \\ & 27 \\ & 27 \end{aligned}$	54 日3 25. 84 4897 5868	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	2 0 2 0 2 0 2 0	$\begin{array}{lll}2 & 6 & 5 \\ 2 & 0 & 6 \\ 2 & 1 & 7 \\ 2 & 6 & 8\end{array}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$				
$\begin{aligned} & \mathrm{Cu} \\ & \mathrm{Zu} \\ & \mathrm{Ga} \\ & \mathrm{Ga} \end{aligned}$	29 30 31 31 39	$\begin{aligned} & 6867 \\ & 68.37 \\ & 689 \\ & 728 \end{aligned}$	2 2 2 2 2	$\begin{array}{ll} \hline 2 & 6 \\ 2 & 6 \\ 2 & 0 \\ 2 & 0 \end{array}$	$\begin{array}{llll}2 & 6 & 10 \\ 2 & 8 & 10 \\ 4 & 8 & 10 \\ 2 & 0 & 10\end{array}$	$\begin{array}{ll} \hline 1 & \\ 2 & \\ 2 & 1 \\ 2 & 2 \end{array}$				
$\begin{aligned} & \mathrm{AB}^{2} \\ & \mathrm{Be} \\ & \mathrm{Br} \\ & \mathrm{Kr} \end{aligned}$	38 34 34 38 38	74.09 79.8 79.92 82.82	2 2 2 2 2	$\begin{array}{ll} 2 & 6 \\ 2 & 6 \\ 2 & 0 \\ 2 & 0 \end{array}$	8 A 10 6 10 2 6 10 2 6 10 2 A 10	$\begin{array}{ll}2 & 3 \\ 3 & 4 \\ 2 & 5 \\ 2 & 5\end{array}$				Ws ${ }^{2}$ Pu1g ${ }^{2} \mathrm{P}_{12}$ ${ }^{1} \mathbf{S}_{1}$
$\begin{aligned} & \mathrm{Rb} \\ & \mathbf{8 r} \\ & \mathbf{Y r} \\ & \mathbf{Z r} \end{aligned}$	37 38 38 40	$\begin{aligned} & 95 \cdot 45 \\ & 87.68 \\ & 89.0 \\ & 90.6 \end{aligned}$	\% 2	$\begin{array}{ll} 2 & 6 \\ 2 & 6 \\ 2 & 6 \\ 2 & 6 \end{array}$	$\begin{array}{llll} 2 & 6 & 10 \\ 2 & 8 & 10 \\ 2 & 6 & 10 \\ 2 & 6 & 10 \end{array}$	$\begin{array}{ll}2 & 0 \\ 2 & \\ 2 & 8 \\ 2 & 8 \\ 2 & 1 \\ 2 & 1 \\ 2\end{array}$	1 2 2 2			

78 J. C. MoLenaan, A. B. MoLay and H. G. Smith.
Table I-(continued).

Element	$\begin{aligned} & \text { At } \\ & \text { No } \end{aligned}$	Alomis Weight	Extra-Nuclear Electromo Conhyuratiman							Lowest Spectral Term.
			$\begin{aligned} & \mathbf{K} \\ & \mathbf{I}_{\mathbf{1}} \end{aligned}$	$\mathbf{I}_{1} 2_{2}$	$\mathrm{a}_{1} \stackrel{M}{3_{1}} 3_{3}$	$4_{1} t_{1} i_{s} i_{4}$		$\underset{\sigma_{1}}{ } \theta_{2} \theta_{3} \theta_{4} \theta_{n} \theta_{4}$	$7_{1} \mathbf{7 a}_{1} 7_{a}$	
Cb	41	035	2	2 13	$2 \quad 110$	2 A 4	1			${ }^{1} D_{12845}$
Mo	42	040	2	20	2 (10	28 5	1			${ }^{7} \mathrm{~S}_{8}$
Ma	43		2	28	$2 \quad 610$	2 O H	1			${ }^{-} \mathrm{D}_{14 \mathrm{HE}}$
Ru	44	1017	2	20	2010	$2 \begin{array}{lll}2 & 6 & 7\end{array}$	1			${ }^{5} \mathrm{~F} 12845$
Rh	45	102 A	2	26	2 H 10	266	1			${ }^{4}$ F2304
Pd	48	1047	2	2π	2010	$2 \quad 610$				${ }^{1 / 51}$
Ag	47	107 NB	2	26	$2 \quad 0 \quad 10$	2 l	1			${ }_{\text {a }}{ }^{1}$
cd	48	11240	2	26	$2 \quad 16$	2010	2			1 So
In	49	1148		30	$2 \begin{array}{lll}2 & 0 & 10\end{array}$	2 l 10	21			${ }^{1} \mathrm{~Pa}$
Bn	60	1147	8	$2 \quad 1$	$2 \begin{array}{llll}2 & 15 & 10\end{array}$	$4{ }^{2}$ O 10	22			${ }^{1} \mathrm{Po12}$
Sb	51	1202	2	20	$2 \quad 610$	$2 \begin{array}{lll}2 & 10\end{array}$	23			${ }^{4} \mathrm{~S}$
Te	52	1275	2	26	2010	2010	$2+$			${ }^{1} \mathrm{P}_{018}$
1	63	12682	2		d 610	$2 \quad 1610$	25			${ }^{1} \mathrm{P}_{18}$
Xo	54	13032	2	2 H	2610	2 (1) 10	2 6			${ }^{1} \mathbf{1} 0$
Ca	55	13281	2	2 U	2610	2010	2 O	1		${ }^{4} \mathrm{H}$
He	68	13737	2	20	2610	2610	20	2		${ }^{1} \mathrm{SO}$
La	57	1390		96	2 lll 10	2610	8 (3) 1	2		${ }^{2} \mathrm{Dys}$
Ce	58	14025	8	28	2610	20101	2 (1)	2		${ }^{2} \mathrm{Hasa}$
Pr	09	1406	2	20	$2 \begin{array}{llll}2 & 6 & 10\end{array}$	20010	261	2		-K6789?
Nd	(t)	1443	2	20	2610	26103	2 H 1	2		${ }^{6}$ L678010
$\underline{\square}$	61		2	$2{ }^{2}$	$\begin{array}{llll}2 & 6 & 10\end{array}$	$20^{2} 10104$	$2 \begin{array}{lll}2 & 0 & 1\end{array}$	2		${ }^{1}$ L5678010
Na	62	1504	2	$2{ }^{2}$ 6	$2 \quad 610$	2 (1) 10 5	$2 \mathrm{l}_{2} 6$	4		${ }^{7} \mathrm{~K} 15678010$
Eu	63	1520	2	26	$2 \begin{array}{lll}2 & 6 & 10\end{array}$	$26610 \quad 10$	201	2		-Hp9456780
(1d)	64	1573	2	2 B	$2 \quad 810$	2 O	2 6 1	2		- Dasiss
Tb	05	1592	2	2 H	2010		2 O 1	2		${ }^{1} \mathrm{H}$ 48450789
I)	68	102.5	2	$2 \quad 1$	$2 \quad 10$	$2610 \quad \theta$	2 A 1	2		${ }^{1} \mathrm{~K}$ (5atbesio
Ho	67	1635	2	26	2 \% 10	$2 \quad 31010$	201	2		${ }^{1} \mathrm{~L}$ Le798910
Er	68	1674	2	26	2010	$\boldsymbol{8}$	2 H 1	2		${ }^{4} \mathrm{~L} 478910$
Tu	00	1885	2	2 if	$2 \quad 10$	81012	201	2		${ }^{4} \mathrm{~K} 8789$
Yb	70	1735	2	20	2 E 610	$2{ }^{2}$ (1013	2 fl	2		${ }^{2} \mathrm{H}_{488}$
Lu	71	1780	2	26	2 E	261014	261	2		${ }^{1} \mathrm{D}_{\text {gs }}$
Hif	72	1780	2	20	2810	2 d	268	2		${ }^{1} \mathrm{~F}$ y ${ }^{\text {a }}$
Ta	73		2	10	≥ 010	2 C 1014	263	2		${ }^{4} \mathrm{~F} 9345$
W	74	1840	2	2 H	2810	2 l	204	2		10, 0^{1234}
Re	75		2	2 (2 f 10	261014	265	2		${ }^{18}$
Ros	75		2	20	$2{ }^{2}$ 6 10	2 c 1010	863	I		${ }^{-D_{1484}}$
08	76	190 D	2	26	21310	261014	26 d	2		Doles
Or	76		2	20	2610	201014	8 \% 7	1		${ }^{1} \mathrm{~F}_{12848}$
Ir	77	1831	2	$2{ }^{2} 8$	2 lll	${ }_{8}^{8} 81014$	$\begin{array}{lll}2 & 6 & 7\end{array}$	2		${ }^{4} \mathrm{Fe}$ esad
Ir	77		2	2 A	2 H10	261014	288	1		${ }^{4} \mathrm{~F}_{284}$
Pt	78	1068	2	26	8 - 10	$2{ }_{2}^{2} 61014$	268	2		${ }^{1} \mathrm{P}_{298}$
Pt	78		2	26	2010	261014	260	1		${ }^{1} \mathrm{D} 185$
Pt	78		2	26	2 l	8 \% 61014	2610			${ }^{181} 0$
An	79	$107 \cdot 2$	2	26	2 C	201014	$8 \quad 610$	1		M
Hid	80	2006	2	20	2 \% 10	2 l	2610	2		$1{ }^{10} 0$

Table I-(continued).

Dr. Paul D. Foote" in a paper in the 'Transactions of the Amerioan lnstitute of Mining and Metallurgical Engineers.' In Dr Foote's paper the classification of the electronic orbits adopted was accordeng to the scheme of Stoner \dagger and Main Smıth, \ddagger whle in ours the classification 38 limited, it will be seen, to the orbital types usually designated by $1_{1} ; 2_{1}, 2_{2}, 3_{1}, 3_{8}, 3_{9}, 4_{1}, 4_{1}, 4_{3}, 4_{4}$, ete. In Dr, Foote'a paper no detaals are given regarding the method by the use of which he obtanned lus results

In order that the arguments presented in our papers on the spectra of gold and palladıum may be apprehended more easily, we prop see giving in what follows a few notes illustrating the manner in which we apphed the method to obtain the results indicated in the table. It wll be seen that in Note III. we have given full detaile of the determunation of the basic terms involved in the structure of the arc speotrum of oxygen The menner in which these terms were found and the way they are arranged will serve to ahow how the basso terms of the are spectrum of any element are avolved from the deepest terms in the first spark spectrum of such element.

Since Table I was formulated its validity has been confirmed by experimental

[^22]data obtained by different investigatore with a number of elemente In no case as yet, in so far as we are aware, has the type of the fundamental term recorded in the table for any element been found to be incorrect

The only fentures of the table about which there is a lack of complete definiteness is in connection with the elements, Thonim, Uramum \mathbf{X} and Uranium, and in connection with the group Rheniuni, Osmum, Indum and Platinum.

Alternative "decpest" terms are given for each of the three elements, Thonum, Uranum X and Uramum, based (1) on the assumption that these elements are, respectively, homulogues of Hafnium, Tantalum and Tungeten, and (2) on the assumption that they are homologues of ('erium, Prasoodymum and Neodlymum respectively Which of these alternatives is the correct one will probubly be ascertaned shortly from a study of the are apectrum of either Thorium or Uranum As regards cach of the other four elements experiment must decide which of the configurations given in the table 18 the most atable one The table, it will be seen, gives only the deepest term involved in the atructure of the are upectrum of an element, but in the casc of many of the elpments the deepost terms involved in their successive spark spretra ure given by the result recorded in the table for each of the rements lighter than and immediately successively preceding the one under considerstion.

In oases where the fundamental term involved in the atructure of any spark spectrum of an element is not dirortly obtainable from the table, it can be found quite easily by the application of the same method as that used in workng out the fundamental term of the are spectrum of thr element.

Without going into any thcorctical development, it will suffice to give here a few rules on which the mothod of determining the lowest spectral ternus involved in the structure of the are apectrum or in that of auy spark spectrum of the atom of an rlemerit is based
Rules.

1 Orbit types are to be consdered as defined by the total, and azimuthal quantum numbers n and k respectively. For purposes of oalculation in connection with spectral term determination the quantum number " j," usually deagnated as "inner," 18 to be considered as the vector sam of two subsidiary quantum numbers j_{a} and j, lt is necessary also in some cases to take uto conaderation the effect of the orientation of orbiss with respect to an imaginary ainall magnetic field, and auch orientation involves a fourth quantum number m, which in turn is stself composite and is equal to the vector sum of two subsubsidiary quantum numbers m_{a} and m_{a},

2 Spectral terms are to be designated in the usual way as follows:-S, P, D,

F, G, H, J, K, L, M, N, O, P, Q . . correspunding to the values $1,2,3,4, \mathrm{E}$, 6, $7,8,9,10,11,12,13,14, \ldots$ for a spectral term quantum number denoted by " l " The manner in which " l " can be evaluated in any selected case is illustrated in the exanuples given later in this paper.
3 The quantum numbers j_{a} and $j_{\text {, are }}$ given respectively by $j_{a}=1-1$ and $j_{0}=\frac{r-1}{2}$, where l is the quantum number referred to in Rule 2, and r argnifiea the multiplicity involved The number m_{a} is to be considered as having the following values $-j_{a} j_{a}-1, j_{a}-2, . .-\left(j_{a}-2\right),-\left(j_{a}-1\right)$, $-j_{a}$, and the number m, the values $j_{1}, j_{,}-1, j_{1}-2,-\left(j_{1}-2\right)$, $-\left(j_{0}-1\right),-\left(j_{1}\right)$. The possible j values associated with a term of any multspheity are given by the $j_{\text {, and }} j_{a}$, corresponding to the term with

4. A single electron by itself is to be considered as posseasing intrnaically, when occupying an orbit, in doublet character, a feature that is marked by assigning to ite corresponding spectral term the multiplicity $r=2$, which gives $\jmath_{1}=1$ The designation of such corresponding spectral term is determuned by the quantum number " l," whose numencal value in such a case is that of the orbit quantum number " \boldsymbol{k} " that defines the type of orbit in which the electron under consideration revolves.
b. No two electrons can occupy identioal orbits. If the orbits of two electrons ahould be charactersed by the same values of the quantum numbera n and k, both the associated quantum numbers m_{a} and $m_{\text {, }}$ cennot have the same values for the two orbits.
G. In determining the energy states (and corresponding term values) for an atom we must take inlo consideration the resultant effect of all the extra nuclear flectrons of the atom in question.
7. If the total number of electrons that can occupy an orbit type, charactensed by the same total and azimuthal quantum numbers n and k, be N , the number N 1a given by $\mathrm{N}=2(2 k-1)$. Such a number 182 for an orbit of the n_{1} type, and $6,10,14$ for orbite of the n_{2}, n_{3}, n_{4}.. types respeotively.
Δ If there are X clectrons occupying orbits banng the same n and k (equivalent orbits so-called) where $\mathbf{X} \equiv \mathbf{N}$, the resultant action of \mathbf{X} electrons is equivalent to that of N - X electrons, so that the resultant term types will be the same in both canes.
9 If the number of electrons in equivalent orbits is X and if $X \equiv \frac{N}{2}$ the components of sny one of the resultant terms will be in the normal urder-
that 18, the nomponent with the smallest " g " value will be the " deepest." But if $X>\frac{N}{2}$ the term components will be inverted, \mathfrak{z}., the oomponent with the largest " j " value wall be the " deepest."
10. By Rule 8 it can be shown that the resultant action of N electrons in equivalent orbits, $i e$, orbits having the same value for " n " and " h," is equal to that of no electrons Therefore, if an orbit type has its complete quota of eleotrons given by N and forms part of a given electron configuration of an atom, it can be neglected when deriviag term types oorresponding to that configuration
11. If in a group of terms that result from a given electron oonfiguration thore are terms having the asme " l " values but with different multiphitien, the one with the hughest multiplicity will be the " deepest." For example, if in such a group there is a ${ }^{4} F$ term and a ${ }^{2} F$ tern, the ${ }^{4} F$ term will be deeper than the ${ }^{2} \mathrm{~F}$ term
12. If in a group of terms that result from a given electron configuration there are terms of the same multuphity, but with different values of " l," that with the highest " l " value will be the deepest. For example, a ' F term will be deeper than a ${ }^{4} \mathrm{D}$ term, a ${ }^{4} \mathrm{D}$ deeper than a ${ }^{4} \mathrm{P}$, and a ${ }^{4} \mathrm{P}$ deeper than a ${ }^{4} 8$ torm
13. If \bar{m}_{a} and $\bar{m}_{\text {, represent }}$ the resultants of the m_{a} and n, values ariaing from a set of electron orbits characterised by the same " n " and " k," then \bar{m}_{s} will be considered as given by $\bar{m}_{d}=\Sigma m_{g}$ and $\overline{m_{n}}$, by $\overline{m_{p}}=\Sigma m_{\text {g }}$
14. The multipheities of the spectral term system of an element are cither all even or all odd.

Procedure.

In order to show how the results given in the table were obtained, and also to make clear the procedure to bo followed in determining the term type correaponding to a given electron configuration, we append heramith a few illustrative notes.

Note I Carbon.-In the case of carbon the orbits 1_{1} and 2_{1} are full The lowest apectral term must therefore be determined by the electrons in the 2_{2} orbits.
For the apectral term oorresponding to each of these electrons $y=2$, therefore $j_{0}=\frac{1}{1}$ and $j_{a}=l-1=k-1=1$. Consequently $m_{n}=\frac{1}{1},-\frac{1}{5}$ and $m_{a}=1$, $0,-1$. But the two electrons canmot have the same m_{1} aud also the same m_{a}, so that we have the following aix possibilities -

By adding the above values of $m_{\text {a }}$ and m_{a} in pairs we can obtain in all fifteen values of $\bar{m}_{\text {a }}$ and \bar{m}_{a}. These are as follows.-

\bar{m}_{1}	1	1	0	0	0	1	0	0	0	0	0	0	-1	-1	-1
\bar{m}_{a}	1	0	2	1	0	-1	1	0	-1	0	-1	-2	1	0	-1

and they can be arranged in three groups as followa --.

${ }_{2} e$, we have the following types represented -

ie., there are three possible typer for the lowest term involved in the carbon arc spectrum, namely, a singlet S, a sumglet D, and a triplet P. According to Rules 11 and $12,{ }^{8} \mathrm{P}$ is the lowest term, since it has the highest multiplicity, ${ }^{1} \mathrm{D}$ is the next loweat, and $1 S$ next. As the inner quantum numbers j for a triplet P term are $0,1,2$, and as $X, r e, 2,14<N / 2, e,<3$, it follows that ${ }^{8} P_{0}$ is the deepest component. The lowest term involved in the carbon arc spectrum is therefore ${ }^{1} P_{\text {oig, }}$, the Ggures in italics giving the deepest component. This result. it may be atated, is a prediction and has yet to be verified oxpeninentally

In the case of one 2_{a} electron orbit and one $3_{\mathbf{y}}$ orbit, where the value of each k is 2 , and consequently by Rule 4 each l is 2 , our problem is to combine two ${ }^{2} P$ terms, and the procedure is as follows -

$$
\begin{array}{ll}
m_{a}^{\prime}=1,0,-1 & m_{1}^{\prime}=\frac{1}{3},-\frac{1}{2} \\
m^{\prime \prime}=1,0,-1 & m^{\prime \prime}=\frac{1}{2},-\frac{1}{2}
\end{array}
$$

By addition, taking two values at n time, we have then the following possibilities:-

$$
\begin{array}{cc}
i e, \bar{j}_{a}=0,1 \text { and } 2 . & l=1,2,3 \\
j_{1}=0,1 & r=1,3
\end{array}
$$

The term types involved are therefore

${ }^{1} \mathrm{~S}_{0}$	${ }^{1} \mathrm{P}_{1}$	${ }^{1} \mathrm{D}_{1}$
${ }^{3} \mathrm{~B}_{1}$	${ }^{3} \mathrm{P}_{012}$	${ }^{3} \mathrm{D}_{113}$

which differs from the case of all the electrons being in equivalent orbita in that the terms ${ }^{8} \mathrm{~S},{ }^{3} \mathrm{D},{ }^{1} \mathrm{P}$ are retained.

This last result might have been obtained more simply by using the vector magnitudes j_{a} and $j_{\text {a }}$ directly, for we have for the two ${ }^{2} \mathrm{P}$ terms

$$
\begin{aligned}
& J_{a}^{\prime}=1 \quad J_{a}^{\prime}=\frac{1}{2} \\
& J_{a}^{\prime \prime}=1 \quad J^{\prime \prime}=1 \\
& \bar{J}_{a} \max =2 \overline{\mathrm{~J}}_{a} \min =0 \text { or } \bar{J}_{a}=0,1,2 \quad \ddots l=1,2,3 \\
& \bar{J}_{1} \max =1 \bar{J}_{1} \min ,=0 \text { or } \bar{J}_{0}=0,1 \quad \therefore r=1,3
\end{aligned}
$$

The term types involved are therefore

$$
\begin{array}{lll}
1 \mathrm{I}_{0} & { }^{1} P_{1} & { }^{1} D_{1} \\
{ }^{3 \mathrm{~S}_{1}} & { }^{3} \mathrm{P}_{012} & { }^{3} \mathrm{D}_{143}
\end{array}
$$

Note 11. Nitrogen.-With nitrogen the lowest spectral term must be determined by the three olectrons in the 2_{2} orbits.
With nutrogen, as with carbon, we have the following posable combinations for m_{1} and $m_{a}:-$

	(a)	(b)	(c)	(d)	(e)	(f)
m_{0}	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{1}$	$-\frac{1}{1}$
m_{0}	1	0	-1	1	0	-1

Our problem is. In how many ways can we combine these six seta of curresponding values of $m_{\text {, and }} m_{a}$, takng three sets at a time. Clearly the number of ways is $\frac{6,5,4}{1,2,3}=20$, and they are the following :-

abc	acd	ado
abd	ace	adi
abe	acf	
ubf		
Led	bde	bet
bce	bdi	
bcf		
edc	cef	
cdif		
def		

These give the following three groups of values for \bar{m}_{a} and \bar{m}_{a} -

	I.	II.	III
\vec{m}_{1}	$\frac{1}{1},-\frac{1}{2}$	$\frac{1}{2},-\frac{1}{2}$ \bar{m}_{4}	$1,0,-1$

Group I gives $\quad \overline{\mathrm{J}}_{\mathrm{J}}=\frac{1}{\mathrm{j}} \quad . \quad r=2$

Group Il gives	$\bar{J}_{0}=1$	$\therefore l=2$	\therefore the term ${ }^{1} \mathrm{D}_{\mathbf{2 3}}$
	$\bar{J}_{1}=\frac{1}{3}$	$\cdot r=2$	
	$\bar{J}_{a}=2$	- $l=3$	
Group III gives	$\bar{J}_{1}=\mathbf{3} / 2$	$r=4$	
	$\bar{J}_{a}=0$	$\therefore l=1$	

The deepest term in the spectral system of nitrogen I is ${ }^{4} \mathrm{~S}_{2}$, the next deepest ${ }_{18}{ }^{2} \mathrm{D}_{13}$, and the next to that ${ }_{19}{ }^{8} P_{12}$. If, however, we should have two electrons in 2_{q} orbit and one in a 3_{2}, a 4_{2} or a 5_{2}, ete, orbit, the following is the procedure to follow -
Two electrons in a 2_{2} orbit give us the terms ${ }^{3} \mathrm{P}_{012},{ }^{1} \mathrm{D}_{\mathrm{a}},{ }^{1} \mathrm{~S}_{0}$. One electron in a. 4_{1} orbit gives us the ternn ${ }^{8} P_{12}$ We must therefore find the result oif combuning separately ${ }^{2} \mathbf{P}_{12}$ with each of the terms ${ }^{3} \mathbf{P}_{012},{ }^{1} \mathbf{D}_{\mathbf{z}}$ and ${ }^{1} \mathbf{S}_{0}$ This 18 worked out in the following manner -

Combination.
I.

$$
\begin{aligned}
& { }^{3} P_{011}\left\{\begin{array}{lll}
J_{0}=1 & \jmath_{1}, \max =3 / 2, & r \max =4 \\
\jmath_{a}=1 & \jmath_{1} \min =1 / 2 \cdot & r \min =2
\end{array} \text { or } r=2 \text { or } 4 \text { by Rule } 14 .\right. \\
& { }^{2} P_{19}\left\{\begin{array}{ll}
\jmath_{1}=1 & \jmath_{a} \mathrm{max}=2 \\
\jmath=1 & \jmath_{a} \mathrm{man}=0
\end{array}\right\} \cdot\left\{\begin{array}{l}
l=3 \\
l=2 \\
l=1
\end{array}\right.
\end{aligned}
$$

The term types involved are therefore

${ }^{4} \mathrm{D}_{1291}$	${ }^{4} \mathrm{P}_{189}$	${ }^{4} \mathrm{~S}_{9}$
${ }^{4} \mathrm{D}_{23}$	${ }^{2} \mathrm{P}_{19}$	${ }^{2} \mathrm{~S}_{1}$

11.

$$
\begin{aligned}
& { }^{1} D_{1}\left\{\begin{array}{ll}
j_{r}=0 & j_{1} \max =\frac{1}{4} \\
j_{a}=2 & j_{1} \operatorname{mn} .=\frac{1}{4}
\end{array}\right\} \therefore t=2 \\
& { }^{1} P_{11}\left\{\begin{array}{ll}
j_{0}=\frac{1}{1} & j_{a} \max =3 \\
j_{a}=1 & j_{2} \min =1
\end{array}\right\} . l=2,3,4
\end{aligned}
$$

The term typer involved are
III

$$
{ }^{2} P_{12} \quad{ }^{2} D_{23} \quad{ }^{2} F_{34}
$$

$$
\begin{aligned}
& { }^{1} \mathcal{J}_{0}\left\{\begin{array}{ll}
j_{0}=0 & j_{1} \max =\frac{1}{d} \\
j_{a}=0 & J_{1} \operatorname{man}=\frac{1}{2}
\end{array}\right\} \cdot{ }^{\prime}=2 \\
& { }^{9} P_{12}\left\{\begin{array}{ll}
J_{1}=\frac{1}{2} & J_{a} \max =1 \\
j_{a}=1 & j_{a} \min .=1
\end{array}\right\} \cdot \cdot l=2
\end{aligned}
$$

or the type of term involved ${ }_{18}{ }^{2} P_{1 s}$
An important feature is brought out by the calculations just given, namely, that the arc spectrum of mitrogen involves spectral terms that can be resolved into three groups, each of which onginates in a special type of term that is representative of the carbon like singly oharged nitrogen ion This as a feature that applues generally in working out the term systems for atoms of nearly all elements A second festure that is brought out by the caloulation 18 that the term types obtained are the same when the outermost electron of the nitrogen atom is in any one of the $3_{8} \mathbf{4}_{\mathbf{2}} \ldots n_{q}$ orbits. This feature is the one that provicles for the existence of spectral series and series terms.

Note III. Orygen.-With oxygen the lowest spectral term will be determined by the four electrons in the $\mathbf{2}_{2}$ orbits

For possible combinations we again have

$$
\begin{array}{rccrrrr}
& \text { (a) } & \text { (b) } & \text { (c) } & \text { (d) } & \text { (c) } & \text { (f) } \\
m_{0}= & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\
m_{a}= & 1 & 0 & -1 & 1 & 0 & -1
\end{array}
$$

 a, b, c, d, e, f, in as many ways as possible taking four at a time, $c e$, $\frac{6543}{\sqrt{234}}=15$, and to obtain possible values for \bar{m}_{1} and \bar{m}_{a}. These conbbustions are as follows :-

abcd	acde	adef
abce	acdf	
abcf		
bede	bcef	
bcdf	bdef	
abde	abcf	odef
Bbdf	acef	

Theme groupinge give us for $\bar{m}_{\text {, }}$ and $\bar{m}_{\text {a }}$ the following :-

$$
\begin{aligned}
& \text { I. } \\
& \text { II. } \\
& \text { III. } \\
& \begin{array}{lllllllllllllll}
\bar{m}_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & -1 & -1
\end{array}-1 \\
& \text { Group I gives } \left.\begin{array}{ll}
\bar{j}_{0}=0 & r=1 \\
\bar{j}_{0}=0 & l=1
\end{array}\right\} \therefore \text { the term }{ }^{1} \mathcal{S}_{0} \\
& \text { Group } \left.1 I \text { gives } \begin{array}{ll}
\bar{j}_{2}=0 & r=1 \\
\bar{j}_{a}=2 & l=3
\end{array}\right\} \cdot \text { the term } \mathbf{I D}_{2} \\
& \text { Group III gives } \left.\begin{array}{ll}
\bar{j}_{0}=1 \\
j_{a}=1
\end{array} \quad \begin{array}{l}
r=3 \\
l=9
\end{array}\right\} \text { : the term }{ }^{9} P_{014}
\end{aligned}
$$

Of the three terma ${ }^{1} \mathrm{~S}_{0},{ }^{1} \mathrm{D}_{\mathrm{g}},{ }^{4} \mathrm{P}_{\text {otz }}$ we see by Rulea 11 and 12 that the deepest ${ }_{18}{ }^{3} \mathrm{P}_{012}$, the next deepest ${ }^{1} \mathrm{~J}_{\mathbf{2}}$, and the next to that ${ }^{1} \mathrm{~S}_{0}$

Further, since the number of electrons in $2 y$ orbits is 4, b.e,$>\frac{N}{2}$ or >3, we see that the usual order by Rule 9 is inverted, and of the components of the term ${ }^{3} P$ that with the largest j value is the deepest, namely, ${ }^{3} \mathbf{P}_{2}$; the deepest term wath our system of desigation is then ${ }^{3} P_{019}$.

The completo spectral term scheme for oxygen as it has been built up from the threc fundamental terms of nitrogen, ${ }^{4} \mathbb{S}_{\mathbf{2}},{ }^{2} \mathrm{D}_{\mathbf{a}}$, and ${ }^{2} \mathrm{P}_{12}$ is given in Table II.

Table II.
Nitrogen

Table II.-(continued.)

These terms are all shown graphically in fig. 1. From thia dagram it will be seen that the Triplet-Quintet scheme of terms A includes practically all of the

known series lines in the spectrum of atomic oxygen. The singlo-triplet schemes B and C, however, provide systems of levels for two groups of series lines whose possible existence has not been suspected hitherto. It has been suggested by one of the writers that tho Auroral Green line $\lambda 5577$ • 35 A may find its place in one or other of the terin schemes \mathbf{B} and C set forth above. It is possible, too, that some spectral lines hitherto unidentified and others assigned to so-called "coronium" or to so-called "nebulum" may ultimately be identified as originating in the term schemes provided in B and C or in aimular schemes of terma that can be worked out for nitrogen or others of the elements.
The method by which the terms in A, B and C have been worked out will be seen from the following three examples:-
Scheme A (see last row).
Combune the terms ${ }^{4} S_{9}$ and ${ }^{2} D_{\text {qs }}$.
We have ${ }^{4} \mathrm{~S}_{2}$ giving $J_{\mathrm{a}}=0 \quad J_{0} \max =2$

$$
\begin{array}{lll}
J_{a}=0 & J_{a} m a x & J_{a}=2 \\
j_{a}=3 / 2 & \jmath_{a} \text { min. }=2
\end{array}
$$

$$
\begin{aligned}
{ }^{2} \mathrm{D}_{23}, \text { giving } J_{a}=2 & J_{1} \text { max. }=2 \\
J_{1}=1 & J_{1} \text { min. }=1
\end{aligned} \quad J_{1}=1 \text { and } 2,
$$

- $l=3$ and $r-3$ and 5 .
- the terms ${ }^{5} D_{1284}$ and ${ }^{3} D_{198}$.

Scheme \mathbf{B} (see last row)
Combinc the terms $\left.{ }^{8}\right]_{\mathrm{Ja}_{\mathrm{a}}}$ and ${ }^{2} \mathrm{D}_{23}$.

$$
\left.\begin{array}{rl}
4 \mathrm{~J}_{28}, \text { giving } J_{0} & =2 \\
J_{1} & =1
\end{array} \quad \begin{array}{l}
J_{1} \text { viax }=-1 \\
J_{1} \min =0
\end{array}\right\}_{1}=0,1 \quad \cdots=1 \text { and } 3
$$

the kerms

$$
\begin{aligned}
& { }^{9} \mathrm{G}_{366}{ }^{3} \mathrm{~F}_{284}{ }^{3} \mathrm{D}_{183}{ }^{3} \mathrm{P}_{019}{ }^{8 \mathrm{~B}_{1}}
\end{aligned}
$$

Scheme C (see last row)
Combine ${ }^{2} \mathrm{P}_{12}$ with ${ }^{2} \mathrm{D}_{2 a}$

$$
\begin{aligned}
{ }^{2} \mathrm{D}_{23}, \text { giving } J_{0} & =2 \\
J_{1}=\frac{1}{1} & J_{0} \max
\end{aligned} \jmath_{1}=1
$$

The torms are therefore

${ }^{3} \mathrm{~F}_{124}$	${ }^{3} \mathrm{D}_{193}$	${ }^{8} \mathrm{P}_{011}$
${ }^{1} \mathrm{~F}_{8}$	${ }^{1} \mathrm{D}_{2}$	${ }^{1} \mathrm{P}_{1}$

Note IV. Neon.-Here we bave the confguration

$$
n_{k} 1_{1} 2_{1} 2_{2}
$$

$$
2,2,6
$$

For each of the six $\mathbf{2}_{2}$ electron orbits the corresponding spectral term is ${ }^{2} \mathbf{P}_{18}$ -

$$
\begin{array}{rll}
{ }^{2} P_{12} \text { gives } & \jmath_{\mathrm{a}}=1 & m_{\mathrm{a}}=10-1 \\
\jmath_{1}=\frac{1}{2} & m_{\mathrm{l}}=\frac{1}{1} \quad-\frac{1}{1}
\end{array}
$$

or
ic, the lowest term involved in the neon epectrum is a anglet 8 term, Ze, $\mathbf{1 g}_{0}$.

This is a result that recently recoved a remarkable verification through the investigations of Hertz *

Note V. Tutantum, Nickel, Zirconium, Hafnutm and possibly ThoriumWith these five elements the lowest spectral term 18 determned by two n_{n} electron orbits That this is so will be seen from the following table :-

	n_{5},	I_{1}	2, ${ }_{1}$	$d_{1} 3_{1} 3_{2}$	$t_{1} t_{1} t_{3} t_{1}$	$5{ }_{1}$		$7_{1} 7$
Titanum	$=$	${ }^{8}$	2 H	268	$2-$ - -	- - -	- - - -	
Nuckel	$=$		20	$2{ }^{2} 808$	2 - - -	- - -	- - -	
Zirconjum	\cdots		${ }_{2}{ }^{2}$	$\begin{array}{llll}2 & 8 & 10 \\ 2 & 6\end{array}$		$\underline{2}-\overline{3}-$	- - - - -	
Haftuwam Thonum	\cdots	2 2	$\begin{array}{ll}2 & 11 \\ 2 & 6\end{array}$	$\begin{array}{lll}2 & 6 & 10 \\ 2 & 6 & 10\end{array}$	2 6 10 14 2 6 10 14	$\begin{array}{ccccc}2 & 6 & 2 & - \\ 2 & 6 & 10 & - \\ -\end{array}$	$\mathbf{2}$ B $\mathbf{2}$ B -	-

To determane the term corresponding to the combination of an n^{\prime} orbit and an $n^{\prime \prime}$, orbit where n^{\prime} is not equal to $n^{\prime \prime}$, we may proceed as follows -

- Hertz, ' Zest. Jor Phya ,' vol. 32, p. 933 (1025).

For an n_{s} orbit wo have the doublet term ${ }^{9} D_{\mathrm{as}}$ and are therofore required to combine two ${ }^{2} \mathrm{D}_{\mathrm{ga}}$ terms

$$
\begin{aligned}
{ }^{9} \mathrm{D}_{23} \text { gives } j_{a}=2 & \jmath_{a} \text { max. }=4 \\
\rho_{4}=\frac{1}{2} & \jmath_{4} \text { man. }=0 \\
{ }^{2} \mathrm{D}_{23} \text { gives } j_{a}=2 & \jmath_{4} \max =1 \\
j_{1}=\frac{1}{8} & \jmath_{1} \min =0
\end{aligned}
$$

The resultant terms are therefore ${ }^{5} \mathrm{G},{ }^{3} \mathrm{~F},{ }^{3} \mathrm{D},{ }^{3} \mathrm{P},{ }^{3} \mathrm{~S}$ and ${ }^{1}\left(\mathrm{G},{ }^{1} \mathrm{~F},{ }^{1} \mathrm{D},{ }^{1} \mathrm{P},{ }^{18}\right.$. Certan limitations are imposed, however, when $n^{\prime}==n^{\prime \prime}{ }_{5}=4_{5}$ for example, and to find these, as we have seen before, it is necessary to take into account the quantum numbers m_{g} and $m_{\text {a }}$
Since $j_{a}=2$ it follows that $n_{a}=2110-11-2$ and
since $\jmath_{4}=\frac{1}{2} \quad, \quad m_{0}=+\frac{1}{2}-\frac{1}{2} \quad$ from which we have

$$
\begin{array}{lllrrrrrrr}
m_{1}=\frac{1}{2} & \frac{1}{2} & \frac{1}{1} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{1} & -1 & -1 & -\frac{1}{2} \\
m_{0}=2 & 1 & 0 & -1 & -2 & 2 & 1 & 0 & -1 & -2
\end{array}
$$

There are 45 ways in which we can select two out of the ten sets of values for $m_{\text {, and }} m_{a}$ and theso give for $\bar{m}_{\text {a }}$ and \bar{m}_{a} the following groups of values .-

	I.	II.	III.	IV.	V.
\bar{m}_{3}	0	$1,0,-1$	$1,0,-1$	0	0
$\bar{m}_{a} 43210$	$-1-2-3-4$	$3210-1-2-3$	$1,0,-1$	$210-1-2$	0

Group I gives $j_{1}=0 \cdots r=1$

$$
\text { . the corresponding term is }{ }^{1} \mathbb{C}_{1} \text {. }
$$

$$
\bar{\jmath}_{a}=4 \cdot l=\bar{l}
$$

Aroup II gives $\bar{j}=1 \cdots r=3$

- the corresponding term is ${ }^{\mathrm{a}} \mathrm{FF}_{\text {zs }}$

$$
\bar{\jmath}_{a}=3 \cdot l=4
$$

Group III gives $j_{2}=1 \cdots r=3$
\therefore the corresponding term is ${ }^{3} \mathrm{P}_{012}$

$$
\bar{\jmath}_{\Delta}=1 \cdots l=2
$$

Group IV gives $\bar{j}_{1}=0 \cdots r=1$
\therefore the corresponding term is ${ }^{1} \mathrm{D}_{2}$

$$
j_{v}=2 \cdot l=3
$$

Group V gives $\bar{j}_{1}=0 \ldots r=1$
\therefore ' the corresponding term ${ }^{18} \mathbf{I S}_{\mathbf{0}}$.

$$
j_{a}=0 \therefore l=1
$$

We see, then, that with two n_{g} orbits we may have one or other of the spectral terms ${ }^{8} \mathrm{~F}^{3} \mathrm{P}^{1} \mathrm{~g}^{1}{ }^{1}{ }^{18}$, of which ${ }^{8} \mathrm{~F}$ is the deepest In the case of Titanium, Zurconium, Hafnium and Thorium the component of ${ }^{9} F$ that is deepest 18 ${ }^{3} \mathrm{~F}_{2}$, while with Nickel it is ${ }^{3} \mathrm{~F}_{4}$. This follows from Rule 9.

Note VI. Neodymium, Uranum and Tungsten.-In order to find the lowrat term in the are spectrum of Neodymum and posaibly also of Uramum, we must find the resultant apectral term corresponding to a combination of three \mathbb{A}_{4} orbits and one S_{8} orbit

To do this we must first of all find the deepest spectral tern corresponding to three 44 orbits. In all, there are 14 types of 4 , orbits and of these we can select three at a time in $\frac{141312}{123}=304$ ways. .

To a 44 orbit there corresponds the term ${ }^{2} \mathrm{~F}_{34}$ and ${ }^{2} \mathrm{~F}_{34}$ gives

$$
\begin{aligned}
& j_{4}=3 \\
& j_{0}=\frac{1}{2}
\end{aligned}
$$

for m_{a} and m_{a} we have the following sets of values -

By inspection we sec on considering these pars of values in groups of three that the higheat multiplietty involved 18 given by $\bar{m}_{x}=3 / 2$ with the correspondung value of \bar{m}_{a} given by $\bar{m}_{\mathrm{a}}=\mathbf{=}$. This shows that the deepest term three 4 , orbits can give rise to is a quartet J, ie , ' ' $\mathrm{J}_{\text {seis }}$.

The complete has of terms that corresponds to three 4 , orbits we have found to be ${ }^{4} \mathrm{~J},{ }^{4} \mathrm{G},{ }^{4} \mathrm{~F},{ }^{4} \mathrm{D},{ }^{4} \mathrm{~S},{ }^{2} \mathrm{~L},{ }^{2} \mathrm{~K},{ }^{2} \mathrm{~J},{ }^{2} \mathrm{H},{ }^{2} \mathrm{H},{ }^{2}\left(\mathrm{G},{ }^{4} \mathrm{H},{ }^{2} \mathrm{~F},{ }^{2} \mathrm{~F},{ }^{2} \mathrm{D},{ }^{2} \mathrm{D},{ }^{2} \mathrm{P}\right.$, with ${ }^{4} \mathrm{~J} 507 \mathrm{t}$ the deepest

We must now combine the term ${ }^{4} \cdot \mathrm{~J}$ with a term ${ }^{2} \mathrm{D}_{28}$ and we have

$$
\begin{aligned}
& \text { ? } 3 \text { or } j_{1}=\frac{5}{2} \cdots j_{1} \text { max. }=2 \\
& \bar{j}_{0}=0 \quad \jmath_{0} \min .=1 \\
& \left.{ }^{2} \mathrm{~J}\right) \text { or } \bar{\jmath}_{1}=1 \quad j_{6} \max =8 \\
& j_{a}=2 \quad J_{a} \text { ain. }=4
\end{aligned}
$$

The corresponding terma are therefore ${ }^{5} \mathrm{~L},{ }^{5} \mathrm{~K},{ }^{6} \mathrm{~J},{ }^{6} \mathrm{H},{ }^{8} \mathrm{G}$ andl ${ }^{\mathrm{L}} \mathrm{L},{ }^{3} \mathrm{~K},{ }^{3} \mathrm{~J}$, ${ }^{3} \mathrm{I},{ }^{8} \mathrm{G}$, and of these the deepest by Rule 9 is ${ }^{5} \mathrm{~L}$. Of its five components ${ }^{5} \mathrm{~L}_{6}$ is the deepent, which agrecs with the term designation given for Noodymum in the table, namely, ${ }^{\text {b }} \mathrm{L}_{\text {geeno. }}$. This type of term may possibly turn out
to be the lowest involved in the structure of the are spectrum of Uranium as well, but certain considerations lead one to the view that with Uranium the lowest term should be the same as that involved in the structure of the are spectrum of Tungsten, namely, ${ }^{5} \mathrm{D}_{\text {orsa }}$ This it can be easily shown ${ }^{18}$ the term equavalent of four 5_{3} orbits and is obtained by combining four ${ }^{2} D_{23}$ terms Reverting to the case of Neodymium it may be stated that we found that the complete has of terms resulting from a combination of a term ${ }^{\mathrm{e}} \mathrm{D}_{2 \mathrm{~J}}$ whth each of the terms ${ }^{4} \mathrm{~J},{ }^{4} \mathrm{G},{ }^{4} \mathrm{~F},{ }^{4} \mathrm{D},{ }^{4} \mathrm{~S},{ }^{2} \mathrm{~L},{ }^{2} \mathrm{~K},{ }^{8} \mathrm{~J},{ }^{2} \mathrm{H},{ }^{2} \mathrm{H},{ }^{2} \mathrm{G},{ }^{2} \mathrm{G},{ }^{2} \mathrm{~F},{ }^{2} \mathrm{~F}$, ${ }^{2} \mathrm{D}$, ${ }^{2} \mathrm{D}$, ${ }^{9} \mathrm{P}$, numbers 158 . It is given in Table III.

Table III - Lowest Terms involved in the Structure of the Neodymium
Are Spectrum

I		II		III	
IV		V	${ }^{\text {a }}$ [D	V1	
V11		VIII		1X	
X	$\begin{array}{llllll}\mathbf{1} & \mathbf{1 J} & \mathbf{1 H} & \mathbf{G} & \mathbf{1 F} \\ \mathbf{1 K} & \mathbf{J} & \mathbf{H} & \mathbf{1} \mathbf{J} & \mathbf{1 F}\end{array}$	XI	$\begin{array}{lllllll} \mathbf{D J} & 1 H & \mathbf{2} & \mathbf{2} F & \mathbf{D} \\ 1 \mathrm{~J} & 1 \mathrm{H} & 4 \mathrm{G} & 1 \mathrm{~F} & 1 \end{array}$	XII	$\begin{array}{llllll} \text { G } & \text { IF } & \text { D } & \text { IP } & \text { H } \\ 1 G & 1 F & 1 & 1 P & \text { IS } \end{array}$
XIII		AIV	$\begin{array}{lllll} \hline 1 \mathrm{H} & 1 \mathrm{~A} & \mathbf{3} \mathrm{~F} & \mathbf{D} & 1 \mathrm{P} \\ { }^{1} \mathrm{H} & 1 \mathrm{~B} & 1 \mathrm{~F} & 1 \mathrm{D} & 1 \mathrm{P} \end{array}$	XV	
XVI		XVII	$\begin{array}{lll} \text { IF } & 1 D & \text { P } \\ \text { TF } & \text { D } & 1 P \end{array}$		

With such a number of "deep" terms available, it is easily seen that Neodymium should possess an arc spectrum of great complexaty.

From the illuatrations given above the method of determining the type of spectral tern that corresponds to any selected configuration for the electronic orbits of an atom will be evident. The expernmental data still requred to completely test the validity of the scheme as set forth are not extensive and are likely to be forthcoming soon. With the validity of the scheme of orbits set forth in Table 1 established, we shall be in the position of being able to predict all optical spectra including both the are and the spark apectra of the atoms of all the elements We shall be able also to make some progress in the determination of the characteristics of the speotra of atoms of liypothetical elementa heavier than Uramum,

We desire to state here that one of us (A. B McLay) was enabled to collaborate in the investigation leading up to this communication through the award to him of a fellowship by the Nstional Resesrch Council of Canada.

On the Structure of the Arc Spectmum of Gold.

Hy Prof. J. C. McLennan, F.R S, and A. B. Mclay, M A

(Received June 10, 1926)

I. Introduction.

Tho first succossful attempt to find senes relationships among wave-lengths of the gold are spectrum was that made by Thorsen* in 1923 In his paper he classified two seta of wave-lengths into a sharp and a diffuse subordinate doublet series, the firat pair of the sharp series providing the first puir of the corresponding principal doublet series In a communcabion \dagger by us a year ago some absorption experiments were lescribed that were carried out with the normal vajour of gold in the guartz anil fluorite spectral regions In this communcation it was shown that we confirmed Thorsen's selection of the first pare of the principal series, and that we were able to extend this series so as to include the second pair as well. In addation, two other interesting features of the spectral structure werc pointed ont that at the time were not completely understood. The first of these was concerned with the existence of a deep metastable inverted doublet D term, and the second with a parr of terms that were characterized by features sumalar to those of doublet terms of the \mathbf{P} type. This pair dud not seem to belong, however, to the regular meries of doublet \mathbf{P} terins In the communcation referred to we also ponted out that our term scheme did not permit us to clasaify a number of atrong lines that were known to belong to the gold arc apectrum, and that included insny of the wave-lengtha found to be absorbed by Miss Buffam and Mr H J C. Ireton \ddagger in,experments on the underwater spark spectrum of gold To account in a general way for many of these wave-lengths we suggested that they might possibly be found to belong to a quartet or to a sextet aystem, the features of wheh wo were not at the time able to develop.

Recently, through the brillinnt work of Pauli§, Henenberg|l and Hund Φ on the interpretation of apectra, we bave been furnished with a means of predicting with considerable accuracy the structure of any spectrum By this theory,

```
* 'Nsturw '' vol. 25, p [00 (1928)
\dagger 'Roy. Soo. Proo.; A, vol 108, p. }671\mathrm{ (1920)
\ddagger'Trans. Roy Soc Can;'vol, 1D, III, p. 113(1020)
g 'Z. F. Plyyus,' vol. 31, p 765 (1825).
|| 'Z. f Physis,' vol. 32. p 841 (1025)
I' 'I.I Phyalk,' vol. 73, p 845 (1025).
```

with some modifications and extensions, we can now predict the structure of the gold arc apectrum, and as a consequence are able to carry out a more syatematsc invertgation of its features The aignficance of the two unusual features found by us in our earler work and mentioned above is now more clearly understood. We shall proceed to explan thesc features and to develop the atructure of the spectrum more fully in the discussion following in Sections IV and V

II. Absorption Experiments and Wave-length Measurements.

As a further aud to the present investigation, absorption experiments were repeated in the quartz spectral region, both by the method of normal vapour absorption and by that of the underwater spark. Table III contana all the wavelengths found to be absorbed by gold vapour in these experiments, and they are classified according to our subsequent analysis of the apectrom

A few wave-lengtha, not previously recorded in either the are or the spark apectrum of gold, have been measured by us either from our plates of absorption spectra or from some plates of the emision are apectrum taken by us for the purpose. These wave-lengths are noted by an asterisk in the tables. All other values used in thas paper were obtained from Kayser and Konen's 'Handbook, Vol. VII, with the exception of the three wave-lengths $\lambda 183320$ (I vac), $\lambda 1665$ 52 (I vac.) and $\lambda 1640 \cdot 50$ (I vac.) which were measured by Bloch.* Certann of the wave-lengthe, however, that bad been observed previously only in the apark spectrum werc found by us to be really are lines. The intensities of such wave-lengths were eatimated by us from our arc apectrum plates,
We have adopted Sommerfeld's values for the quantum numbers and Hussell's notation for the term deagnations throughout. For example, the deagnation $]^{2} \mathrm{D}_{\mathrm{g}}$ representa the component of the "deepest" term of the doublet D type, having the inner quantum number $j=5 / 2$

III Theoretixal Considerations.

It has been shown by Paul, Heisenberg, and Hund in their treatment of the interpretation of spectra, referred to in Section I of this communication, that in order to determine the energy states of an atom involved in the cmission of any of its epectra, the resultant action of all the electrons of the atom in question must be considered Without gong into the theoretical development in any detall, we will merely give here a few rules that it will be necessary to refer to later. Certan of these rules are based on theoretical considerations and certain

[^23]of them were given by Hund in his paper and were derived by him fromempincal relations found to exast in a number of known cases.

1. If the total number of olectrons that can occupy an orbit type, charactenzed by the same total and azimuthal quantum numbers n and k, be N, the number N 18 given by $N=2(2 k-1)$. Such a number is 2 for an orbit of the n_{1} type, and 6, 10, $14 \ldots$ for orbits of the $n_{1}, n_{2}, n_{4} \ldots$ types respectively
2. If there are r electruns occupying orlats having the same n and k (equivalent orbits) where $\boldsymbol{I} \equiv \mathrm{N}$, the resulting action of r electrons is equwalent to that of $N-r$ electrous, and so the reaultant term types would be the same in either case.
3. If the number of electrons in equivalente orbits is r, and if $r \equiv \frac{N}{2}$, the components of any one of the resultant torms should be in the normal order, that is, the component with the smallest " 3 " value should be the "deepest" But if $r>\frac{N}{2}$ the term components should be inverterl, that is, the component with the largeat " J " value uhould be the " deepest."

4 By rule 2 it can be shown that the resultant action of N electrons in equivalent orbits is equal to that of no electrons. Thereforo of un orbit type has its complete quota of electrons, given by N, und forms a part of a given electron configaration of an atom, it can be aeglected when deriving the term-types corresponding to that configuration.
5. If in a group of terms that result from a given electron contiguration there are terms having the same " \int " values but of dufferent multiphicilies, that with the hughest multiplicity should be the "deepest," For example, if in such a group there is a ${ }^{4} \mathrm{~F}$ term and a ${ }^{2} \mathrm{~F}$ term, the ${ }^{4} \mathrm{~V}$ term should be "deeper" than the ${ }^{1} \mathrm{~F}$ term.
6. It in a group of terms that result from a given plectron coniguration there are terms of the same multuphicity but with different values of " l," that with the highest " l " value should be the deeper. For example, a "F term should be deeper than a ${ }^{4} \mathrm{D}$ term, a ${ }^{4} \mathrm{D}$ deeper than a P andla P deeper than a S S ternu.

We will now proceal to devolup the theoretical structure of the gold arc speetrum nccording to the methods furmuhed by Paulh, Heisenberg and Hund, before discusang the resulta of our empincal analyas of its features.

Hund bas shown in his paper that we can most easily prodict the terms belongung to the are spectrum of any element by first considering the "deep" terms of the aparls spectrum that carrespond to all stable and metastable electron
configurations possuble for the atom when in the singly lonned utate Paseing then to the terms of the aro apectrum we obtain these by adding an electron that is supposed to occupy an orbit of any type not already possessing ita complete quote of electrons

Table I gives the three possublo electron configurations that represent the most stable energy states involved in the emission of the Au II speotrum, i.e , the first spark spectrum of gold.

If now we add an electron in various posenble ways and calculate the resultant terms, we arrive at the term types given in Table II. In thas table only thoso nonfigurations are given that determine the most important energy ataters involved in the emission of the Au I spectrum, and that are necessary for the discussion of our einpirical analysis of its features. The added plectron is bracketed in each configuration of Table II It should be pointed out that from each configuration in Table II only the first member of a term series can be determined Higher series members result when the added electron occupiry an orbit of higher total quantum number, n, than that given

When the gold atom in in any one of the statos in Table II, nay in 1a, 2a, or 3 A , ita are spectrum 18 charscterized by ${ }^{2} \mathrm{~S}$, ${ }^{\mathrm{a}} \mathrm{P}$ and ${ }^{\mathrm{D}} \mathrm{D}$ terms respectively, If the bracketed electron in $1 \mathrm{~A}, 2 \mathrm{~A}$, or 3 A , Table II, in removed entirely, the atom will then in each casc be in the ronzed state in in Table I, and its first spark apectrum while in this atate will be characterized by a " deep" term of the is type This means that the "deep" ${ }^{1} \mathrm{~S}$ terms of the spark apectrum is the common himit of the ${ }^{2} 8,{ }^{4} P$ and ${ }^{3} D$ senies of the are speotrum, the first members of which are indicated in 1a, $\mathbf{2 a}_{\mathrm{A}}$, or 3a, Table II. In the asme way the limit of any other term senes belonging to the arc spectrum can be shown to be one of the "deep" terma of the spark apectrum given in Table I In Table II the serics limita are indicated in the right-hand column.

It will be seed from Table II that the gold atom cannot get directly from any one of the states in a certain clans 1,2 or 3 to any other atate in the same class without involving a violation of the selection rule for the aximuthal quantum number, " k," of an orbit, $v e$, that in a transition " k " may changa only by ± 1. Nelther can the stom get directly from ather of the states in class I to either of those in class 3 without a violation of this selepition rule. But the selection rule would permit certan transitious between a atate in class 2 and certain states in class 1 or certam atates in class s. Hund, however, saye that the atom can gat directly from any of the atates in class 2 to any of those in class 1 or to any of thase in olass 3 . If this is correct, there must be two kands of trausitionn posable, (a) those for which a single electron jumps
Table I.-Au II-Deep Terms.

Table L.-Au I-Term Types

from an orbit with k to one with $k \pm 1$, in acoordance with the melection rule, and (b) those for whoh two electrons jump anmultancously one from an ortit with k_{1} to an orbit wath $k_{1}+1$ and the other from an orbit with k_{1} to an orbit with $k_{8} \pm 2$ where k_{1} and k_{2} may be equal or unequal For example, if the atom is to get from $2 \wedge$ to 1 B one electron must jump from a 6_{2} orbit to a 6_{1} orbit, the other electron from a 5_{2} orbit to a \mathfrak{G}_{2} orbit. Our empirical analysas shows that suoh a transition does ocenr in the emiseion of certann wave-lengtha of the gold aro spectrum, so that double electron groups, governed by the rules in (b) sbove, must be passible for the un-ronized atom of gold They have been known to occur in the atoms of a number of other elements also, and were found orginally by Russell and Saunders* to be an important sharacteristic of the emission of the arc spectra of the alkaline earth elements
IV --Dhscusston of Empincal Resilts

The resulta of our empirical analysia of the gold arc apectrum are given in the enargy dagram Fig. 1 and in Tables IV and V. Tablr IV containe the

Eha. 1.-Note -To keep the notation unilorm with the tert, nX,r of thin diagrem abould b read an n^{\prime} X, throughout, eg. $\$ 88_{1}^{1}$ as 349_{1}, eto

* 'Astrophyir J.,' vol 01, p. 38 (1025)
values of all the terma we have been able to find The terms have been groaped so that each group corresponds to a certain configuration of the electrone of the un-ionsed atom of gold The configurations (of the 11 outer electrons only) are givenin the nght-hand column in auch e way that $\left(5_{3}\right)^{10} 0_{1}$, for instance, indicstes that there are 10 electrons occupying b_{s} orbits and one occupying a 6_{1} orbit. Table V contains the wave-lengths that we have been able to claselfy as combinations between pairs of the terms in Table IV.

Our absorption expenments ahow that the deepest term of the whole arc apectrum of gold is that designated as $1^{2} S_{1}$, for all the wave-lengths in Table III that we found to be absorbed by the normal vapour of gold involve this term. To it, therefore, we have assigned the value zero It corresponds to the 98 term preducted in Table II, 1A, and is the first member of a doublet B series, two higher membery of which have also been identified. The terms designated as $1^{1} P_{11}$ and $2^{2} D_{31}$ correspond to those predscted in Table II, 2a and 3a respectively They are the first members of a doublet P and of a doublet D

Table III -Absorbed Wave-lengths

I	$\boldsymbol{\lambda}(\mathrm{IA})$	- (rao)	Combnation	Method
8	912978	82018.0	$1 \mathrm{D}_{5}-14 \mathrm{P}_{8}$	$\mathbf{U W}$
Ho	809\%'22	330022	$1 D_{3}-1{ }^{3} \mathrm{~F}_{3}$	UW.
6	274828	389750	$13 \mathrm{D}_{3}-14 \mathrm{~F}_{4}$	U.W
4	270060	370137	$1 \cdot D_{1}-1 \cdot D_{1}$	UW.
10H	2675.96	378588	$1^{1 B_{1}}-1^{10} P_{1}$	UW, NV
4	264149	378461	$1 \mathrm{I}_{1}-10 \mathrm{D}_{3}$	UW.
10R	2427 88	411740	$1^{10} \mathrm{H}_{1}-1^{10} \mathrm{P}_{3}$	U.W, NV
0	2887.78	41867.6	$10_{1}-14 D_{4}$	UW.
4	297625	42070 5	150-2AP:	UW.
6	295268	4892.2	3 $\mathrm{D}_{0}-1 \mathrm{~F}_{5}$	UW.
4	-2189.40	40945.4	$1^{1} D_{10}-a_{13}$	UW
2	-2180 62	47008.2	$1^{2} 5_{1}-14{ }^{1}$	UW, NV
4	$2110 \cdot 60$	47864		U.W
4	2082.00	48018.3		U.W,
3	-2021 40	49646	$141)_{0}-b_{31}$	U.W.
3	-2018 02	40680.8		UW.
2	200068	40980		UW.
3	199115	502088		U W
4	1077 32	800.87-1		U.W.
3	1051.21	818854		UW., $\ \mathbf{V}$.
2	-1838 62	81807.7	$1 D_{0}-8 P P_{1}$	UW.
4	191898	9809d 0	$1 D_{0}-c_{14}$	D.W
g	1879 18	581084	$1 \mathrm{FH}_{1}-2 \mathrm{P} \mathrm{P}_{1}$	UW.i NV.
	A (I vac).			
1	1685 1646 08	$\begin{array}{r} 000419 \\ 007488 \end{array}$	$\begin{aligned} & 1 g_{1}-3 P_{1} \\ & 14 B_{2}-9 P_{1} \end{aligned}$	$\begin{aligned} & \mathbf{N} \mathbf{V} \\ & \mathbf{N} \mathbf{V} . \end{aligned}$

* Meanured by the authory
neries, and we have found one higher member of rach arries as well The common lumt of earh of there tern series we have shown in Section III to be the "derp" ${ }^{18}$ term of the Au II apoctrum, given in Table I, IA The calculated value of the limit is $74,461 \mathrm{~cm} .^{-1}$, and is indicuted in fig 1 by the horizontal line with the infinity myrabol at the right of at.

Table IV.

Teble V

1.	$\boldsymbol{\lambda}$ (IA).	- (veo)	Comblnatiou
\square	751074	19810.6	$1 \mathrm{P}_{1}-9 \mathrm{~F}_{4}$
4	(1278.18	150238	$1 \mathrm{D}_{5}-1 \mathrm{P}_{1}$
14	6906 98	167824	$1{ }^{4} \bar{D}_{4}-a_{1}$
111	580284	170518	$1 \mathrm{IF}_{4}-\mathrm{a}_{1}$
4	5887. 41	171262	$11 P_{1}-2{ }_{1} 9_{1}$
0	* 1878126	174738	$24 \mathrm{P}_{3}-\mathrm{a}_{3}$
1	065570	170742	1'D, D_{1}
1	- 126182	18809 a	${ }^{1} \mathrm{H}_{3}$-a,
I	* 5147 J9	104210	${ }^{*} \mathrm{P}_{1}{ }^{\text {a }}$
211	506489	107904	$1 D^{1}-1{ }^{1} \mathrm{P}_{1}$
411	481161	20777	$\left.1 \mathrm{P}_{1} \mathrm{P}_{1}-2^{2}\right)_{8}$
H	$4782 \cdot 60$	208697	$\left.1 P_{1}-2^{2 a}\right)_{0}$
0	* 4122070	216357	$1 \square^{-1} \mathrm{D}_{4}$
4	400735	218884	$1-D_{1}-a_{1}$
4	4488.28	222741	$14 \mathrm{~F}_{4}-a_{4}$
4	4437.28	225300	$1 D_{0}-a_{1}$
I	431811	28167	$1 \mathrm{~F}_{4}-a_{1}$
2w	424184	23508 2	$1 \mathrm{~Pa}_{5}-3{ }_{4}$
Im	408414	24478.1	$1 \Gamma_{0}$
15	4)60 08	24092 -	$\mathbf{1}^{1} \mathrm{P}_{1}-2 \mathrm{D}_{5}$
2	404085	247307	$1 \mathrm{D}_{5}-1 \cdot \mathrm{D}_{3}$
2	880930	255722	$1{ }^{2} \mathrm{D}_{1}-1 \cdot \mathrm{O}_{3}$
4	3817788	256477	$1{ }^{1} \mathrm{~F}_{1}-{ }_{1}$
1	388845	25703 S	$1{ }^{1} D_{4}-a_{1}$
1	387508	288008	
1	$4 \mathrm{mc01} 97$	262947	$1_{1} \mathrm{P}_{1}-\mathrm{giP}_{1}$
4	9705.90	20346.7	$1^{11} \mathrm{P}_{5}-3 \mathrm{D}_{1}$
3	500074	27983 -	${ }_{14} \mathrm{P}_{1}-\mathrm{Br}^{18}$
\underline{y}	836518	297001	$1_{1} \mathrm{D}_{1}-{ }^{20} \mathrm{P}_{1}$
d	352114	301108	$1^{1} \mathrm{P}_{1}=8 \mathrm{D}_{1}$
2	330481	302183	$1^{8} \mathrm{D}_{1}-\mathrm{l}^{\mathbf{4}} \mathrm{F}_{5}$
4u	9804.74	81194	$14 \mathrm{~F}_{4}$
44	518473	312925	$1 \mathrm{~F}_{4}$
1	314637	81778-5	$1^{1} D_{1}-4 P_{1}$
8	819878	820135	$\mathrm{l}^{1} \mathrm{D}_{1} \mathrm{~S}_{1}-1 \mathrm{P}_{1}$
Hv^{2}	202982	$83002 \cdot 8$	$1^{2} D_{1}-l^{4} F_{4}$
4	289194	346045	
4	988346	346704	$1^{4} D_{3}=a_{1}$
${ }^{6}$	274828	36875 8	$1 \mathrm{D}_{3}-\mathrm{l}^{4} \mathrm{~F}_{1}$
4	270090	370137	
4	288872	311814	
10 R	207605	378888	$1^{\mathrm{N}_{1}-1{ }^{1 / 2}}$
4	264149	378461	$1{ }^{4} D_{5}-1{ }^{1} D_{2}$
4	208005	38897-7	
4	254420	30298-4	$1 \mathrm{D}_{2}-3 \mathrm{P}_{5}$
4	251050	396806	$1{ }^{18} \mathrm{D}_{1} \mathrm{Cl}^{18}$
101	242798	41174.0	$148-14{ }^{3}$
E	298770	418077	$1 \mathrm{D}_{1}-14 \mathrm{D}_{6}$
4	297425	$49070 \cdot 8$	$1 D_{r}-P_{1}$
4	2364-57	492781	$\operatorname{LD}_{1}-d_{1}$
6	289865	48498.2	$\mathrm{ID}_{1} \mathrm{D}_{1}-1 \mathrm{P}_{1}$
4	-2129 46	46045	$1 D_{0}-a_{10}$
2	22]28 69	470082	$1{ }^{14} \mathrm{H}_{1}-1 \mathrm{D}_{1}$
J	-2081-40	404046	$1 D_{5}-b_{11}$

- Measared by the authom.

Table V.-(contunued)

The term designated as $1^{2} \mathrm{D}_{32}$ correaponds to the ${ }^{2} \mathrm{D}$ term given in Thable TI , 18. The terin values in Table IV show that it is another "deep" term of the apectrum, but that it is not so "decp" as the $l^{1} S_{1}$ term Our absorption expeninents also confirm this view, for all the wave-lengths in Table III that involve the component $1^{2} \mathrm{D}_{3}$ were absorhed by the excited vapour in the underwater spark but not by the normal vapour of gold The energy provided by the under-water spark was, therefore, sufficient to rase the gold atoms to the atate represented by the lerm $1^{3} D_{3}$, but way probably not nufficient to raine them to the $1^{2} D_{9}$ ntate This would explann why we did not find any absorptrons involving the term $1^{2} D_{a}$ As the term $1^{2} D_{s a}$ dues not combine with the term ${ }^{4} \mathrm{~S}_{1}$, it must, therefore, represent a motastable state of the un-ionzed atom of gold.

The values of the components of the $1^{2} D_{s 2}$ term show that the term 18 anverted, that 18 , the component $1^{9} D_{a}$ is " deeper" than the component $1^{2} D_{9}$ This festure is in conformity with certain rule given in Section III. For the term represents the resultant action of the 11 outer electrons of the un-ionzed atom of gold, when mine of them occupy b_{3} orbits and two of them 6_{1} orbits The 6_{1} orbit type is by rule 1 thus filled and therefore by rule 4 caa be neglected, while the B_{a} orbit type contains nane electrons and thes number is greater than $N / 2$ whers $N=10$ for this type. Therefore by rule 3 the term should be inverted and this we have shown to be the case The aignificance of the metastable inverted doublet D term, found by us a year ago, 18 thus made clear.

It should be noted, however, that the term here designated as $1^{2} D_{a}$ is not the asme as the one we selected in our narlier work as $1^{1} D_{3}$ ($b \delta_{1}$ in the previous notation). Oar identification of the $\mathbf{E \delta}_{\mathbf{1}}$ term last year was based chiefly on a wave-length given by Quincke,* namely λ 4623.26s having the eatumated

[^24]Intenaty $6 v$. A close inspection of our plates of the emission are appotrum of gold failed to reveal any hne of this weve-length in the spectrum." Our previous evaluation has therefore probably no agnaficance. The discovery of the correct value of the term $1^{1} \mathrm{D}$, has made possible the advances recorded in thes commumication.

The most important of these advances is represented by the group of twelve terma at the right of fig 1 , beginning with that designated as $1^{2} F_{4}$ and guing on to that denignated as d_{13} All these terms are new with the exception of those deangnated as $2^{2} P_{q}$ and $2^{2} P_{1}$, which constitute the irregular terms of the P type found by us in our earlier work and mentioned above in Section I Although we have been able to identify only eight of the twelve terma referred to, it seems fairly certain that all the twelve correspond to certain components of the group ${ }^{4} F^{4} \bar{D}^{4} P^{9} F^{\prime} \bar{D}^{2} P$ that result from the electron configuration 28 in Table II. This group, as the table shows, has the ${ }^{3} \mathrm{D}$ term of the Au II spectrum as a common series limit Of the terms in this group the quartet terms ahould be "deeper" than the doublet terms of the same type by Rule $\overline{5}$ in Section III. But from the srrangement of the eight components that we have identified it would seen that in this case there is a contradiction to the rule, ie, that the ${ }^{2} \mathrm{~F}$ term is deeper than the ${ }^{4} \mathrm{~F}$ term, the $\overline{\mathrm{D}}$ thrm is deeper than the ${ }^{4} \overline{\mathrm{D}}$ term, and that the ${ }^{9} \mathrm{P}$ terni is deeper than the ${ }^{4} \mathrm{P}$ term Wr_{m} will proceed to descuss our arrangement of the group, first empincally and then from a theoretical standpoint

We have shown in Section III that the gold atom can get directly from the
 nan combine with the term $1^{18} \mathbb{S}_{1}$ subjoctt to the selection rule for the inuer quantum number " j," arsociated with any term component, if, " j " may change only by ± 1 or 0 in a tranation. The selection rule for " j " limits the numbar of possible combinationa to eight, namely, those from the componente ${ }^{4} \mathrm{~F}_{8},{ }^{4} \overline{\mathrm{D}}_{\mathrm{n}},{ }^{4} \overline{\mathrm{D}}_{1},{ }^{4} \mathrm{P}_{\mathrm{b}},{ }^{4} \mathrm{P}_{1},{ }^{1} \overline{\mathrm{D}}_{1},{ }^{2} \mathrm{P}_{\mathrm{a}}$ and ${ }^{2} \mathrm{P}_{1}$ to the term $1{ }^{2} \mathrm{~N}_{1}$ The three doublet components ${ }^{9} \overline{\mathrm{D}}_{\mathrm{a}},{ }^{9} \mathrm{P}_{\mathrm{a}}$ and ${ }^{2} \mathrm{P}_{1}$ should combine with the term ${ }^{19} \mathrm{~S}_{1}$ moro readily than the five components of the quartet terms. It will be seen from fig. I and Tables IV and V that only three of the eight possible combinstions with the terms $I^{2} S_{1}$ occur. We have, therefore, been led to the view that the three wave-lengthe $\lambda 212662 \mathrm{~A}, \lambda 1951 \cdot 21 \mathrm{~A}$ and $\lambda 1879 \cdot 13 \mathrm{~A}$ result from the three

[^25]oombinations between the doublet componenta ${ }^{2} \bar{D}_{1},{ }^{2} \mathrm{P}_{2}$ and ${ }^{2} \mathrm{P}_{1}$ and the term $1^{\text {ma }} \mathbf{1}_{1}$, and as a consequence we have identafied the terma derignated as $1^{2} \bar{D}_{2}$, $2^{4} \mathrm{P}_{\text {a }}$ and $2^{4} \mathrm{P}_{1}$ The three other doublet components designated as $1^{1} \overline{\mathrm{D}}_{3}, 1^{\mathrm{P}} \mathrm{F}_{4}$ and $1^{1} F_{a}$ were then seleoted so as to be in agreement with Rules 9 and 0 in Section III. The terms designated as $1^{4} \mathrm{~F}_{4}$ and $1^{\wedge} \overline{\mathrm{D}}$, were identified by the fact that they are the only componenta of the group ${ }^{4} \mathrm{~F}^{4} \overline{\mathrm{D}}{ }^{4} \mathrm{P}$ that have the nuner quantum numbers, " j " $=7 / 2$, and, as Table IV ahows, each of them has this value for " j " As we have arranged them, $l^{4} \mathrm{~F}_{4}$ if deeper than $\mathbf{1}^{4} \overline{\mathrm{D}}_{\mathbf{4}}$, but we cannot be certan of this. The remanmeg four terms of the group of twelve probably are other componenta of the group ${ }^{4} \mathrm{~F}^{4} \overline{\mathrm{D}}^{4} \mathrm{P}$ as well, but we have not aufficient evidence to ensble us to identuify any of them, and so we have designated them as a_{39}, b_{13}, c_{13} and d_{25} for the time being. The double subscripts 2 and 3 in each case indicate that the inner quantum number " J " belonging to each term may have exther of the values $5 / 2$ or $7 / 2$.

It our identification of the terms dasuased in the last paragraph be correct, we have shown that in thas case the doublet terms of the group ' $\mathrm{F}^{4} \overline{\mathrm{D}} \mathrm{P}^{9} \mathrm{~F}^{3} \overline{\mathrm{D}} \mathrm{P}$ must be "deeper" than the quartet terms of the same typo The question of the series limits involved probably has aome bearing on the theoretical significance of this feature. We have indicated in Table II that the termes of the group ${ }^{4} \mathrm{~F}^{4} \bar{D}^{4} \mathrm{P}^{9} \mathrm{~F}^{9} \overline{\mathrm{D}}{ }^{9} \mathrm{P}$ have as senes hoit the ${ }^{9} \mathrm{D}$ term of the Au II spectrum, but the ${ }^{9} \mathrm{D}$ term is threefold, and by Rule 3 in Section III should be inverted. The question then is, of the 17 component terms in the group, which ones have the component ${ }^{3} \mathrm{D}_{1}$ as limit, which ones have the component ${ }^{3} \mathrm{D}_{2}$ and which ones have the component ${ }^{3} D_{s}$

The question of senes limits was treated recently in an extended way by Hund in a special paper.* As an example of spectra characterised by donblet and quartet aystems with a threefold hmit, Hund disousses the atructure of the are spectra of the elemente of the fifth column (N, P, Af, Sb, Bi). We give in fig. 2 a diagram of the term structure of the arc apectra of these elements, taken from Hund's paper By means of the rulea given by him we have constructed fig. 3 to represent the arrangement of the group of terma
 components of the limiting term ' P of the spark spectrum are in the normal order, andas consequenoe the components of the term types in the are apectrum are in the normal order as well Also quartet terma are deeper than doublet

$$
\text { * ' Z. t. Phyalk,' vol. 34, p } 200 \text { (102к). }
$$

Fus. 2

Fio $:$
terms of the game type. Butin fig. 3 the limiting term ${ }^{2} D$ of the $A n I I$ spectrum has ita components inverted, and the components of terms of the are apectrum having the ${ }^{\text {D D D }}$ term as limit are therefore inverted In order to explan the fact that the doublet terms of the group ${ }^{4} F^{4} \bar{D}^{4} \mathrm{P}^{9} \mathrm{~F}^{2} \overline{\mathrm{D}}^{\text {ap }}$ in the Au I spectrum are deeper than the quartet terms of the same type, we now put forward the view that the inverson of the components of any term, when the limit is inverted, is accompaned in some cases by an inverwion of the relative depth of doublet and quartet terms of the same type, so that the doublat term of sny type would be the "deeper"

Table VI.-Wave-lengths of Doubtful Origin recorded by Quncke as belonging to Au I.

I	$\lambda\left(1 . A_{1}\right)$	Origin 1	I	$\lambda(\mathrm{IA})$	Ongn 9
2	610160		01	309285	Al 1
60	4623 26		14	303591	
1	454374		1	30341 J	Nn I
6 K	-3827-67		14	302434	
1	300227		2 U	297325	
14	3075		2	297041	
3 R	3441.93		2	200375	
3	3877.59		1 U	296141	
2	326848	Pd 1	14	294304	(ia 11
14	a181 30	Cal	14	2913 3n	. 1111
4u	311701		Ju	2084	

- A faint line at thla wave-length weas oberved in our platou

The only terma in fig. 1 that we have not yet diacuased are the high ones deagnated by Greek letters These are probshly components of the group resulting from the electron configuration 3s in Table II, but we have not been able to ahow that any of these terins correspond to components of any of the predioted types

Our analyss of the Au I apectrum has not furmshed more than the first member of any series that has the ${ }^{3} D$ term of the Au II spectrum as lumit. We therefore cannot calculate the values of any of the components of tho ${ }^{8} \mathrm{D}$ term.

V.- Conolusion

In the foregoing analysis we have been able to classify by our term scheme nearly all the wave-lengths known to belong to the gold are spectrum The moat important wave-lengthe that have not yet been classutied are six, given in

Table III, that were found to be absorbed by the vaporr in the under-water spark of gold. These wave-lengths undoubtedly involve the metastable term $1^{2} D_{s}$ and will probably be found to lead to the adentafioation of certan of the terms of the group ${ }^{2}{ }^{2}{ }^{2}{ }^{5}{ }^{2}$ with the limit of 'D in Table II, 2B, or to certain of those of the groups in Table II, 2c But we have not any further evidence in nuppiort of this view. Zceman effect experimente will probably furmigh the best means of defintely setting this quention and any other features of the are spectrum of gold that are not yet clear

Tho euthors wiwh to thank Misarn Nllin, (ohen, M, Donald and Nutton, and Mr M J Iaggett for annatenoe in laking photographe of njeotra Acknowkedgnient ghould aleo be made to the Nationsl Researoh Councl of CBanada, for the eward of a fellowahip to Mr A F Molay, which minbled him to collaborato in thin inventigetion

On the Serres Spectin of Palladiun.
By Pruf J C Mchennan, FR S. and H (hraybon Smith, Ph.D. (Departinent of Phyeice, Univeresty of Toronto)
(Receival Juin 10, 1926)

Introduction.

In a previous paper the authors have given a preluninary analyas of the are spectrum of palladuun * This bas now boen extended and brought into better agreement with the theoretical considerstions of Hund. In addition, some progress has been made in the annlyas of the second or spark spectrum of pallacium. The work on the arc spectrum has bean made possible by the atudy of the Zeeman fffect of the palladium arc by Beals, \dagger by the experiments of McLennan and Cohen, and McLennani and Laggett \ddagger on the absorption mpectrum of normal palladium vapour, and by the measurements of Meggeraf of the lines of the pallartium urc in the reglon from 4500 to 9000 A .

[^26]
The Ground Terms of Palladium I.

On the basis of hig expenmenta on the Zeernan effect, Beals assigned most of the atrongest lines of the aro apectrum to combinations between a group of low terms designsted by ${ }^{18} \mathrm{~S}_{0}{ }^{1} \mathrm{D}_{\mathrm{a21}},{ }^{1} \mathrm{D}_{1}$ (n the notation of Russell) and n group of siaglet and triplet $\mathbf{P}, \overline{\mathrm{D}}$ and P terms. Thas has been gonerally confirmed, although it has been necessary to rearrange the PDF group alightly in order to bring it into agreement with the theoretical grouping of these terms The new arrangement of the lines involved is ahown in Table I, and is supported by conaderation of the relative intensity. Thowe lines for which the agreement between ohserved and calculaterl Zerman effect as particularly gowd are not affected by the changes Table I also containe other linea due to combinations with the low group, some of which have been identified aut the second membera of serics of which the lues given by Bealsare the first members The nature of the other terms combining with the luw group has not been ascertained Table II conlains lines due to combinations botween the P $\overline{\mathrm{J}} \mathrm{F}$ group and two

Table I --Combinations with Jow-Jying Termes

Table II -Combinations with $\boldsymbol{r r}_{\overrightarrow{\mathrm{F}}}$

'Table III.---Lines absorbed by Normal Palladium Vapour.

Wevo-Jongth I. A	Absorption Intenisty	$\begin{aligned} & \text { Frequenoy } \\ & c m=1 \end{aligned}$	Combination
3634.684	5	27504.00	
3609-648	5	2780843	
35168003	2	28425.52	
3460751	3	2888723	${ }^{11} \mathrm{~F}_{\mathrm{a}}-\mathrm{l}^{10 D_{a}}$
3421227	${ }_{4}^{+}$	29820 93	${ }^{1} D_{1} \mathrm{D}_{1}-1^{1} \mathrm{D}_{1}$
4404 683	10	2030378	10F - ${ }^{10} \mathrm{D}_{4}$
3378018	4	28983880	
3302147	${ }^{3}$	$30274{ }^{64}$	${ }^{11} \mathrm{P}_{1}-{ }^{10} \mathrm{D}_{3}$
3287248	0	30411 85	$1 D_{1}-1 D_{1}$
3258-80d	1	30877.30	${ }^{10} \mathrm{D}_{1}-1^{10} \mathrm{D}_{1}$
3251 - 167	10	30744.72	${ }^{10} D_{1}-1{ }^{1} D_{1}$
3242710	10	3088948	$1 \mathrm{P}_{\mathbf{a}}-\mathrm{I}^{1} \mathrm{D}_{1}$
3114075 3065.886	6 4	32102. 8 B	${ }^{1 \cdot D_{1}}$ - ${ }^{1 \cdot D_{1}}$
3027-042	4	88018.15	$1 D_{1}-1 \cdot D_{1}$
3008668	2	3399408	
2929518	1	8420708	
2783.001	10	34180 68	
$2751 \cdot 87$	10	38389.1	
247641	10	40348 39	$1 \mathrm{P}_{1}-1^{18} \mathrm{Q}_{6}$
2447.008	${ }^{8}$	4088783	$15^{1}-148$
2272.8 2251.470	${ }^{1 *}$	48997	
22477	$9{ }^{-}$	44878	
2232859	${ }^{2}$	447979	
2107.8	$2 *$	40484	$\beta_{1}-115_{6}$
1824	1	54804	
17690	4	56630	$\delta_{1}-l^{1} \delta_{0}$
17634	\pm	68709	
17858	1	${ }^{56988}$	$\mathrm{TI}_{1}-\mathrm{IN}_{1}$
1784 8	1	${ }_{07800}$	
17241	2	65001	
$1780 \cdot 3$	3	${ }^{68129}$	
17168	1	58991	

* Limes net identified wath emitaion lines in tha pullediun ans
new low terms designated as $b{ }^{\boldsymbol{\Gamma}} \overline{\mathrm{F}}_{\mathbf{1}}$. These are the lowest nembers of a theoretical group for whech the remauning combinations would lie in the infra-red beyond the range of the measuremente of Meggers.

Tsble III contains the lines which were observed by McLennan and Cohen and MoLennan and Liggett in the absorption spectrum of normal palladıum vapour. These ahow very clearly that the term deagnated as ${ }^{1} \mathrm{~s}_{0}$ represents the normal state of the palladium atom, all the lines due to combinations with it being very strongly absorbed. Most of the linea due to combinations with ${ }^{{ }^{2}} \mathrm{D}_{\mathrm{a}}$ are also absorbed, and some of those due to combinations with ${ }^{\prime} \mathrm{D}_{\mathbf{2}}$, showing that the triplet \mathbf{D} term represents a metastable state of low energy of the palladiam atom. It is also evident that there can be no other terms as low or lower than these. Thas is in agreement with the asaggment of the low terms by Bechert and Catalan *

Theoretical and Observed Groups of Terms

F Hund \dagger has recently given a theory by means of which it is possible to predict the arrangement of the terms of the spectrum for an atom contaning any number of electrons The effective quantum number (l) that defines the spectral term corresponding to a given conffguration of extra-nuclear electrons in an atom is given by $l=j_{a}+1$, where \bar{j}_{a} is the vectonal rosultant of the quantum numbere $j_{0}=k-1$ representative of all the individual electrons outaide the last previous rare gas shell. The quantum number \bar{j}, determines by the relation $j_{1}=1(r-1)$ the multiplicity of such spectral term ' it aleo is a vectonal magnitude, being the resultant of the quanturn numbers (g_{n}) of all the induridusl electrons, each of which is taken to be intringoally of a doublet nature with its $j_{1}=\frac{1}{2}$. In this way each possible arrangement of the eleotrons in orbits (n_{k}) of given total and azimuthal quantum numbers can be associsted with a group of apectral terms.
When two or more electrons are in "equivalent orbits," that is, in orbits having the same values of n and k, account must also be talcen of ther orientathon with respeot to an imagnary small magretic field. No two electrons may actually occupy the same orbit, and so if they have the same values of n, j_{a} and j_{n} one or both of the vectore j_{a} and j, must be difforently oriented with respect to the field. This limits the number of electrons which may occupy equivalent - orbits of quantum number k to $N=2(2 k-1)$, and also limits the number of

[^27]posasble ways of combining them to give the quantum nambers l and j, of the tarms. In this connection it was shown by Hund that a combination of $N-x$ equivalent electrons (where $x<\frac{1}{N}$) gives rise to the same group of spectral terms as a combination of x electrons. In the former case it is found empurically, however, that the multuple terms are "inverted," that is, that the term with the highest value of the inner quantum number (j) is the loweat of each multiple term Hund also gives the empirical rules, that, of such a group of termb, those of largest multiphcity should be the lowest, and that of terms of equal multiphcity that with the largest value of l should be the lowest The lastmentioned rules are apparently atriotly obeyed by the low terms of a senes system, but other effecte may cause them to break down for the higher terms.

In the case of palladium (atomis number 40) there are ten eleotrona outside a krypton-like core, and theso are to be distributed in the $4_{1}, b_{1}$ and higher orbits The most important configurations to be considered are those in which all ten electrons aro in 4_{s} orbits, which will be denoted by $\left(4_{3}\right)^{10}$, and those in which there are nine electrons in 4_{a} orbita and one in a higher orbit, denoted by $\left(4_{3}\right)^{0} \delta_{1}$, etc These give the ordunary series system, in whioh the lines are due to transitions of a single "sentes electron " The configuration ($\left.4_{4}\right)^{10}$ represents a completed ahell, and gives rise to the low term ${ }^{1} \mathrm{~S}_{0}$ only, so that it must be the normal oonfiguration of the palladum atom. In order to find the terms due to the other oonfigurations, the j_{a} and g, of the tenth electron must be combined with the term reaulting from the nine 4_{n} electrons, whioh 18 a term ${ }^{1} D$. Thus $\left(4_{3}\right)^{0} 5_{1}$ gives nise to the metastable terms ${ }^{9} D_{3 n 1},{ }^{1} D_{9}$, and $\left(4_{8}\right)^{0} \delta_{g}$ to the group ${ }^{9} F^{-} D^{2} P^{1} F^{-1} D^{1} P$ observed by Beals. In accordance with the rule mentioned above, all these terms are inverted. In Table IV the observed terms of the palladrum arc spectrum are given, grouped according to the electronic configurations to which they are supposedly due. The first column gives the configuration, the seoond the predicted terms which should arise from it, and the third the values of the corresponding observed terms. Some terms whose nature has not been determined appear at the bottom of the table These ell combine with the terms of the lowest groups, and may be part of the group due to the configuration ($\left.4_{3}\right)^{4} \mathrm{~J}_{1} \delta_{\mathrm{g}}$ and so involving double electronic transitions.
The selection principle for the azimuthal quantam number ($\Delta k= \pm 1$) should be apphed to the electron concerned in the transition, and not to the effective quantum number (l) of the terms. Thus any term of the group ($\left.4_{\mathrm{a}}\right)^{\circ} \mathrm{S}_{\mathrm{a}}$ may combine with the low terms, or with any term of the group $\left(4_{8}\right)^{9}{ }^{9}$, subject always to the selection prunciple for the inner quantum number ($\Delta j= \pm 1,0$).

However, transitions in which l changes by 2 or 3 give nse to lines of amall intensty oompared with those for which l changes by 1 or 0 . According to the usual practice, bars have been used to distinguish terma which combine with ordinary terms of the same value of l. Table \mathbf{V} shows the observed oombinations between the group $\left(4_{3}\right)^{9} \mathrm{D}_{1}$ and the higher terma The rulea of intensity are on the whole obeyed for combinations with the $\overline{\mathrm{D}}$ and P terms, and justify the arrangement of the upper terms so as to agree with the predictions The intenaties of all the combinations with the \mathbf{F} terms are rather irregular

Table IV -Terms of the Palladum Aro Spectrum.

Table IV-(continued).

Configuration	Tapma (predlcted).	j	Falne of obworved torm.	Soparation.
$\left(4_{3}\right)^{4} \mathrm{~B}_{5}$	$\begin{aligned} & a^{\mathbf{G}} \mathbf{G} \\ & a^{\mathbf{G}} \mathbf{G} \end{aligned}$	$\begin{aligned} & 4 \\ & 5 \\ & 4 \end{aligned}$	5481130 5480608 85064. 05 6934892	325797 284.87
	$a^{1} \sqrt{6}$	3	55012.19	1297
	$\boldsymbol{\sigma} \overline{\mathrm{B}}$	$\begin{aligned} & 4 \\ & 8 \\ & 2 \end{aligned}$	5502s. 16 E8561 70 68556-78	8588.54 -5.08
	a^{10}	2	5489882	8081
	$a^{2} \mathrm{D}$	3 2 1	84047.71 58448.54 6840807	$\begin{array}{r} 3500 \cdot 89 \\ -40 \cdot 47 \end{array}$
$\left(4_{1}\right)^{\prime} \boldsymbol{b}_{1}$	${ }^{1} \mathbf{P}$	1	0482268	203
	$\boldsymbol{\omega}^{\mathbf{1}} \overline{\mathbf{P}}$	2 1 0	5482062 5810028 5868134	837484 4908
	415	0	65372 P9	708.00
	$0 \cdot 8$	1	0457409	
$\left(\mathbf{4}_{1}\right)^{10} \theta_{1}$	$2{ }^{17}$	8	-	
	2 F	$8^{4} 2$	二	
	$21 \mathbf{1}$	2	-	
	20D	31_{1}^{1}	58028	
	$2 \mathbf{2 P}$	1	-	
	29	$\begin{aligned} & 2 \\ & 1 \\ & 0 \end{aligned}$	00095	
$\left(4,107_{1}\right.$	310	2	6818888	
	$3{ }^{3} \mathrm{D}$	$\begin{aligned} & \mathbf{s} \\ & \mathbf{g} \\ & 1 \end{aligned}$	6183800 0100282	85-78
	\%	1 1 3 1 1 1	57650 104893 6104002 865100 6471	

Series Speotra of Palladium.

Table V.-Combinations between Upper Terms.

Term.	1	$\begin{aligned} & \mathbf{1 F} . \\ & s \end{aligned}$	4	$\begin{aligned} & \mathbf{I}^{\mathbf{A}} \mathbf{F} . \\ & \mathbf{g} \end{aligned}$	2
21D	9	1596821 (10)		1162690 (2)	-
20	3 2 1	$\begin{aligned} & 13359 \cdot 94(7) \\ & 1703648 \text { (9) } \end{aligned}$	1287644 (12)	$\begin{aligned} & 11410 \cdot 65(2) \\ & 1500414 \text { (4) } \end{aligned}$	$\begin{aligned} & 13876 \text { (8) } \\ & 1352469 \text { (8) } \end{aligned}$
c^{1}	4	1896000 (40)	18888 65 (7)	1741776 (7)	
a^{-6}	0 3	29612.73 (2)	$18878 \cdot 69$ 29136 89 $\left(\begin{array}{l}(50) \\ 10)\end{array}\right.$	2087061 (4)	1968723 (20)
615	8	10560.94 (16)	1008446 (2)	1761860 (3)	1620048 (5)
$0^{3}{ }^{3}$	4 8 8	$10578 \text { 88 (1) }$	$10097 \text { (20) }$	$\begin{aligned} & 17831 \cdot 02(30) \\ & 21168 \cdot 20(1) \\ & 2118205(6) \end{aligned}$	$19744 \overline{00}(10)$
σ^{10}	2	1004728 (8)		-	16186 36 (5)
0 D	8 2 1	10498.47 (7)	1001988 (10)	1755416 (20)	$\begin{aligned} & 1619000(2) \\ & 19596 \cdot \overline{37}(3) \end{aligned}$
$\sigma^{2} P$	1				16011-03 (2)
dP	1	10360-36 (8)		17427 04 (12)	$\begin{aligned} & 16008 \text { 98 (1) } \\ & 10388 \text { 6s (0) } \end{aligned}$
4	1				1076240 (1)
8 D	2	2268658 (4)		20744.77 (2)	-
8 D	1	-		-	$\begin{aligned} & 2989680(1) \\ & 2270110(2) \end{aligned}$

- In infra-red

118 J. C. MeLennan and H. G. Smith.

Table V-(contupued)

Torm	j	15	15		
		2	3	2	1
2.)	2	1804371 (5)	-*	-**	-*
2^{20} D	8 4 1	$\begin{aligned} & 1182837(0) \\ & 1651191(2) \\ & 1696080(\mathrm{\theta}) \end{aligned}$	12629 - ${ }^{\text {(3) }}$	$\begin{aligned} & 11718 \cdot \overrightarrow{45}(8) \\ & 1160509 \text { (1) } \end{aligned}$	$\begin{aligned} & 1146011 \\ & 1149767 \\ & \hline 1 \end{aligned}$
$a^{2} 0$	4		14989.15 (8)		
0^{2}	$\begin{aligned} & 4 \\ & 9 \end{aligned}$	21978.16 (8)	18480 -82 (0)	17677-68 (3)	
$\mathrm{a}^{1 \mathrm{~F}}$	3	16036-43 (30)	18154-04 (1)	-	
$0 \cdot \mathrm{~F}$	4 3 2	$\begin{aligned} & 21685 \cdot 86(2 \mathrm{~s}) \\ & 2157009(3) \end{aligned}$	$\begin{aligned} & 1818703(3) \\ & 18708.54(10) \\ & 1889762(2) \end{aligned}$	$\begin{aligned} & 17790 \cdot 88(12) \\ & 17784 \cdot 48(8) \end{aligned}$	1771708 (8)
$a^{1} \mathrm{D}$	2	18022.70 (20)	1514039 (1)	1422700 (1)	1416989 ($)^{\text {c }}$
$a^{3} \mathrm{D}$	3 2 1 1	$\begin{aligned} & 17971 \text { 00 (3) } \\ & 214322^{3} \text { (0) } \end{aligned}$	$\begin{aligned} & 1008954 \text { (4) } \\ & 18500 \\ & 45 \end{aligned}$	$\begin{aligned} & 1417690 \text { (2) } \\ & 1767728 \text { (10) } \\ & 1763872 \text { (3) } \end{aligned}$	$\begin{aligned} & 17009 \cdot 84(1) \\ & 1760940(8) \end{aligned}$
${ }_{\square} \mathbf{P}$	1	17846.94 (8)		--	1398301 (6)
$a^{0} \mathbf{P}$	2 1 0	1784400 (2)	14862 4t (3)	$\begin{aligned} & 1404030 \text { (9) } \\ & 1742982 \text { (4) } \end{aligned}$	$\begin{aligned} & 17896 \overline{85}(4) \\ & 1789264 \text { (4) } \end{aligned}$
$a^{1} 8$	0				1455437 (8)
σ^{18}	1	17608.38 (2)		18802.83 (9)	12735.43 (9)
${ }^{\mathbf{1 2}} \mathbf{D}$	2	2116265 (8)	-	-	1728980 (1)
30D	${ }_{1}^{2}$	-	2178046 (8)	$\begin{aligned} & 2086731 \text { (2) } \\ & 2088178 \text { (1) } \end{aligned}$	$\begin{aligned} & 2079993 \text { (1) } \\ & 20764 \cdot 16 \text { (1) } \end{aligned}$

* In infra-red.

Table V．－（continued）．

Term	j	$\boldsymbol{I} P$	2	$1^{19} P$ 1	0
21D	2	－＊	14050．74（3）	1283803 （7）	
20 D	3 2 1	11047．69（2）	1473538 （ 00 ） 18418.94 （4） 18267 B6（1）	$\begin{aligned} & 1630716(8) \\ & 1816580(6) \end{aligned}$	1424832 （8）
＋5	8 \mathbf{d}	18187．20（6）	二	－－	
$a^{1} \mathrm{l}$	2	1462983 （8）	2002882 （4）	1881806 （12）	
$\boldsymbol{a}^{\mathbf{D}} \mathrm{D}$	8 2 1	$\begin{aligned} & 18079 \cdot 97 \text { (5) } \\ & 18089 \cdot 49 \text { (1) } \end{aligned}$	$2087894 \text { (20) }$	$\begin{aligned} & 22247 \text { 日8 (5) } \\ & 2229707 \end{aligned}$	2032000 （8）
$0^{2} \mathrm{P}$	1	148407 （9）	20753 04（9）	1864210 （15）	18784 40（0）
$0{ }^{8}$	2 1 0	$\begin{aligned} & 1445198(2) \\ & 1782687 \text { (7) } \\ & 1831276 \text { (2) } \\ & \hline \end{aligned}$	20751．83（30）	$\begin{aligned} & 1864091(4) \\ & 2201480(10) \\ & 2260092(3) \end{aligned}$	2010724 （9）
a^{18}	0	10004．43（4）		10102－57（10）	
$0^{10} 8$	1	1420062 （3）	2050530 （20）	18393－62（7）	16480－90（1）
31 D	2	－	－	2195784 （4）	
$8 \cdot \mathrm{D}$	1	$\begin{aligned} & 2127012 \text { (1) } \\ & 21234 \text { 25 (2) } \end{aligned}$	－	二	2351457 （1）

－In infre red

The Series Intuls．

Senes of terms，following spprommately formulw of the Rydberg or Ritz type， will be produced by configurations with the electrons in orbits of the same asmathal quantum numbers，but with increasing values of the total quantum number of one of the electrons．For example，the auccesaive configurations $\left(4_{\mathrm{B}}\right)^{\rho} \mathrm{F}_{1},\left(4_{\mathrm{s}}\right){ }^{0} 6_{1},\left(4_{\mathrm{s}}\right)^{0} 7_{1}$ ，etc．，of palladium give rise to series of triplet and singlet D terms of which the metastable D terms are the first members．When the series electron is completely removed，there remains a aingly oharged palladum ion with its mine outer electrons in the configuration（43）．The energy of this configuration，expressed in frequency units，muet therefore represent the limit of the series．But at the same time it represents a posable configuration of the spark spectirum，and so in this way the limits of the series of the arc spectrum can be associated with the low terms of the upark spectrom．

In the case of palladium the configuration ($\left.4_{8}\right)^{0}$ gives rise to a low doublet D term of the spark spectrum, and either ${ }^{1} \mathrm{D}_{1}$ or ${ }^{5} \mathrm{D}_{8}$ may be the limit of a partioular sentes of the arc In a recent paper Hund ${ }^{*}$ has considered this queation and has shown how to dstingush between the series which proceed to either member of a double limit. In the case of triplet and anglet \mathbf{D} terms it is found that the sennes ${ }^{9} D_{12}$ converge to the lumit ${ }^{1} D_{4}$, and ${ }^{1} D_{a}{ }^{1} D_{1}$ to the limit ${ }^{1} D_{a}$. Three members of these series have been found in palledium, and the limats have been calculated approrimstely by means of Rydberg formule. They are found to be 70902 and $67387 \mathrm{~cm} .^{-1}$ respectively. The difference between these limuts is $9515 \mathrm{~cm} .^{-1}$ and ahould be equal to the frequency difference of the low doublet D term of the apark apectrum, which we have found to be $3512.4 \mathrm{~cm}^{-1}$.

In the casc of the series arising from the configurations $\left(4_{3}\right)^{0} n_{8},{ }^{0} F_{18} 3 \bar{D}_{19}{ }^{0} P_{01}$ should converge to the upper limit, ${ }^{1} D_{2}$ of the spark spectrum, and ${ }^{~}{ }^{1}{ }^{1}{ }^{1}{ }^{1}{ }^{\prime}$ ${ }^{3} \bar{D}_{1}{ }^{1} \bar{D}_{2}{ }^{9} P_{2}{ }^{1} P_{1}$ to the limit ${ }^{1} D_{1}$ of the seoond members of this group we have been able to identify only ${ }^{5} \bar{D}_{1}$ and ${ }^{4} P_{1}$, both of which combine with ${ }^{1} \mathrm{~S}_{0}$ to give lines which are absorbed by the normal vapour. The existence of the double hrout shows in the term separations of the group $\left(4_{\mathrm{g}}\right)^{\circ} \delta_{\mathrm{a}}$ which is divided into two distinot sub-groups according to the particular lemit of the series of which these terms are the first members The multuphoty of the limit will also explain the irregular separations of the PDF group, and the fact that the singlet $\overrightarrow{\mathrm{D}}$ and F terms are lower than the corresponding triplets Since the apark term corresponding to the limit is inverted, all the singlet terms are converging to the lower lirnut, and when tho separation of the limits becomes large compared with the difference to be normally expected between the tmplets and singlets, the latter become the lower, and Hund's rule for the order of the terms breaks down
In the energy diagram (see flg. 1) the terma found in the regular apectrum represented by the configurations (43) ${ }^{8} n_{k}$ have been plotted. Terms which arise from the same configuration are connected by broken lines, the two lines for each group representing the two possiblithes ${ }^{\circ} D_{a g}$ for the nine 49 eleotrons. The vertical lines on the dagram represent posable series of terms, and terminate in the particular limit to which the sernes should converge.

Fra. 1.
The Speatrum of Palladvum II.
The values of the wave-lengths for the investigation of the spark spectrum of palladuum have been taken from Dhein* for the region of wave-length longer then 2000 A., from Kall \dagger for the region from 2000 to 1850 A., and from the reoent measurements of McLennan and Luggettif for the Schumann region The analysis is necessanly incomplete, sunce many of the important lines lie in the latter region, where not much relisnce can be placed on the eccuracy of the frequency differences.

The first attaok on the spark speotrum was made by looking for frequency differenoes appronmating to the value $9515 \mathrm{~cm} .^{-1}$ which had been found for the differance between the two limits of the arc speotrum, and it was soon found

[^28]that $3512.4 \mathrm{~cm} .^{-1}$ was an important frequency dufference in the palladium apark. This was subsequently found to be the difference between the lowest term and a term with a value of g one unit amaller, and was accordingly taren to be the inverted doublet D term preducted for the configuration (43)', Other terms, only slightly higher, have been identafied with most of those predicted for the configuration (4 $\left.\mathbf{4}^{8}\right)^{8} 5_{1}$

Table VI -Terme of Palladium II

T'erm	1	Value	Term	J	Value	
(Configuration (4, ${ }^{\text {a }}$)			Middle torms			
${ }^{\text {D }}$	$5 / 2$	00	A	6/2	41549.2	
	3/2	35124	${ }^{\mathbf{B}}$	5/2	44870	
			O	9/3	425589	
			D	3/2	483096	
(Contguratio			${ }_{\text {E }}^{\text {E }}$	8/2	484880	
		G	7/2	48027 8		
${ }^{4} \mathbf{F}$	9/2		${ }_{H}$	8/2	604027	
	7/2		1284 日			
	5/2	1946.4	J	5/2	60378 49	
	3/2	2310.0	${ }_{\text {K }}$	3/2	61089 62189	
4 F	7/2	$4648 \cdot 3$	M	7/2	69808.07	
	5/2	5362.4	N	3/2	638699	
			P	7/2	634624	
${ }^{\prime} \mathbf{P}$	5/2	20098	0	7/2	68498 ${ }^{\text {a }}$	
	$3 / 2$$1 / 2$	66940	R	7/2	63637.4	
			S T	5/2	69971.0	
- ${ }^{\text {P }}$	$\begin{aligned} & 3 / 2 \\ & 1 / 2 \end{aligned}$	$6222 \cdot 8$	U	$5 / 2$	6401	
		-	V	E/2	64484	
			w	0/2	640707	
4	$\begin{aligned} & 9 / 2 \\ & 7 / 2 \end{aligned}$	6050.5	\mathbf{X}	5/8	$64880{ }^{1}$	
		8825	Y	$7 / 2$ $8 / 2$	64841.8 65120.1	
'D	$8 / 2$$3 / 2$	00051	AA	8/2	$60188 \cdot 2$	
		0691.07	BB	8/9	601888	
			co	5/2	$66844{ }^{2 ?}$	
${ }^{8}$	1/2	-	DE	8/9	67093	
			${ }_{5}$	8	87232.8	
(Con6iguration ($\left.\left.4_{3}\right)^{\prime \prime}\left(\sigma_{1}\right)^{\mu}\right)$			GG	1/2	60889.41	
a	3/2	62880		igh te		
b	0/2	10174.4	a	\%/9	89468.01	
${ }^{\circ}$	8/2	19197 27	*	9/2	92989.1	
d	3/2	18889 5	\%	8/2	100690.0	
f	9/2	20482.71	-	$0 / 2$	101790.0	
	7/2	21425.78	5	5/2	10185s.8	
h	8/2	$29297 \cdot 8$		7/2	103400.a	
j	8/2	22857.8	-	8/2	108726-5	
\boldsymbol{L}	$7 / 2$	289124	λ	8/4	104125.7	
${ }^{n}$	8)8	989740	${ }^{\mu}$	8/9	105861.4	
π	5/2	248040	ν	8/2	10097\%-4	
p	1/2	29867 -81	-	1/2	107078-1	

All the terms found are collected in Table VI, and the lunea arising from oombinations between them in Table VII. We have not been able to determine the nature of the remaining low terms, or of the higher terms, and they have been denoted by letters. Small lettera heve been used for the unknown low torms, papitals for the middle terms which combine with these, and Greek letters for the high terms which combine with the middle terms, and which have served principally as a check on the values of the other terms it is probable that the low terma which have not been identified form part of the group due to the configuration $\left(4_{s}\right)^{7}\left(5_{1}\right)^{2}$, the predicted terme for which would be

Table VII -Lines Identified in the Spectrum of Palladium II

Weve-length	Intenaty.	Frequency	Combinstion
8882-98	1	207481	$\mathrm{A}_{1}-\mathrm{CC}_{5} \mathrm{f}$
384828	1	260122	$\mathrm{Ba}_{1}-d_{1}$
8842-61	1	260160	$\mathbf{a}_{1}-\mathrm{P}_{4}$
9820.41	1	281336	$\mathrm{C}_{1}-d_{1}$
3670078	0	2729969	$F_{1}-g_{\mathbf{a}}$
351118	\boldsymbol{u}	301025	$\mathrm{F}_{3}-e_{1}$
3248 -131	2	3082084	$\gamma_{1}-V_{s}$
8105949	1	3218319	$\mathrm{H}_{3}-\mathrm{H}_{1}$
5041664	2	3288721	$\mathrm{C}_{1}-b^{1} \mathrm{D}_{2}$
2948.076	2	3389006	$\mathrm{N}_{1}-p_{1}$
2823 -18	4	$30410 \cdot \mathrm{t}$	$\mathrm{B}_{1}-\mathrm{AA}_{3}$
2774.770	4	3602820	$\mathrm{E}_{1}-\mathrm{W}_{1}$
2751.4	1	36334	$\mathrm{O}_{1}-{ }^{5} \mathrm{P}_{1}$
2714347	3	8689037	$\sigma_{4}-c_{p}$
2709.210	1	3690014	$\mathrm{A}_{3}-\mathrm{PF}_{\mathbf{1}}$
2609-400	0	37074 68	$\mathrm{B}_{\mathbf{1}}-\mathrm{F}_{\mathbf{\prime}}$
2087.075	3	3710585	$\mathrm{C}_{1}-\mathrm{F}_{1}$
2477.887	2	3733822	$\mathrm{B}_{1}-\mathrm{N}_{1}$
2669458	0	3709048	$\mathrm{G}_{5}-\mathrm{T}_{5}$
2683918	1	3798804	FFI, p_{1}
2688. 247	10	3803684	$\Delta_{1}-\mathrm{a}^{2} \mathrm{D}_{1}$
2605.658	0	3838607	$\square_{1}-Q_{1}$
2609.770	5	3840914	$\mathrm{B}_{1}-\mathrm{L}_{1}$
2587-871	0	3869822	$\mathbf{A}_{1}-{ }^{1} \mathbf{P}_{1}$
2584164	0	3868568	$\mathrm{naj}_{\mathbf{1}}-\mathrm{C}_{4}$
$2577 \cdot 141$	4	3879108	$\mathrm{E}_{1}-\mathrm{b}^{1} \mathrm{D}_{1}$
2575-631	2	3881533	$L_{1}-m_{1}$
2588898	0	3882462	$\mathrm{Ba}_{3}-a^{\mathbf{H}} \mathrm{b}_{1}$
2066.597	0	3886677	$\mathrm{Cb}_{3}-\mathrm{M}_{4}$
954-933	0	38888. 29	$\mathrm{a}_{1}-\mathrm{H}_{1}$
2600-323	1	8904587	$\mathrm{C}_{1}-\mathrm{a}_{1} \mathrm{D}_{1}$
2044145	0	3918571	$\eta_{i}-\mathrm{T}_{\mathbf{1}}$
2068. 728	0	3914870	$\mathrm{D}_{1}{ }^{\mathbf{T}} \mathrm{F}_{1}$
2883-188	0	8918080	$\theta_{1}-W_{3}$
2040017	1	89265-25	$0_{1}-U_{6}$
2519.246	0	99977 08	$L_{1}-L_{0}$
2898578	0	5947681 89897.08	$\mathrm{E}_{3}-\mathrm{B}_{3} \mathrm{D}_{3}$
2590154	1	39597.08	$\mathrm{B}_{1}-\mathrm{P}_{1}$
2093.407 200080	2	$\begin{aligned} & 30685 \cdot 68 \\ & 3967 \cdot 2 \end{aligned}$	$\mathrm{Hf}_{1}-\mathrm{L}$

Table VII-(continued).

Wave-length.	Intonuly	Frequancy	Combination.
252068	*	896602	$\mathrm{F}_{1}-{ }^{\text {d }} \mathrm{D}_{1}$
2015888	1	3974018	$\mathrm{F}_{1}-\mathrm{FF}_{1}$
2018800	1	80768.87	$\mathbf{W a}_{\mathbf{1}}$ - $\boldsymbol{n}_{\mathbf{1}}$
2512529	1	3978886	$\mathrm{y}_{\mathbf{4}}-\mathrm{BB}_{5}$
25008224	15	\$09850.84	
2000742	15	808908-33	$\mathrm{M}_{4}-\mathrm{k}_{\mathbf{4}}$
2502483 2497848	0	99948.05 40028.48	$\mathrm{Cb}_{0}=\mathrm{P}$
249685	0	40040.0	$\mathrm{Fa}_{3}={ }^{\text {a }}$
2489.817	3	4016470	$\lambda_{0}-B_{1}$
2484243	0	4024136	$\mathrm{O}_{1}-\mathrm{F}_{1}$
24801	\cdots	40309	$\mathrm{H}_{1}-\mathrm{b}_{1}$
2479115	2	40.954 .80	$\mathrm{Z}_{1}-n_{1}$
2471189	3	$40454 \cdot 71$	$\mathrm{OG}_{1}-\mathrm{p}_{1}$
248603 2461 188	1	$40040 \cdot 1$ 40609	$\mathrm{P}_{\mathbf{N}} \mathrm{N}_{\mathbf{1}}=\mathrm{b}_{\mathbf{c}}$
2488474	1	4066939	$\mathrm{A}_{\mathbf{1}}-\mathrm{AA}_{\mathbf{1}}$
2467732	3	4087861	$\mathrm{D}_{1}-{ }^{\text {P }} \mathrm{Pa}_{\mathbf{a}}$
2454768	3	40724.98	$\mathrm{R}_{4}-k_{1}$
2442428	0	4076890	L_{1} - g_{4}
2480081 2448 1515	8	40809 40858 14	${ }_{1}{ }_{1}=r_{1}$
2437719	2	$41009 \cdot 58$	$\lambda_{1}=\mathbf{Y}_{1}$
2436.694	d	4102948	$N_{1}-N_{1}$
2433103	8	41097.31	U_{1} - m_{1}
243188	1	41109.7	$V_{1}-\mathrm{m}_{1} \mathrm{l}$
2430248	I	4113588	$r_{1}=\mathbf{Y}_{1}$
2489 26897 2678	1	4121104	
2419 кө4	0	4191720	$\lambda_{1}=H_{4}$
2410618	1	41884 69	$\mathrm{BE}_{1}-{ }_{3}$
2410287	1	4139036	$\mathrm{H}_{5}-\mathrm{V}_{1}$
2414 7as	2	41139988	$\mathrm{R}_{4}-\mathrm{h}_{1}$
$2410 \cdot 207$ $2406 \cdot 784$	0	41147789 41597 189	
2406053	0	4154019	$\left\{A_{1}-{ }^{D_{1}}\right.$
2391 -59	1	41808 9	$\mathrm{U}_{1}=\mathrm{E}_{1}$
2388345	3	$41857 \cdot 23$	$D_{1}-{ }^{-1} D_{1}$
$2385 \cdot 172$	1	4101900	
2378712	0	42098. 78	$P_{1}=g_{1}$
2377 948	,	(2040.28	
2374101	0	4810674	$\mathrm{Ba}_{1}-\mathrm{H}_{2}$
$\begin{aligned} & 9867 \cdot 989 \\ & 2366927 \end{aligned}$	5	42917 01	$\mathrm{z}_{\mathbf{\prime}} \mathrm{v}_{\mathbf{\prime}}=\mathrm{k}_{1}$
2885 621	1	4985087	$\mathrm{E}_{5}={ }^{\text {P }}{ }_{1}$
2364 488	1	4327881	AA;
2361503	0	42939.95	$\mathbf{W}_{1}-\hat{h}_{\mathbf{n}}$
2890.788	0	4984577	$\mathrm{M}_{1}-\mathrm{f}_{1}$
9367389	1	4807.18	$\mathrm{F}_{1}-\mathrm{a}_{1}$
22350.718	0	48.89 .99	$\mathrm{Ba}_{\mathbf{a}}={ }^{\mathbf{d}} \mathrm{D}_{1}$
$\begin{aligned} & 230088 \\ & 2348 \cdot 896 \end{aligned}$	${ }^{*}$	$42625-1$	${ }_{\mathrm{C}}^{1} \mathrm{C}=\mathrm{P}_{1}$
2447. 638	1	42.94.66	${ }_{1}=N_{0}$
2848.465	1	42604.28	$Y_{4}-3$
2896100	0	49977.10	Gi- $\mathbf{c o s}_{1}$
2383.42		48088.1	0_{1}

Table VII-(continued).

Wave-longth،	Intensity.	Frequendy.	Combluation,
9398. 679	1	4804235	$\mu_{\mathrm{a}}-\mathrm{Ma}_{4}$
2908-689	2	4330315	$F_{1}-1 F_{1}$
8200-809	2	4358108	EB, - Ji
2288-188	1	43689 29	$\mathrm{DD}_{3}-\mathrm{m}_{1}$
8883.029	0	4378791	$\left\{\begin{array}{l}E_{1} \cdots{ }^{\prime} \mathbf{P}_{1} \\ r_{1}-L_{1}\end{array}\right.$
2889.078	3	4980822	$\mathrm{F}_{1}-\mathrm{N}_{1}$
2978080	*	4392382	$\mathrm{B}_{\mathbf{n}}-\mathrm{F}_{1}$
2074.49	1	489686	$\mathrm{J}_{1}-d_{d}$
287127	1	440160	$\mathrm{F}_{\mathbf{1}}$ - F_{1}
2266.00才	0	4409834	$a_{1}-D_{1}$
2984-286	1	4415082	DD, k_{4}
2260472	0	1422489	$\mathrm{H}_{5} \cdots \mathrm{a}_{4}$
9218-624	0	4437888	
2298030	1	4486882	$E_{s}-d^{5} D_{8}$
2914005	3	4815280	$\mathrm{F}_{\mathrm{s}}-a^{\mathbf{d}} \mathrm{D}_{\mathbf{a}}$
9203487	1	4830965	$\mathrm{D}_{1}-\mathrm{a}^{\mathbf{N}} \mathrm{D}_{3}$
8190480	0	$45637 \cdot 78$	DD $\mathrm{D}_{\mathbf{1}} \mathrm{g}_{5}$
21654.58	1	4616507	$\mathrm{E}_{3}-{ }^{\text {d }} \mathrm{F}_{3}$
$2160 \cdot 148$	1	4617167	$\mathrm{U}_{\mathbf{a}}-\mathrm{CH}_{\mathbf{H}}$
2148800 2194800	1	4603570	$\mathrm{E}_{1}-\mathrm{F}_{1}$
2194809 8131622	1	4882777	$A^{\gamma_{1}}-E_{a_{1}}$
2128830	1	4697030	$\mathrm{H}_{3}-\mathrm{al}^{1} \mathrm{D}_{8}$
2110871	1	47164.88	$\mathrm{CO}_{1}-J_{1}$
$2117-098$	0	4721946	$\beta_{1}-D_{1}$
2081006	0	4803828	$\mathrm{U}_{\mathbf{1}}-d_{1}$
207165	4	4820812	$\mathrm{X}_{3}-d_{1}$
2061.065	0	4848209	$\mathrm{E}_{3}-{ }^{1} \mathrm{D}_{3}$
8000.640	0	4859836	$\mathrm{H}_{\mathrm{s}}-{ }^{\text {a }} \mathrm{F}_{\mathbf{n}}$
2004.189	0	48945.26	
2046041	0	4887100 4902786	
2081068	2	4910778	$\mathrm{H}_{1}-{ }^{4} \mathrm{~F}_{4}$
2001 -748	0	4894009	$\gamma_{i}-D_{1}$
1808.11	2	600310	$\boldsymbol{\beta}_{1}-\mathrm{C}_{1}$
109471	1	601163	$\mathrm{B}_{5}-\mathrm{H}_{3}$
1080. 28	2	504828	$\mathrm{H}_{3}-\mathrm{a}^{1} \mathrm{D}_{3}$
194897	1	818983	$\left\{\begin{array}{l}Q_{1}-\mathrm{C}_{1} \\ \mathrm{C}_{1}-\mathrm{H}_{1}\end{array}\right.$
1045.90	1	013732	$\left\{\begin{array}{l}S_{1}-\mathrm{O}^{2} \mathrm{D}_{1} \\ \mathrm{H}_{1}-\mathrm{H}_{1}\end{array}\right.$
183987	1		$\mathrm{CO}_{1}-\mathrm{E}_{0}$
109480 1091.88	2	818398	$\mathbf{a}_{1}-F_{0}$
1981.88	8	62018 6	$\mathbf{L}_{\mathbf{4}}-\mathrm{C}_{\mathbf{1}}$
1890.68	8	828751	$\mathrm{Y}_{5}-\mathrm{B}_{1}$
188974	2	659841	$\mathrm{K}_{1}-\mathrm{b}^{0} \mathrm{D}_{2}$
1879.69	1	881844	$L_{1}-b^{W}{ }^{\text {D }}$
1879.41	1	881808	$\mathrm{P}_{0}-\mathrm{F}_{0}$
1876.82	9	$83877 \cdot 9$	$\mathrm{Pa}_{5}-\mathrm{b}_{\mathbf{i}}$
1894. 3	2	88639	$\mathrm{A}_{1}-\mathrm{E}_{1}$
$1880 \cdot \mathrm{~g}$ 1808.5	0	68768 89807	$\mathrm{H}_{4}-\mathrm{A}_{5}$
184.8	2	84265	$\mathrm{N}_{1}-\mathrm{bl}_{5}$
1898	6	54288	$\left\{\begin{array}{l}S_{3}-b^{2} D_{1} \\ U_{1}-b_{1}\end{array}\right.$
$1890 \cdot 2$	eh	54371	

Table VII-(continued).

Wave-Length	Intonalty	Frequeney	Combination.
1832.4	0	14873	$\mathrm{T}_{\mathbf{1}}-W_{\mathbf{D}}$
18298	2h	54669	$\mathbf{Y a}_{4}-b_{5}$
18208	0	54818	$\boldsymbol{\eta}_{\mathbf{1}}-\mathrm{E}_{7}$
1817 8	3	80014	$\left\{\begin{array}{l}J_{1}=\mathrm{F}_{3} \\ A_{1}=b_{0}\end{array}\right.$
18107	1	66227	$\mathrm{A}_{1}-\mathrm{D}_{1}$
18033	1	E6404	$\mathrm{U}_{1}-60{ }_{5}$
18025	1	65479	$V_{4}-6 D_{1}$
1796	2	55679	$\mathbf{X a}_{\mathbf{a}}-\mathrm{b}^{\mathbf{0}} \mathrm{D}_{\mathbf{a}}$
1794	3	86729	$\mathrm{J}_{1}-\mathrm{IF}_{\mathbf{4}}$
17901	1	05863	$\mathbf{V}_{1}-\mathbf{a b}_{\mathbf{0}}$
17818	8	80183	$Z_{3}-b^{0} D_{3}$
1770-8	$\underline{8}$	68188	$A_{1} A_{1}-b^{1} D_{1}$
1772 H	8	58408	$\mathrm{c}_{1}-\mathrm{D}_{\mathbf{1}}$
17047	4	69687	$\mathrm{CC}_{5}-\mathrm{b}_{2}$
1759 B	0	86995	$\left\{\begin{array}{l}\mu_{2}-G_{1} \\ L_{1}-B_{5}\end{array}\right.$
17487	16	67185	$\left\{\begin{array}{c}\mu_{0}-F_{0} \\ B_{B}\end{array}\right.$
$\begin{aligned} & 1742.2 \\ & 17410 \end{aligned}$	$\mathbf{8}$	$\begin{aligned} & 57389 \\ & 57438 \end{aligned}$	
17302	2	67408	
17360	1	37584	
17318	2	07750	$\mathrm{B}_{1}-\mathrm{P}_{3}$
$1727 \cdot 0$	$2 h$	57904	$\mathrm{N}^{\prime}-\mathrm{PF}_{5}$
1722 - 4	1	58059	
1721	2	80092	$\mathrm{P}_{\mathbf{1}}$ - ${ }^{\text {P }}$
17186	4	68153	$\mathrm{ER}_{1}-6 \mathrm{D}_{1}$
17161	5	58278	
$1714 \cdot 4$	0	08929	$00_{1}-\mathrm{b}^{2} \mathrm{D}_{3}$
17100	2	58480	$\mathrm{K}_{1}-\mathrm{O}^{\mathbf{0}} \mathrm{D}_{1}$
17073	1	68979	N_{1} - ${ }^{\text {P }}$
17083 17043	8	58604	S_{2} - 㖿
17010	4	68708	$\mathbf{Y O}_{6}=\mathrm{B}_{5}$
16995	3	58841	$\mathrm{Q}_{4}-\mathrm{F}_{4}$
1607-8	4	08900	T_{1} - P_{3}
1897 \%	2	05907	$Z_{4}-P_{1}$
16988 1605	1 l	58834	$\mathrm{AA}_{\mathbf{H}}-\mathrm{a}_{\mathrm{H}}$
16934	6	69067	${ }_{4} \mathrm{~B}_{4}$
$1892 \cdot \mathrm{I}$	1 h	69098	$\mathrm{U}_{1}=\mathrm{A}_{1}$
1691 '3	3	50128	$\mathbf{V i}_{1}-\mathrm{H}_{3}$
1888 \%	$1 h$	59294	B_{0}
16888	I	60310	$\left\{\begin{array}{l}\mathrm{S}_{1}-{ }^{1} \mathrm{~N}_{1} \\ \mathrm{X}_{1}\end{array}\right.$
18882	0	69340	$\mathrm{Xi}_{5}-\mathrm{B}_{\mathbf{i}}$
16898 1678.3	3	69418 59789	F- B_{4}
1671 9	1	68812	U_{1} - ${ }^{\text {P }}$
1871.4	0	89830	$A_{1} A_{1}-1{ }_{1}$
161898	14	80828	$W_{\mathbf{a}}-\mathrm{F}_{\mathbf{1}}$
1687 10608	7	69980	HB $-\mathrm{IP}_{\mathbf{\prime}}$
16608	1	60031	$X_{1}-\mathrm{AP}_{4}$
$1001-4$ 16608	$\underline{2}$	60100	$Y_{1}-{ }^{\text {a }}$
1660	${ }^{2}$	60218 60808	$B_{1}-A_{3}$

Table VII-(continued)

Wave-length.	Intenaty	Frequenry	Combination.
10583	$2 \boldsymbol{h}$	00378	Is - $a^{2} \mathrm{D}_{3}$
16548		80436	$\mathrm{Za}_{1}-{ }^{\text {P }} \mathrm{P}_{1}$
16041	1	${ }^{60454}$	$\mathrm{R}_{1}-a^{4} \mathrm{~B}_{3}$
1005.4	J	60481	$\left\{\begin{array}{l}2_{3}-F_{4} \\ \mu_{3}-D_{4}\end{array}\right.$
10030	1	60400	${ }^{\text {A }}{ }_{1}{ }_{1}-{ }_{4}{ }_{4}$
16518	$2 h$	160540	
$\begin{aligned} & 1051.1 \\ & 1646.1 \end{aligned}$	$\begin{aligned} & 0 \\ & \mathbf{1 h} \end{aligned}$	60586 60750	
10440	4 h	60827	
1648.0	1	60001	$\left\{\mathrm{L}^{\mathrm{LE}_{1}}=\mathrm{F}_{4}\right.$
$\begin{aligned} & 16408 \\ & 1640 \end{aligned}$	4	$\begin{aligned} & 609413 \\ & 60976 \end{aligned}$	
16978	1	61058	
1034-9	0	61106	$\mathrm{O}_{1}-\mathrm{C}^{2}$
16313	a	81301	$\mathrm{P}_{4}-\mathrm{B}_{5}$
1689	2	61359	$\mathrm{T}_{1}-{ }^{4} \mathrm{P}_{9}$
16980	2	${ }^{11488}$	
10258	${ }_{14}^{5}$	41508	P_{1} - $\mathrm{P}_{\mathbf{1}}$
16929 1621.9	${ }_{1}^{1 /}$	81818 81658	
16211		81887	$\lambda_{1}-\mathrm{B}_{\mathrm{p}}$
10207	1	61702	$\left\{\begin{array}{l}\mathrm{DD}_{3}-\mathrm{S}_{1} \mathrm{~F}_{1} \\ \mathrm{~m}_{1}=\mathrm{D}_{1}\end{array}\right.$
16189	24	81797	EE ${ }_{\mathbf{1}}$ - ${ }^{1} \mathrm{~F}_{1}$
1614.2	2	61850	T_{1} - ${ }^{\text {P }} \mathrm{F}_{1}$
1614,7		61831	$\mathrm{Y}_{1}-{ }^{\text {' }} \mathrm{P}_{\mathbf{\prime}}$
16187	4	61080	
16198	1	61089	K_{1} - $\mathrm{a}_{1} \mathrm{D}_{1}$
1609 16083	2	62100 82177	$\mathrm{CC}_{1}-\mathrm{P}_{1}$
18083	2	82177	
1607 日	2	62193	
1007 \%	4	62806	$\mathrm{Q}_{4}-{ }^{\text {H/ }}$
16062 1605.6	2	68268 62288	
1605. 1604 1805	2	62313	Ta_{4} - Pr^{3}
10038	2	68362	$\mathrm{Ra}_{4}-{ }^{\text {P }} \mathrm{F}_{4}$
16022	2	62414	DD: - $\mathrm{P}_{\mathbf{4}}$
15990		62589	
15098	1	628880 68876	$\mathrm{WB}_{\mathbf{a}}$ - $\mathrm{FF}_{\mathbf{F}}$
1605-5	1	68876 82738	
1699	2	68914	
1580-6	0	69889	
1688.8	1	${ }_{68271}^{6319}$	$\mathrm{V}_{4}-{ }^{\text {a }}$
$1600{ }^{\circ}$	0	68871 6831	
1579		63599	X_{1} - ${ }^{1} \mathrm{~F}_{1}$
10760	8	${ }^{63452}$	$\mathrm{Pa}_{4}-{ }^{1} \mathrm{D}_{1}$
18780	2	68302 69646	$\mathrm{RE}_{4} \mathrm{Re}^{\text {a }} \mathrm{al}_{4}$
10712 1007.0	2	698818 68818	
1566-3	1	83845	$\mathrm{Z}_{\mathbf{8}}-\mathrm{FP}^{\text {a }}$
1564.8	0	${ }_{6}^{69906}$	$\mathrm{AH}_{1}-\mathrm{F}_{1}$
15638	1	65871	$\mathrm{S}_{1}-\mathrm{m}^{\text {d }}$

Tsble VII-(continued).

Wave-length	Intenaly.	Frequenoy.	Comblastion
18061	2	64268	$\mathrm{T}_{\mathbf{s}}-\mathrm{d}^{\text {d }}$
10001	3	64612	$\mathrm{m}_{1}-\mathrm{C}_{5}$
16488	2	44574	$\mathrm{Wa}_{1}-\mathrm{a}^{+\mathrm{D}_{1}}$
16448	1	64742	DD_{1} - ${ }^{\text {P }}$
18984	1	65130	$\left\{\begin{array}{l}Z_{1}-a_{1} b_{1} \\ \alpha_{1}\end{array}\right.$

Conchesion.

The regular are apectrum of palladium, involving disturbances of a single electron outaide a core of nine 4_{g} electrons, includes very nearly all the atrong lines of the arc, and most of the faint lines of wave-length longer than 9400 A . In the region of shorter wave-lengthe there are also a large number of faint lines, apparently belonging to the arc spectrum, for which no place can be found in the regular series syatem, ansce all the predicted for the prominent electronic configurations have been found, and any terme due to additional possible configurations would give lines in the infra-red or extrame ultravolet. These faint lines can probably be ascribed to a secondary senes syatem, the terms of which arise from configurations of the type $\left(4_{n_{3}}\right)^{8} \delta_{1} n_{k}$. The analysis of the spark apectrum has ahown that $\left(4_{8}\right)^{8} b_{1}$ and $\left(4_{1}\right)^{0}$ are of almost equal stability, and consequently terms of this type ahould oceur with considerable prominence in the are apectrum, but mught not combme very readily with the regular terms. An attempt to find a clue to thie part of the spectrum by means of the inter-combinations has been quite unsoocensful, and no serious effort has been made to analyse it separately. Sumular configurations are sleo likely to be prominent in the apark spectrum, accounting for the very large number of lines, only a small fraction of which have been included in the present analysis.

In conclosion, the authors wisk to express their gratitade to Dr. O. Laporte for his assistance in the interpretation of the recent theones and for his very valuable suggestions, and to Mr. A, B. MoLay for his intereat and suggestions in the course of the work.

The Equilibrium of Heterogeneous Systems inchuding Eleatrolytes. Part 1.-Fundamental Equations and Phase Rule.

By J A. V. Butler, M.So., University College of Swansea.

(Communicated by Prol. F G Donnan, F.R S -Reoelved Febriary 17, 1926)

Introduation

In his well-known memoir on the equilibrium of heterogencous substances Willard Gibhs obtained the conditions of equilibnum in heterogeneous systems * The equations he obtained have been the basse of most aubsequent applications of thermodynamics to materal aystems, and not a great deal of fundamental importance has been added. In ons respoct alone his resulta were comparatively meagre, namely in the case of electrolytes The reasons for thas were given by Gibbs himself in a letter to Prof. Bancroft, which ia printed in the Collocted Papers. He thore remarks: " The meagreness of the resulta obtained in my E. H.S in the matter of electrolysis has a deeper reason than the difficulty of evaluation of the potentials. In the first place, casce of trie equilibrium (even for open circuit) are quite exceptional Thus the single case of unequal concentration of the clectrolyte cannot be one of equilibrium, since the process of diffution cannot be stopped. . . . Again, the consideration of the difference of potential in electrolyte and electrode involves the consideration of quantities of which we have no apparcnt means of physical measurement, while the difference of potential in ' pieoes of inetal of the same kind attached to the eleotrodes' is precisely one of the things we can and do measure ' \dagger
The Arst of these reasons is no longer valud since many cases of electrode equilibria have been measured with as greator greater prension than equilhbria of other types. It is atall true that no reliable means of determuning the single potentual difference between two phases has been duscovered, but it will be found to be of importance to proceed with the formulation of the conditions of equihbrium in cases in whoh such dufferenoes of potential must be taken into aocount, for these are essential factors determining equilibrium not only in galvanio oells but between phases contaning electrolytes in general. In this paper the method of Gibbs is employed to obtan the general conditions of ${ }^{\text {- }}$ equilibrium in aystems containing electrolytes Although a number of partial

[^29]expressions are to be found in the hiterature," a complete statement does not appear to have been attempted before.

It must first be observed that the phase rule has been widely applied to aystems containing electrolytes without any reference to the eleotrio forces at phase boundaries, the componenta being taken to represent every posaible variation in the matter of the syatem, provided each phase remains electrioully neutral. Although it will ultimately be shown that this is justifed, we shall not at first make any reatriction as to the electric neutrality of parta of the system We shall take as components the least number of aubstances, in terms of which every possible variation in the matter of every part of the aystem may be expressed, disregarding this limitation. Those components whose motion is accompaned by eleotnc flux may, in conformity with common unage, be called rons. In addition to its temperature and preasure and the ahemical potentials of ita components, every portion of matter in the syatern will be characterised by an electrical potential, i,e, the electrical work done in bringing unit positive charge from a standard position (or from anfinte distance) to a point within the matter in question

Condotons of Equilibrium of Heterogencous Masses.

Consider the system as made up of a number of parts each of whioh is homogoneous with rogard to the masses of its components and at the same eleotrical potentasl throughout. The parts which fulil this condition may be finite or only infintesimal in size. Let $\mathrm{S}_{1}, \mathcal{S}_{1} \ldots \mathrm{~S}_{\text {, }}$ be neutral componente, the quantitites of which in a given homogeneous part of the syatern are $\mathrm{Dm}_{1}, \mathrm{D}_{m_{1}} \ldots \mathrm{D}_{m_{3}}$; $\mathrm{S}_{2} . . . \mathrm{S}_{n}$ components which are lons, whose amounts in the same mass are $\mathrm{D} m_{n} \ldots \mathrm{D} m_{n,}$ and let $a_{n} \ldots a_{n}$ be the quantities of (positive) electnoity assoclated with unit masses of $S_{7} \ldots S_{4}$ respectively.

Then, if $\mathrm{D} e, \mathrm{D} \eta, \mathrm{D} v$ be the energy, entropy and volume of the masa in queation and V its electrical potential, variations in us energy will be givan by the equation:

$$
\begin{align*}
d \mathrm{De}=t d \mathrm{D} \eta_{\eta}-p d \mathrm{D} p+\mu_{1} d \mathrm{D} m_{2} \ldots+\mu_{\theta} d \mathrm{D}_{m_{8}} & +\mu_{n} d \mathrm{D} m_{n} \ldots+\mu_{n} d \mathrm{D} m_{n} \\
& +\left(a_{n} d \mathrm{D} m_{n} \ldots+a_{n} d \mathrm{D} m_{n}\right) \mathrm{V} . \tag{1}
\end{align*}
$$

[^30]Applying the general condition of equilibnum
we have

$$
(\delta e)_{n} \geq 0
$$

$$
\begin{equation*}
d \mathrm{D} e^{\prime}+d \mathrm{D} e^{\prime \prime}+d \mathrm{D} e^{\prime \prime \prime} . . \underset{x}{x} 0 \ldots \tag{2}
\end{equation*}
$$

for all posable variations in the state of the syatern which do not alter ita total entropy and do not conflict with the other cquations of condition, $v e$ equations representing the constanoy of the total mass of each componert and of the total volume of the syatem. Therefore summing equations (1) for all parts of the ayatem we have:

$$
\begin{align*}
& \ell d \mathrm{D} \eta^{\prime}-p^{\prime} d \mathrm{D} v^{\prime}+\mu_{1}^{\prime} d \mathrm{D} m_{1}^{\prime} \quad+\mu_{g}^{\prime} d \mathrm{D} m_{g}^{\prime} \\
& +\left(\mu_{n}^{\prime}+a_{n} V^{\prime}\right) d D m_{n}^{\prime} \quad .+\left(\mu_{n}^{\prime}+a_{n} V^{\prime}\right) d D m_{a^{\prime}}^{\prime} \\
& +t^{0} d \mathrm{D}^{\prime \prime}-\boldsymbol{p}^{*} d \mathrm{D} v^{\prime \prime}+\mu_{1}{ }^{\prime \prime} d \mathrm{D} \boldsymbol{v}_{1}{ }^{\prime \prime} \quad-+\mu_{0}{ }^{\prime \prime} d \mathrm{D} m_{n}{ }^{\prime \prime} \\
& +\left(\mu_{n}{ }^{\prime \prime}+\mathrm{o}_{n} \mathrm{~V}^{\prime}\right) d \mathrm{D} m_{h}{ }^{\prime \prime} \ldots+\left(\mu_{n}{ }^{\prime \prime}+a_{n} \mathbf{V}^{\prime \prime}\right) d \mathrm{D} m_{n}{ }^{\prime \prime} . ., \text { etc } \geqq 0 \text {. } \tag{3}
\end{align*}
$$

for all vanations which satisfy the equations of condition, viz. -

$$
\begin{equation*}
\Sigma d \mathrm{D} \eta=0, \quad \Sigma d \mathrm{D} v=0, \quad \Sigma d \mathrm{D} m_{1}=0 . . \Sigma d \mathrm{D} m_{n}=0 \tag{4}
\end{equation*}
$$

It is therefore necessary and sufficient for equilibrium that

$$
\begin{align*}
& t^{\prime}=t^{\prime \prime} \quad=\boldsymbol{t}^{\prime \prime} \tag{5}\\
& \boldsymbol{p}^{\prime}=\boldsymbol{p}^{\prime \prime} \quad . \quad=\boldsymbol{p}^{\boldsymbol{*}} \tag{6}\\
& \left.\begin{array}{ll}
\mu_{1}^{\prime}=\mu_{1}^{\prime \prime} & - \\
\mu_{0}^{\prime}=\mu_{1}{ }^{\prime \prime} & -\mu_{0}{ }^{\prime \prime}
\end{array}\right\} \tag{7}\\
& \mu_{n}^{\prime}+a_{n} V^{\prime}=\mu_{n}^{\prime \prime}+a_{n} V^{\prime \prime} \ldots \Rightarrow \mu_{n}{ }^{\prime}+a_{h} V^{v} \\
& \left.\mu_{n}^{\prime}+a_{n} V^{\prime}=\mu_{n}^{\prime \prime}+a_{n} V^{\prime \prime} \quad .-\mu_{n}{ }^{\prime \prime} \mid a_{n} V^{\prime}\right\} . \tag{8}
\end{align*}
$$

Thus for every part of the aystem we have..-

$$
\begin{equation*}
t=\mathrm{T} ; \quad p=\mathbf{P}, \quad \mu_{1} \cong \mathrm{M}_{1}, \text { eto } ; \quad\left(\mu_{\Lambda}+a_{\Lambda} V\right) \cong \mathrm{M}_{\boldsymbol{N}} \text { eto, } \tag{9}
\end{equation*}
$$

in which the equality applies to actual components of a given portion, the inequality to possible components
The relation between the potentisls of the substances taken as components, when aome osa be formed out of others, can be obtaned by the general method of Gibba.* We need only consider the oase in which a neutral component S_{0} is formed from the ions $\mathbb{S}_{\lambda}, \mathcal{S}_{3}, \mathbb{S}_{k}$, etc., according to the equation,

$$
\begin{equation*}
a \mathrm{~S}_{\mathrm{a}}=h \mathrm{~S}_{\mathrm{h}}+j \mathrm{~S}_{\mathrm{g}}+k \mathrm{~S}_{\mathrm{k}} \ldots \tag{10}
\end{equation*}
$$

The condition of the constancy of the total mass of the system is now satisfied by variations which are in accord with the equation:

$$
\begin{gather*}
\Sigma d D m_{a} . S_{a}-\Sigma \Sigma d D_{m_{h}} . S_{h}-\Sigma d m_{m_{1}} . S_{1} \ldots-0, \tag{11}\\
\text {. "Sclentifo Papers," vol. } 1, \text { p. } \sigma 9 .
\end{gather*}
$$

in addition to those whioh come within the equations of condition (4). For such varistions,

$$
\begin{align*}
& \left.+\left(\mu_{j}^{\prime}+a_{j} V^{\prime}\right) d \mathrm{D} m_{j}^{\prime}+\left(\mu_{j}^{\prime \prime}+a_{j} V^{\prime \prime}\right) d \mathrm{D}\right) m_{j}^{\prime \prime} \quad \text {, oto }, \geqq 0 . \tag{12}
\end{align*}
$$

Since equilibrium must still be masintained when varations come within' conditions (4),

$$
\begin{aligned}
\mu_{a}^{\prime}-\mu_{a^{\prime \prime}} \cdot & =M_{a} \\
\left(\mu_{h}^{\prime}+a_{h} V^{\prime}\right) & =\left(\mu_{k}^{\prime \prime}+a_{A} V^{\prime \prime}\right) \ldots \\
\left(\mu_{j}^{\prime}+a_{y} V^{\prime}\right) & =\left(\mu_{j}^{\prime \prime}+a_{y} V^{\prime \prime}\right) . \quad
\end{aligned}
$$

as before, therefore (12) requires that

$$
\begin{equation*}
\mathrm{M}_{\mathbf{\alpha}} \Sigma d \mathrm{D} m_{4}+\mathrm{M}_{\mathbf{L}} \Sigma d \mathrm{D} m_{\mathrm{n}}+\mathrm{M}_{\boldsymbol{s}} \Sigma d \mathrm{D}_{m_{3}} \ldots=0 \tag{13}
\end{equation*}
$$

Hence by companson with (10) and (11)

$$
\begin{equation*}
a M_{\mathbf{a}}=h \mathrm{M}_{\mathbf{\lambda}}+\jmath \mathrm{M}_{j} \ldots \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
a \mu_{a^{\prime}}^{\prime}=h\left(\mu_{n}^{\prime}+a_{n} V^{\prime}\right)+\jmath\left(\mu_{j}^{\prime}+a_{g} V^{\prime}\right) . \tag{15}
\end{equation*}
$$

Since S_{u} is electricully neutral,

$$
a_{n} h \vdash a_{\mu} \jmath+a_{k} k=0
$$

therefore

$$
\begin{equation*}
a \mu_{a}^{\prime}=h \mu_{\Delta}^{\prime}+j \mu_{j}^{\prime}+k \mu_{k}^{\prime}, \tag{16}
\end{equation*}
$$

i.e. in every part of the mass the ohemucal potential of a noutral salt is related to the chemical potentials of its ions by an equation sumular to that which relater the masses of these substances.

Condrtions of Neutraluty.

Hitherto, no condition with regard to the electrical neutrality of the system, or any part of 1 t, hes been made. We wall now portulate that the system is neutral as a whole This condition is fulfilled by all systame whoh can be handled prectually. The different phases of which such a syatem in composed may contan an ercess of one or other kind of electricity, in fact, if the phases aro at defferent electrical potentials, a corresponding separation of eleotricities must necessarly occur.

It has been shown that for osah ion the quantity $\mu+a V_{\text {is constant throughout }}$ those parts of the system in which it is an actual component. It follows that $d \mu+a d V=0$ for any part in which the state of the mase varies continuously. In a homogeneons mass μ is constant, hence V is also constant. The charge of any phase must therefore be locsted in the non-homogeneous parta in the
vivinity of surfaces of discontinuty If the mass of the system is large on comparison with the mass of the non-homogeneous portions near the interfacea, the oontribution of these to the total energy, entropy, eto, may be neglected. Under these conditions it is only necessary to consider the conditions of equilibrium of neutral pheses in contact with each other.

For a homogeneous phase we may write (1) in the form

$$
\begin{equation*}
d e=t d \eta-p d v+\mu_{1} d m_{1} \cdots+\left(\mu_{n}+a_{n} V\right) d m_{n} . \mid\left(\mu_{n} \mid u_{n} V\right) d m_{n} . \tag{17}
\end{equation*}
$$

By integration

$$
\begin{equation*}
e=t \eta-p v+\mu_{1} m_{1}, .+\left(\mu_{A}+a_{n} V\right) m_{n} . \quad \mid-\left(\mu_{n} \mid-a_{n} V\right) m_{n} \ldots . \tag{18}
\end{equation*}
$$

But since the mass 18 neutral

$$
\begin{equation*}
a_{n} m_{n}-f a_{j} m_{y} \quad \ldots+a_{n} m_{n}=0 \text {. } \tag{19}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
e=l \eta-p v+\mu_{1} m_{1} \ldots+\mu_{0} m_{1}+. .+\mu_{2} m_{n} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta=\theta-\emptyset \eta+p v=\mu_{1} m_{1} \ldots+\mu_{0} m_{0} \ldots+\mu_{n} m_{n} . \tag{21}
\end{equation*}
$$

Differentiating (20) generally and comparing with (17), we obtain for neutral inasses the usual equation.

$$
\begin{equation*}
n d t-v d p+m_{1} d \mu_{1} \ldots+n_{n} d \mu_{n} \ldots+m_{n} d \mu_{n}=0 . \tag{22}
\end{equation*}
$$

Co-Exestent Phases

In (17) there are $2 n+6$ variable quantities, including the electrical potential Between these varnsbles there are $n+2$ difforntial equations of the type $\frac{\partial \eta}{\partial e}=t$, which together with (17) ruake ($n+3$) known relations There are also in each phase one equation (22) and one equation (19) expressing electrical neutrality. There are thus $(n+1)$ independent variables in ench phase

In r phases there are $(n+1) r$ independent variables, but one electrical potential may be left unspecified without sffecting the conditions of equilibrium, leaning $(n+1) r-1$ to be determined. The conditions of equilibrium between the phases require $(n+2)(r-1)$ equations $(5)-(8)$ between these variables, henee the number of degrees of freedom of the whole system u.

$$
\begin{equation*}
F=(n+1) r-1-(n+2)(r-1)=n-r+1 \tag{23}
\end{equation*}
$$

In the application of the phase rule to syatems contaning electrolytes, the number of components taken, having regard to the condition of electrioal neutrality, in lese by one than the number appearing in the above equations. If the
number of components reskoned in the first way bo $N, N=n-1$ and the number of degrees of freedom $18 \mathrm{~N}-\gamma+2 .{ }^{*}$

We shall now consider the varisbility of aystems of co-enstent phates when all components are not actual components of each.

In the first place, auppose that all parts of phases are in contact with each other. Then, for eaoh component musing in any phase, there is one independently vanable quantity less in that phase But there is also one equation missing ml (7) or (8), so that the number of degrees of freedom is not altered

If, however, all pairs of phases are not in contact with each other, the number of degrees of freedom may be greater Consider the case of phase I in contact with two others, II and III, which are not in contact with each other. If every component is an actual component of each phase, every equation determining the equilibrium between I and II and between I and III involves a simular equation between II and III and there could be no more equations if II and III were in contact with each other Hence, if I is in equslibrium with II and with III, these must be in equilibrium with each other.

But if certain components are present in II and III but mosong in I, this is not the case For each component misaing in any phase there is one undependently variable quantity leas in that phase, but for every component misning in the inddle phase there are two equations missing Hence the number of degrees of froedom is increased by one for each component present in two phases which arc not in contact and absent from the intervening phase.

However, in certan cases the equibrium of a system in such a varied atate is unstable. Thus, if phase III can bs formed out of the matter of phases I and II, the conditions of equilibrium with regard to the formation of a new phase may not be fulfilled with respect to it. Applyng the condition of equilibrium In the form $(\delta \zeta)_{1, ~} \underline{\sum} 0$ for all posssble changes (where ζ is the free energy of the whole system), it will be seen that if the free energy would be lowered by the formation of a mass of phase III from phases I and II, the syatem is not in a
*In as recent paper on "The Application of the Phase Rule to Galvenio Oalls" ('J Amer Cheme Soc ', vol 40, p 2211 (1024)), J A. Beattie hes oome to the oonolualon that for each surfoes oontaining a P.D, in a ayatom the number of degreew of freedom in increanad by ualty. It will be seen from the sbove that, provided componente are reckoned with reapeot to the condition of electrioel noutrality, the number of degreen of freedom in the reme es in - aimillar ayatem of non-eleutrolytes.

Thus onolusion may be enpressed diferently by naying that whilo the r sleetrinal potentals pronide ($r-1$) extris vanables dotermining equilibrium, the number of componenta reckoned is almo greater by one, giving ($r-1$) now relations.

The oxtra degrees of freedom observed th the galvanio oell in due to another comm, an will appear from the condderetione whioh follow.
state of true equilibrium. But on sccount of differences between the properties of minute quantities of substances and the properties of large masses of the same composition, the condition ($\delta()_{\text {t }} \geqslant 0$ may be fulilled for infinteamal changes and the system will remain in a state of unstable equibibrim.

As aoon as a mass of phase II is formed in contact with II, the extra degree of freedom gained by their separation is lost.

Equilırium in Galvanuc Cells.

Cases of equilibrium of this type are met with in galvance cells. Thus in a system consisting of metallic silver and enc and an aqueous solution of sulver and zunc mitrates, there are five componenta, viz. --sulver ions, zino ions, nitrate ions, electrons and water. In the absence of a vapour phase there are three phases, hence if all phases are in contact, the number of degrees of freedom is three. Thus if the temperature, pressure and concentration of silver ions are fixed, the concentration of einc ions cannot be vared, which 18 in accordance with experience. But if the zinc and silver are not in contact, there is no condition of equilibrium of electrons between the two metals to be astasied, and an extra degree of freedom 18 gamed. However, in a vaned state which would not be in equilibnum if the zino and silver were in contact, the equilibrium is unstable, for the free energy of the system would be lowered by the formation of a quantity of alvar from the two phases einc and solation.* It is possoble, however, that the formation of an infinitesimally small quantity of alver would raise the total free energy, so that an infiniteamelly amall dasplacement would not be sufficient to destroy the equilhbrium. A large displacement, causing the formation of alver in quantities having the properties of the masaive metal (or the presence of impunties on the surface of the zinc oausing local galvanic action), would be sufficient to do so.
The unstable equilibrium un suoh a galvanic cell can also be maintaned when the metals are in contact outside the solution by raising the electrical potential of one of the metals between the parta in conteot with the solution and ita junction with the other metal by an amount equal and opposite to the sum of the three potential differences taken round the circuit. This amounta to the introduotion of a new variable quantity, which makes equaibrium possible.

[^31]
Summary.

The method employed by Gibbs in his memoir, 'On the Equilibrium of Heterogeneoun Substances,' is extended to aystems containing electrolytes by the introduction of another variable, the eleotrical potential. The general condition of equilibrium are obtained and a modified form of the phase rule for neutral masses contanning electrolytes is given and its application to galvanic cella discussed.

An Investigation of the Effects of Variations in the Rudration Factor on the Efficienoy of Dewar Veasels.

By Brrtram Lambert, M.a , Fellow of Merton College, Oxford, and Kennete Townend Hahtley, B.A , B Sc, Merton College, Oxford (Communicated by Prof. F. Soddy, F R S.—Recoived Maroh 20, 1926)

Durng the course of sorme work on Dewar vessels, which was carred ont by one of us (B L.) and S F Gates for the Oxygen Research Committee, a ouriou anomaly was noticed in the behaviour of an all-metal Dewar vessel. This was a commerolal copper vessel of the usual sphencal type with a long narrow neak of an alloy of low hest-conductivity, its capsaty wes two hitres The rate of evaporation of liquid oxygen stored in thes vessel was approximstely double that of liquid orygen storod in a sulvered glass flask of hike capacity; but, when equal weughts of hot water were put into each of the vessels, it was found that the rate of cooling of the water in the copper vessel was ectually alower than in the silvered glaes veesel It appeared, then, that the copper vessel whe only half as efficient as a silvered glass one of liks capacoty for the storage of liquid orygen, whereas ite efficiency for the storage of hot water was greater than that of the silvered glass vessel. Tha investigation arose oat of a desire to explain tho apparent anomaly.
Previous work on the factors which unfluence the efficienay of Dewar vessels has been carried out by Dewar (' Proc. Roy. Inst,' 1898, p. 816), Banneitz, Hhenn and Kurze ('Ans d, Phys,' 1920, vol. 61, p. 113), and Brigge (' Proo. Roy Soo. Edin.,' 1920, vol, b1, p. 97). These investigations have dealt with the effloienoy of Dewar vessela conaidered only as oontaners for liquid air or orygen, and the above-mentioned anomaly has therefore not bean notioed.

Brigge (loo. oit.) worked with vessels with the vacuum-adjacent surfaces of polished gildeng metel (95 per cent. copper). From his results on the rates of evaporation of liquid oxygen from these vessels, he calculated a value for the emisaivity of the poished aurfaces which was conaderably greater than that anticipated from the usually accepted value for copper. Thus observation is intimately connented with that of Lambert and Gates and will be referred to later.

The passage of heat to or from the interior of a Dewar vessel is brought about chiefly by (a) conduction through the residual gas in the vacuous space; (b) radistion across the vacuous space, (c) conduction along the neck. Convecthon effects in the realdual gas in the vacuous space are of negligble importance in a well-evacuated vessal, while convection effecta in the apace above the liquid stored in the vessel are only of importance when open Dewar vessels are used for the atorage of hot liquids Another, but uaually small, transfer of heat cocurs by radiation through the neck aperture.
This work, which is essentially a study of the effects of vanations in the radistion feotor (b) above) on the efficiency of Dewar vessels, had neoessarily to be oarried out under such oonditions that the effects of the other factors were the aame, and unalterable, in each senes of experiments This was effeoted by using vessels of the same are, shape and matenal, and differing only in the nature of the vacuum-adjacent films and aurfaces, by connecting together the vacaum apaces of the vessela to be compared with wide bore tubing and eo enmuring that the premsure was identical on all of them; by keeping the external temperature of all the vessels constant throughout the expenments.
In order to get reliable and repestable compansons of the effeots of different reflecting vacoum-adjecent surfaces, it was found necessary to oonstruct a speoinl type of glass Dewar vessel, of anch a nature that the inner and outer veasela could be taken apart in order to attach to the glase and polish the dufferent reflecting surfaces used. Muoh experience and practioe were necessary before the teohpique was perfeoted, and it became posaible to make a series of vessels suoh that, after being used to give a set of resulte, they could be taken down, repolinhed and reassembled to give the same reaults. This was regaried as a necemsary ariterion of the work.

These apecial vessels (shown in the figure) consusted emsentially of two concentrio glase oylinders "A" and "B," connected together at the neck by a 4 cm .long, well-ground and accurately fitting glass junction "C." Each vessel was sbout 30 ems. high, the oapacity of the inner vessel (below the ground joint) being about 250 e.e., ita diameter 9 cms , and the thickness of its walls 1 mm .

Each outer vessel, had, st the bottom, an exit tube " D " of internal dameter 10 mms.

A frame was constracted to hold four of these vessels with their exit tubes sealed into one common evacuating main tube " \mathcal{E}," as shown in the figure. The frame and its contents could be clamped firmly in a large constant tempersture water bath, so that the Dewar vessels were immersed up to the ground joints. The bath was effiodently atirred and maintaned throughout the experimente at a temperature of $18^{\circ} \mathrm{C}$. $\left(\pm 001^{\circ} \mathrm{C}\right.$.).

Sealed to this system, outande the bath, were two bulbs " F " and " G," each contanning about 40 o.cs, of very efficient, " steam-activated" palm-nut shall oharcoal in the form of amall grenules. One of these charooal bulbe, " F ," wat connected by a constricted tube so that it could be sealed off from the aystem when requered. The whole system was oonnected up, through another constricted tabe " H ," with a meroury pump, a large tube containing phosphorus pentoxide and a vessel containing a aupply of pure dry orygen. With the exoeption of the constricted tubes nocessary for sealing-off purposes, all connecting tabing was of an internal dismeter not less than 10 mms When evaoustion was completed, and the apparatus ready for use, there were no constrioted connections betwean any parte of the ayotem.

The following is s brief description of the method of experiment: Four (in some oases three) vessels, with reflecting surfaces prepared, wers assembled as
shown in the figure, the ground jointa being first thinly lubncated with a heavy grease made from vasclene and rubber, and the parta brought into optical contact with each other. The system was thon evacuated hy means of an automatic Sprengel pump while the balbs " F " and " G " were heated by steam jackets. After evaouation bad been carriod as far as possible-an operation spread over 00 to 60 hours-the system was "washed out" with pure dry orygen (made by electrolyess of baryta solution and dred for speeral days over pure phosphorus pentoxide). The process of evacuation and washing out with oxygen was repeated, and the system finally evacuated as porfectly an poasible while the bulbs "F" and " G " were heated by steam jaokets While these bulbs were still heated, the mercury pump and oxygen supply were sealed off from the system at " \mathbf{H} "

The oharcoal bulb " F," after being cooled in hquid ar for acveral hours, whule " \mathbf{G} " was mantained at $100^{\circ} \mathrm{C}$., was sealed off. The remanning charcoal bulb " G " was aubsequently immersed in liquid oxygen, and kept at this steady temperature for several hours before, and for the whole time during which, the behaviour of the Dewar vessels was under investigation.
While the aystem was in this controlled condition, the rate of evaporation of liquid oxygen from each of the Dewar vessels was measured and also the rates of cooling of known weights of hot water stored in the vessels All the valups obtained were repeated and checked over a period, for each expenment, of 2 to 3 days.

The glass surfaces of the apparstus could not be heated durng evacuation, but it was antioipatod that repeated slow evacuation, washung out with pure dry oxygen, and long standing in contact with pure phosphorus pentoride, would result in producing a sufficiently steady residual pressure mside the syotem. This antierpation proved to be justified, ennce there was no alteration in the rate of evaporation of liquid oxygen from any of the Dewar vensela after the apparatus had been allowed to stand untouched for several days, and also sfter hot water had been kept in the vessels for long penods. This proved also that the cooled charcoal in " G " was amply sufficient to take up any vapour given off by the grease used in the lubrication of the ground jointa, and any gas given up by the glass and inetal surfaoes during the course of the experiment. The prensure factor could, then, be considered as controlled at a definte constant value throughout bay one expenment. Since the vessels were of the same size, shape and materal, the neck conduotivity factor was identioal in all the verself.

It was connidered deairable to keep the cvacuated syttem as aimple as possable,
so no prassure gauge was meluded in it. For the purpose of this invertigation it was necossary only that the prossure should remain unaltered during the course of any one experiment From quautitative work on pressure reduotions produced in glass apparatus of lnown volume, by known amounts of the palm-aut oharcoal cooled to the temperature of liquid oxygen, it is aalculated that the readual preasure in the aystem could not be higher than 00001 mm . of mercury during the course ol any expenment.

The rates of evaporation of liquid oxygen were measured as followa :All the Dewar vossels of the series under anvestigation were filled to a level just below the ground junotion with hquid oxygen, and fitted with rubber stoppers provided whth esit tubes. Each exit tube was connected, for ehort penods of tume, to a callbrated gas meter, and the rates of evolution of gas measured untul these rates had settled down to steady values. The gas evolved by eaoh vessel was then measured over ahort and long periods (up to two hours), and the average rate of evolution of gas was calculated for each vessel It was found that ance a vessel had settled dowu to show a steady rate of evaporation of liquid oyxgen, this rate remained unaltered for long penods. The rates of evaporation so determined are exprossed in grammes of oxygen lost by evaporation from each vessel in 24 hours Sunce only comparatuve values were requred, correction for temperature and pressure was not considered necessary, and the volumes of gas were converted (appromimately) into gramues per 24 hours by maltiplyng by the factor $32 \times 24 / 22 \cdot 4$
The rates of cooling of hot water atored in the Dewar vessela were memsured as follows:-A knuwn weight of hot water was poured into each vessel and the vessels were then stoppered to prevent possibly confusing convection efiecta in the apace above the hquids. The temperature of the water in each vessel was taken from time to time and cooling curves were drawn. From these curvce, and the known weight of water contained in each vessel, values were calculated showing the loss of heat from each vessel in callones per hour over given ranges of ternperature change.

Typical experimental resulta are given under series A, B, C and D below .-

> Series "A."

The original experiment of Lambert and Gates with the two-litre oopper and aulvered glass vessels was repested under striotly comparable condtions by the method given sbove, with the veasels conneoted together by wide-bore tubing.

The only factora governing the tranafer of heat from the outer to the inner vessels which were not identical were, therefore, the radiation factore and the near conduction factors. The following results were ohtamed :-

'	Rato of evaporation of liquid orygen in gron / 24 hour	Reto of cooling of hot water in caloriea per hour, over the homp range $75^{\circ}-45^{\circ} \mathrm{C}$
Oopper veseal Chominally silvored glaga voseel	$\begin{aligned} & 800 \\ & 340 \end{aligned}$	$\begin{array}{r} 930 \\ 1100 \end{array}$

These results confirm the original observation, and it is olear that any erplanation of the curious difference in behaviour must be sought for in the radiation factor, annce the effects of the neek conduction Eactors (calculable from the work of Banneitz, Rhein and Kurze (hoc at), could not possibly account for the observed difierences in behaviour.

$$
\text { Serves " } B \text { " }
$$

The expenments in this series wero carned out in order to compare the effiouencies of three Dewar vessels of the same aize, shape and material, one with the vacuum-adjacent surface of the inner vessel only silvered, one with the vacounadjacent surface of the outer vessel only alvered, and one with both these surfaces sulvered. Thes alvenng was done chemically

In the arrliar experiments in this series a fourth vessel with both vacuumedjecent surfaces unalvered was included, but the rate of evaporation from this vessel was so rapid that it did not settle down to a steady value before the vessel whe empty. A trustworthy comparison was thus impossble, and the plain glass vessel was leit out in the later experiments of this series. It was found neceseary to use much larger vessela in order to make a satisfactory comparisou of the effliciencies of silvered and unsilvered Dewar vessels, and this is done in series "C" below.

All the known methods of chemcally salvening glass surfaces were carefully tried and the most satisfactory procoss was found to be that of Brashear as described in "Descussion on the Maling of Refleoting Surtaces"' ('Phys, and Opt. Soc.,' 1920) This process involves the reduction, at $19^{\circ} \mathrm{C}$, of an ammoniagal alver solation with a solution contaning cane sugar, nitric aoid and alcohol. Daring the later atages of the prooases the uirfere undergoing silvenng was gently rubbed with cotton wool in
order to prevent the precipitate (which is alwaye produced) from settling on the silver film and causing "pinholes" in it. The anlvered surfaceas were washed in turn with distilled water, alcohol and ether and wese dried immediately at $100^{\circ} \mathrm{C}$. In the earlier expenmente in thus series it was necesanry to polish these salver filma with chamose leather and rouge in order to remove the "bloom" from them, but it became posenible with experience and the use of "aged" sugar solution, to proluce brilliant nurfaces free from "pinholes" and needing no potirhing whatever

The following are typical results obtained in this senes :-

-	Hete ol ovaporstion of lliould oxytion in grme / 24 hourt.	Rale of cooling of hot wator in aaln, hour over lamp. range $70^{\circ}-50^{\circ}$ (
(a) Veouum-adjucent surface of outor veasel only allverud (b) Vacuum-adjenont surface of inner vemel only alvered (c) Vacuum-adjuont aurfeoes of both vemselu ulvered	279	1040
	199	1040
	178	1940

These atriking and unexpected result, which were repeated and cheokod over a period of two days, are disoussed later. Separate experiments, with freshly ailvered surfacen, afforded substantial conflrmation of the aocuraoy of the results.

$$
\text { Serres " } 0 . "
$$

The experiments of this senes were carried out in order to compare the efficiencies of two glass Dewar versels of the same shape and size, one with both vacuum-adjacent surfaces silvered and the other unsulvered. As pointed out above, this comparison could not be satisfactorily carried out with the amall apecial vessels used in Senes "B" (and "D"). Two apherical glase Dewar vessels were taken, each having a capacity of two litres, One of these hed the vacuum-adjacent surfaces chemically silvered, but the salvered surfaces could not be pobahed or rubbed with cotton wool dunng deposition of the silver. The experiments affori, however, a comparison appliosble ta the average ohamically silvered and unalvered conumercial Dewar vessals. The flaska were connected together with wide-bore tubing and the method of expenment wes exaotly the aame as in the other aenes. The factors goyerning the transler of heat from the inner vessels were therefore identical in the two flaske with the one excoption of ' the radation faotor. The rates of evaporation of liquid orygen and of cooling
of hot water were determined and repeated several timer, with identical results, as follows --

It appeara that a ohemically silvered glass Dewar vessel is more than 12 times as effioient as a plang glass one of the same shape and siee for the atorage of hqud oxygen. Dewar (loc. ofl) gave a figure 74 for this companson It is very probable that our figure of 12 would be increased if the chemacally alvered surfaces had been prepared under as favourable conditions as those obtaining in the special vessels The difference between the efficiencies of the two vessels when used for the storage of hot water is very markedly less.
Series " D."

The experiments in thia senee were carried out in order to compare the effeots on the efflonencies of Dewar vessels of polished vacuum-adjacent aurfaces of differant metals The surfaces chosen for the companson were polished alver, gold, platinum, and copper. It was ongraally intended to put these polished filma on the vacuum-adjacent surfanes of both mner and outer vessels of the speoial type, but it was found imposaible to obtain satisfactonly unform polished metal films on the inner surfaces of the outer vessela, so the expermenta were done with the outer veasels of plan glass and with the inner vessels carrying the polished metal films on their vacuurn-adjacent aurfaces It 18 probable that, in these circumstances, a satisfactory comparison is obtanned, ance esch outer vessel had its vacuum-bdjacent surface mantaned at $18^{\circ} \mathrm{C}$, while each inner vesael had ita apecial vacuum-adjecent surface kept at the temperature of the liquid stored within it during the erpenment. Again, from the results obtained in Series " B," it is clear that the efficiency of a Dewar vessel with the vacuuruadjacent surfaoe of the inner (oontaning) vessel alvered and polished is not seriously different in efficiency from a like vesael with both vaoulum-adjuoent: surfaces silvered and polunhed.

Much time was apent in examining the powsiblity of formung gold and nopper films directly on glass aurfaces, by chemical processen, and almo of electrically deporiting these metals on chemioally produced alver filma, but the retailts were
very unastisfactory. It was finally deaded that really reliable and comparable results could only be obtained by conting theglasa surfaces with filme of platinum, osuaing these to adhere firmly to the glass, and then electrically depositing olver, gold and copper on these platinum surfeces. The inner vessels were evenly painted on their outride surfaces with a thin film of "liquid platinum" varnish made by Mesers. Johnson and Matthey, London. This film was allowed to dry thoroughly in a dust-free atmosphere at the ordnary temperature. Each vessel was then suspended in an electrio tabe furnaoe which was gradually raised to the temperature at which the glass began to soften : at this point the ourrent was immeduately turned off and the furnace allowed to cool slowly to the ordinary temperature before the vessel was removed In this way an even, amooth platinum film was produced and made to adhere to the glass sufficiently firmly to withatand vigorous polashing with rouge and chamoss leather. The whole operation was repeated so as to give an adherent platinum film sufficiently theck and even to form a satisfactory base for olectroplating. After this operation it was necessary to regrind the joints (" C " in the figure).
The platunsed surface of one inner vessel was polished as perfectly as posable, and the surfaces of the three other platimised inner vessels were polubed and eleotroplated with alver, oopper and gold respectively. Silver and gold were deposited from oyande bathe and copper from a sulphate bath. Vary amall current densities (about 50 millampares per sq. decimetre) were used in all cases, so as to produce a fine-grain deposet whuch could be poliabed with chamois leather and rouge. The polishing proved to be a long and labonious procese, but eventually it was carred out so satisfectorly that results which were obtained with the set of vessels could be definitely repested after taloing down the vessels, repoluhing and reassembling.
The following are typral resulta in this series:-

	Role al oveporation of Hyold oxypon ta grma / $\boldsymbol{4}$ hous.	Rete of vooling of hot wator In onla/motro ovar temp ragge $70^{\circ}-60^{\circ} \mathrm{O}$
Inner veeel with poliched ailver eurince	440	2000
Innor veeol with polished gold nurinos...	Bto	2000
Inner vemel with polishod coppor surfico	40	2400
Inner veseal with poliched platinum eufleco	840	2900

These results afford a definite confirmation of the peauliar behaviour of Dewar vessels with the vacnum-adjacent surfaces of polished copper. They are discussod below.

Discussion.

The pasange of heat by radiation to or from the interior of a Dewar vessel may be investigated (vide ' Report of Orygen Research Committee,' 1923) from the theoretical standpoint as followa :-

Stefan's Lew expresses the rate of transfer of heat by radaation from one black body to another as follows -

$$
\begin{equation*}
Q=K\left(T_{1}^{4}-T_{\mathbf{2}}^{4}\right), \tag{1}
\end{equation*}
$$

where Q is the heat in calories per second, per square centimetre of surface; T_{1} and T_{1} are the absolute temperatures of the bodies, and $K_{1 s}$ is constant whoso value is taken as 1.98×10^{-11}.

For bodies whioh are grey-a e., which emit a constant fraction of the energy which a black body would radate on the various wave-lengthe-the expression 1s modified thas:-

$$
\begin{equation*}
\mathrm{Q}=\mathrm{KB}\left(\mathrm{~T}_{\mathbf{1}}^{4}-\mathrm{T}_{\mathbf{2}}^{4}\right), \tag{2}
\end{equation*}
$$

where \mathbf{B} depends on the emiasivity of the grey surfaces. The value of \mathbf{B} can be obtained from that of the omsesivity as follows -
Let \mathbf{E} be the emusaivity (the ratio between the heat emitted by unit area of the surface to that emitted by unit area of a black body in the same circumstances) of the (grey) radiating aurfaces, in this case the vacuum adjacent surfaces of a Dewar vessel If X is the emount of heat radasted by unit area of a black body, then the amount radiated by unit area of the surface under consideration is XE. This radiation falls on the opposite sarface, and a part of it, $\mathrm{XE}(\mathrm{E})$, will be absorbed, the remainder, $\mathrm{XE}(1-\mathrm{F})$, is reflected back again to the original surface, where $\mathrm{XE}(1-\mathrm{E})(\mathrm{l}-\mathrm{E})$ is agaun refleoted, and XE ($1-E$) E re-absorbed. The reflected portion falls once more on the receiver where $\mathrm{XE}(1-\mathrm{E})(\mathrm{l}-\mathrm{E}) \mathrm{E}$ is absorbed, so that the net heat trangef by radiation from one surface to the other is given by the sum of the geometric progression :-

$$
X\left[E^{\mathbf{1}}+\mathrm{E}^{\mathbf{2}}(\mathbf{1}-E)^{\mathbf{a}}+\mathbf{E}^{\mathbf{a}}(\mathbf{1}-E)^{4}+. \quad .\right]
$$

which is -

$$
\begin{equation*}
\frac{X E^{2}}{1-\left(1-E^{2}\right)}=\frac{X E}{2-E} . \tag{3}
\end{equation*}
$$

It has been asaumed that the heat transferred between unit areas of two black bodres is X, and therefore $\frac{E}{2-E}$ is the faotor B, and equation (2) vOL. OXII.-A.
representing the heat transfer between unit areas of two grey bodies may be wntten .-

$$
\begin{equation*}
Q=K \frac{E}{2-E}\left(T_{1}^{4}-T_{2}{ }^{4}\right) \tag{4}
\end{equation*}
$$

Thus argument only holds good if the two surfaces have the same emussivity \mathbf{E}. If they are atill grey, but have dufferent emissivities E and E^{\prime}, an argument similar to the above leads to the series. -

$$
\mathbf{X}\left[E E^{\prime}+E E^{\prime}(1-E)\left(1-\mathbf{E}^{\prime}\right)+E E^{\prime}(1-E)^{2}\left(1-E^{\prime} \mathbf{V}^{2} \quad .\right],\right.
$$

whence.-

$$
\begin{equation*}
\mathbf{H}=\frac{\mathbf{E E}^{\prime}}{\mathbf{E}+\mathrm{E}^{\prime}-\mathrm{EE}^{\prime}} . \tag{5}
\end{equation*}
$$

Now Maxwell's theory of the relationshupa between the electrical and optical properties of metala requres that the emisavity of a metal surface, for a given wave-length, shall be proportional to the square root of the sbocolute temperature, and this has been expenmentally confirmed by Haagenand Rubens (' Ann. d. Phys,' 1903, vol. 11, p 873, 'Sitz Ber Preuss Akad,' 1909, vol. 16, and 1910, vol 23) Thus if E is the emissivity of a given surface for room temperature ($291^{\circ} \mathrm{A}$) and F^{\prime} the emisavily at the temperature of hquid oxygen ($91^{\circ} \mathrm{A}$)'

$$
E^{\prime}=\sqrt{\frac{91}{291}} \mathrm{E}
$$

Substituting this value in (5) gives a value for $B=F / 28-E$. In the case under consideration, however, thero are probably so many other interfenng factors that this refinement may be ignored, further, since E for metals as suall, we nay write $\mathrm{B}=\mathrm{E} / 2$ without serious error when both reflecting aurfaces are the same, and are metallic
It has been shown above how tempersture affecta the emiservity of a aurface, this value is also affected by the wave-length of the radiation, and this in turn depende on the temperature of the radator. The wave-length λ_{m}, on which the maximum energy will be raduated by a black body, at any temperature, is given by Wien's law, which may be expressed in the form .-

$$
\lambda_{m}=\frac{K}{\mathbf{T}}
$$

where \mathbf{T} is the absolute temperature of the budy and \mathbf{K} is a constant equal to about 2900 Thus for the temperatures concerned in this work-those of hot water, the constant temperature bath andliquid orygen- $370^{\circ}, 291^{\circ}$, and $91^{\circ} \mathrm{A}$., the corresponding wave-lengths are $8 \mu, 10 \mu$ and 32μ. Haagen and Rubens (loc, cut), have shown that the metals have almast constant emiasivities over a range of wave-lengths 4μ to 20μ. Beyond this range thero is no expenmental
evidence, but it has been assumed that this constancy was maintanned over the whole range of long waves concerned in this work- $e, 8 \mu$ to 32μ The values obtaned in this work with polshed copper surfaces do not justify this general assumption

Before the results obtained in seres " B" and " D" can be considered in the light of the above theoretical deductions, the values obtained must be adjusted to allow for the lusses due to neck conduction and gas conduction across the vacuous space As explaned earlier, these factors were the same for all the vessels in each rentes

Banneitz, Rhein and Kurze (loc. cit) have shown that the rate of evaporation of liquid oxygon due to the neck conduction may be taken as 30 grammes per 24 hours per square contimetre cross section of glass in the arek In all the special vessels the diameter of the neck was 90 mm , and the thickness of the glasal 1 mm , so that the cross séction of glase in the neck is nearly 1 sq cm , and the rate of evaporation due to neck conduction may be taken as 30 grms per 24 hours.

A method of calculating the rate of evaporation of liquid oxygen due to the conductivity of the gas in the vacuum space 18 given by Sodlly and Berry (' Koy. Soc. Proc ,' A, 1909, vol. 83, p 254, and 1911, A, vol 84, p 576, and Bnggs (loc. at)). Assuming the residual pressure to be about 0.0001 mm of mercury (see p 140), the rato of evaporation from this catuse would amount to 24 grma. per 24 hours Hence the appronmate total rate of evaporation due to causea other than radiation 18 estimated as 54 grims per 24 hours for each vessel.

A proportionate amount must be allowed from the rates of cooling of hot water
Table I, given below, shows the results of the experimente in Series "B," and Table II thuse of the experiments in Series "D,"
(a) with the experimental values adjusted for losses by neck conduction and by gas conduction across the vacuous space,
(b) with the values for E of the vacuum-adjacent surfaces (the values for the polushed metals are those gived by Haggen and Rubens (loc cut), and that for glans is taken as 075 (Pfund, 'Astrophys. Л,' 1906, vol. 24, p 25)),
(c) with the values of the radiation factor B , calculated from those for \mathbf{E}.

Table I.

Vemel,	Adjuted rate ofEvaporation of ofIiquld onysen ingrina $/ 24$ hours	Adjunted rate of coolling of hot water in onde /hr. temp. range $70^{\circ}-$ $50^{\circ} \mathrm{C}$	Values of \mathbf{E}.		B
			Outer	Inner	
Veoupm-Edjeoent surface of outer only uivered	228	1300	0012	078	00118
Veourm-edjecent suriece of inner only ailvered Vecaum-adlacent aur	145	1300	075	0012	00118
fades of both inner and oater allvered	121	1300	0012	0012	0008

Table II

Vewal. (All outer ressela plain glaes)	Adjurted rato at evaportion ofuquad orygen in grows /24 hourn	Adjurted rate of ocoling of hot water in onds /hr temp renge $70^{\circ}-$ $50^{\circ} \mathrm{C}$.	Values of E.		B
			Inner	Outer.	
Vaouum-adjacent rurface of inner -					
(a) Polushed ailver	186	1380	0012	075	0.0119
(b) Poliched gold	198	1330	0018	078	00180
(c) Paluhed platinum	288	2230 1730	$\begin{array}{ll}0 \\ 0 & 045 \\ 0 & 016\end{array}$	078	00043
(d) Poluhed oopper	426	1730	0016	075	0.0159

From the theorctical considerations put forward above, it follows that the rate of passage of heat to or from a glass Dewar vessel with either one of the two vacuum-adjacent surfaces silvered, should be approximately double that of a like vessel with both vacuum-adjacent surfaces silvered. The results in Table I show that this is true only if we compare the rate of evaporation of liquid oxygen from a Dewar vessel having the vacuum-adjacent aurface of its outer vessel slvered with the rate from one having both vacaum-adjacent surfaces aulvered. It is quite certann, however, that a polahed alver vacuumadjacent surface on the inner (or contaner) vessel has a markedly different effect on the rate of evaporation of liquid oxygen from a mimular vasuum-adjacent wurface on the outer vessel, and thet, for the storage of liquid oxygen, a Dewar vessel with the vacuum-adjacent surface of the inner (or container) vessel silvered is not much less efficient than a sumilar vessel with both vacuum-adjacent surfaces salvered.
It is most atrikng that there should be no dufference between the efficiencies
of the three vessels when used as atorage vebsels for hot water in spite of the large differences in their efficiencles for the storage of hquid oxygen

We can offor no astasfactory explanation of these definte erperimental results. It seems to be clear, however, that the theory outhned above, of the passage of heat by radation from one surface of a Dewar vessel, must be regarded as anadequate.

Table II shows that the efficiencies of Dewar vessels with the vacuum-adjacent surfaces of their inner (or container) vessels of polished alver, gold and platinum are (qualitatively) in the order that would be expected from the known emisansties of these metale, and, further, the order 18 the same whether they are used for the storage of liquid oxygen or hot water.

Nole -That there is not a closer accordance, in these arperiments, between the efficiencies and the nominal emissivities of the vacuum-adjacent surfaces probably arises from the differences in the degrees of polish which were given to the metal films Because of the fragle nature of the vessels, all the polishing had to be done by hand, the differenceas in hardness between the three metal films make it most improbable that the degrees of polash would be the same in all cases
The behaviour of the vessel in the series with the vacuum-adjacent surface of its inner vessel of polished copper places beyond question the anomalous behaviour of polahed copper be a radasting aurface at the temperature of liqud oxygen.
The oopper film, being the hardeat of the three electro-deposited films investigated, was polahed probably to a leas extent than the others, but qualitatively the efflciency of the vessel in which it was used was for the storage of hot water. not seriously out of place in the series

The following explanation of thes anomaly is put forward.-
At ordinary and lower temperatures all the hest energy of a metal may be considered to be due to the vibration of its atoms. It appears to be generally aocepted that there 18 , for each element, a "charactenstic frequency" with which the atoms themselves vibrate A body will naturally absorb radation of this frequency very readily-i.e, for the corresponding wave-length, the value of E will be hugh, and the body will cease to behave as a grey body if raduation of thia wave-length falls upon it

In the absence of evidence to the contrary, it has hitherto been assumed that the emisalivity of a metal is constant for wave lengths exoeeding 4μ, but when the wave-lengths concerned approach the "oharactenstio frequency" this esamption obvioualy cannot hold good.

The "charactenstic frequencres" for the metale involved in this work have been calculated from different erpenmental date by various workers, and average values, with the corresponding wave-lengtha, are quoted below.

Motal	Charactariatio Frequency	Correspondling WaveLength.
Sulver	438×10^{11}	88μ
Gold	340×10^{11}	88μ
Pletinum	436×10^{11}	${ }^{68} \mu$
Copper	67×10^{4}	${ }_{45}{ }^{\mu}$

It has already been pointed out that the wave-lengthe primarily concerned in the cooling of hot water and the evaporation of hquid oxygen are about 8μ and 32μ reapectively. The latter value and the wave-length corresponding to the "characteriatio frequenoy" of copper are relatively close together, and it is therefore to be expected that the emissinty of copper at the temperature of liquid oxygen would be markedly higher for the wave-lengths which preponderate at that temperature than it in for the wave-lengths that are most important when hot water is cooling

In this, therefore, lies a reasonable explanation of the apparently anomalous behanour of a copper Dewar vessel which led to, and has been vernfied by, this work It also affords an explanation of the high emusaivity of the reffecting surfaces which Brigge (loo cut.) calculated for polstbed gilding metal from his oxpenmenta on the rate of evaporation of Lquid oxygen from a Dewar vessal made from this alloy
It follows from these results that the efficiency of the commercial copper liqud air contaners should be increased by having their polsahed vacuumadjacent surfaces of alver instead of oopper ; an experiment showed that this conclusion was justilied.
Two exactly amular 2 -litre copper Dewar vessels (one of which was used in Beries " A") were returned to the makers. These wese taken apart, and the vacuum-adjacent surfaces of one of them silver plated and pohahed, while the corresponding copper surlaces of the other were amoply repolished

The two vessels were connected together by wide-bore tubing and thair effioiencies compared undor the precise experimental conditiona used throughout this work. The factors influencing the passage of heat to or from both vessels were thus identical except for the reflecting surfaces.

The resulte obtained were as follow :-

Vereel.	Rate of evaporstion of liquid oxygen in grme / 24 hours	Rate of cooling of hot water In oaln hour over tomp range $70^{\circ}-60^{\circ} \mathrm{C}$
Veouum-adjacent arriacen of polished copper Veoulm-adjecent surfecen of polisbed alver olectroplated on copper	885	034
	458	634

Silver plating and polashing the vacuum-adjacent surfaces of a 2 -hitre copper Dewar vessel thus increased its efficiency, when used for the storage of liqud orygen, by nearly 15 per cent.

The Department of Scientific and Industrial Research has borne the cost of the liquid oxygen and of the copper Dewar vessels used in this work, and we wish to express our thanks for this valuable assistance

On the Action of a Locomotive Driving Wheel.

 By F. W Carter, MA, Sc D , M.Inst CE, MIEE(Communicated by Prof A. E H Love, FRS-Recelved April 15, 1926)
In the appendix to a paper read before the Inatitution of Civil Engineers," dealing generally with the subject of the 'Electric Locomotive,' the author disoussed the runuing qualties of locomotives from the point of new of dynamics He based the discussion on the forces set up between wheel and rall, and these forces he referred to the creepage of the surfaces in contact due to elastic deformation of the material in the reighbourhood of the contact, defining "creepage" as the ratio of the distance ganned by one surface over the other, to the distance traversed. He later introduced two quantities, f and f^{\prime}, which represented respectively the tractive force per unit creepage, longitudinally and transversely, to the ral. The quantities f and f^{\prime}, which were assumed constant in any partioular problem, were not deternuned at the time, and the present paper 18 primarily an attempt to compute the firat of them.

* See Manuten of 'Proc. Inst. C.E..' vol. 201, part I, p. 248 See elmo the author': book 'Ralway Eleotrio Traction ' (Arnold, 1022), chap. 2, p. D7, seq.

The ares of contact between wheel and rall varies with the state of wear of the parte. For a new rall the longatudinal dimension of the contact is in general greater than the transverse dimenson; but, as the ral flattens with use, the contact area appronmates in shape to a uniform atrip transverse to the rall. The final atate is ansumed herein, the wheel and ral being concerved as cylinders having therr generating lines parallel. The problem proposed is accordingly a two-dimensional one. Instead of asauming the problem to be that of a cylinder rolling on a plane, however, we amphcitly assume it to be that of two cylinders of like material and of equal and opposite radi, pressed together and rolling on one another, one being subject to a torque and the other to an equal countertorque Under thas assumption, any state of stress or strain in one member, due to tangential tractive forces only, 18 matched by an equal reversed state in the other, and the distribution of prossure between the members is unafiected by the traction, aince the radial displacementa of the surfaces in contact are complementary. We may note also that any conclusion deduced for a driving wheel is true, with revereal of stresses and strains, for a wheel undergoing braking.
The radus of the wheel is large compared whth the circumferential ertent of the contact ares, and, excopt in the determination of particulars of the contact, may be assumed infinite The problem is then one of an infinite elastse medum bounded by a plane, on which is a certan local dastribution of pressure and tangential traction The stresses and atrains, due to pressure, are known,* and need not be discussed further than as the means of transmitting the tractive effort.

The solution of the two-dimensional problem of an infinite elastic medium, bounded by, and on the positive aide of, the plane $y=0$, in which the portion of the boundary for whoh x is negative is subjected to a uniform tangential traction parallel to the x-axis, and that for which x is positive is free of externally applised atress, is given by Prof Love. \dagger Uaing the same notation as Prof, Love (viz., Δ for dlatation, \boldsymbol{w} for component rotation, λ, μ for elastic constanta), the solution is shown to depend on the equation ;

$$
\begin{equation*}
\frac{d(\xi+i \eta)}{d(x+i y)}=(\lambda+2 \mu) \Delta+i 2 \mu \sigma=C \log (x+\imath y) \tag{1}
\end{equation*}
$$

in which $C \pi(\lambda+\mu) /(\lambda+2 \mu)$ is the tangential traotion on the half-boundary plane, being directed towards the origin when C_{18} ponative and awny from it when C is negative. ξ and η are functions defined by the above equation

[^32]Take the aeparating line between stressed and unstressed portions of the boundary at ($x^{\prime}, 0$), and auperpose a distribution of tangential atress extending to ($x^{\prime}+d x^{\prime}, 0$), and an equal reversed stress extending to ($x^{\prime}, 0$). We thus obtain the solution of a problem in which the boundary stress extends over a band of width $d x^{\prime}$ only. Integrating this, in order to obtain the solution of the problem in which the tangential atress-a function of x^{\prime}-extends over any deaired portion of the boundary, we get as fundamental equation

$$
\begin{equation*}
\frac{d(\xi+i \eta)}{d(x+\imath y)}=(\lambda+2 \mu) \Delta+\imath 2 \mu \sigma=-\int \frac{\mathrm{C} d x^{\prime}}{x+\imath y-x^{\prime}}, \tag{2}
\end{equation*}
$$

the integral being taken over the boundary.
The atrain in the direction of the x-axis 18, using Prof Love's notation*

$$
\begin{aligned}
e_{x x} & =\frac{d u}{d x} \\
& =\frac{1}{2 \mu}\left[-Y_{v}+\frac{d \xi}{d x}\right]
\end{aligned}
$$

At the boundary surface, Y_{ν} is zero, and -

$$
\begin{align*}
e_{x x} & =\frac{1}{2 \mu} \cdot \frac{d \xi}{d x} \\
& =\frac{\lambda+2 \mu}{2 \mu} \Delta . \tag{3}
\end{align*}
$$

Thus the value of $e_{x z}$ at the boundary is the real part, as y approaches zero, of (see equation 2) -

$$
\begin{equation*}
-\frac{1}{2 \mu} \int \frac{C d x}{x+1 y-x^{\prime}} \tag{4}
\end{equation*}
$$

The values of C with which we shall have ocoasmon to deal are, in form, proportional to $\left(1-\frac{x^{2}}{a^{2}}\right)^{\text {d }}$, the linuts of x^{\prime} being $-a$ and a; and

$$
\begin{equation*}
\int_{-a}^{a}\left(1-\frac{x^{2}}{a^{2}}\right)^{1} \frac{d x^{\prime}}{x+i y-x^{\prime}}=\pi\left\{\frac{x+a y}{a}-\left[\left(\frac{x+y y}{a}\right)^{2}-1\right]^{1}\right\} \tag{5}
\end{equation*}
$$

We disousa the pressure and contact surface between wheel and rall, \dagger talang

[^33]the orign at the centre of the contect ares, and employing the notation of Prof Love." If R is the radus of the wheel and P the total presaure -
\[

$$
\begin{align*}
A & =\frac{\mathbf{l}}{2 \mathbf{R}} \\
& =\boldsymbol{i} \frac{\lambda+2 \mu}{2 \pi \mu(\lambda+\mu)} \mathbf{P} \int_{0}^{\infty} \frac{d \psi}{\left(a^{2}+\psi\right)^{r}\left(b^{2}+\psi\right)^{2} \psi^{\boldsymbol{k}}} \\
& =\frac{\lambda+2 \mu}{2 \pi \mu(\lambda+\mu)} \cdot \mathbf{P} \int_{0}^{\infty} \frac{d \psi}{\left(a^{\mathbf{Q}}+\psi\right)^{\prime} \psi^{1}} \text { if } b_{\text {LA }} \text { large } \\
& =\frac{\lambda+2 \mu}{\pi \mu(\lambda+\mu)}-\frac{\mathbf{P}}{a^{2} \dot{b}} . \tag{8}
\end{align*}
$$
\]

The pressure per unit area of contact near the origin is

$$
P=\frac{3 P}{2 \pi a b}\left(1-\frac{x^{\prime 2}}{a^{2}}\right)^{\prime} .
$$

Integrating this over the width of the contact, the pressure per unit length of contact 19

$$
\int_{-a}^{a} P^{\prime} d x^{\prime}=\frac{P}{\frac{P}{b}}
$$

The equivalent length of the contact 18 thus $4 b / 3$, this we call l. Accordingly:

$$
\frac{1}{2 \bar{R}}=\frac{\lambda+2 \mu}{\pi \mu(\lambda+\mu)} \frac{P}{l^{2}},
$$

or

$$
\begin{equation*}
a=\left[\frac{\lambda+2 \mu}{\pi \mu(\lambda+\mu)} \cdot \frac{2 R P}{\bar{l}}\right], \tag{7}
\end{equation*}
$$

also -

$$
\begin{equation*}
P^{\prime}=\frac{2 P}{\pi l a}\left(1-\frac{x^{\prime 2}}{a^{2}}\right)^{\prime} \tag{8}
\end{equation*}
$$

Assume first that the tungental traction 18 everywhere proportional to the pressure-an assumption which is only justifiable when the wheel is on the point of ekidding Write its value $T_{1} P^{\prime} / P$, so that T_{1} is the maximum available tractive effort. Then

$$
\begin{equation*}
\mathrm{C}=\frac{\lambda+2 \mu}{\pi(\lambda+\mu)} \frac{2 \mathrm{~T}_{1}}{\pi l a}\left(1-\frac{x^{2}}{a^{2}}\right)^{\lambda} \tag{9}
\end{equation*}
$$

Hence, at the boundary (see equations 4 and 5), when x is in the contact area ($x^{a}<a^{a}$).

$$
\begin{equation*}
e_{x z}=-\frac{\lambda+2 \mu}{\pi \mu(\lambda+\mu)} \cdot \frac{T_{1}}{l_{a}} \cdot \frac{x}{a} \tag{10}
\end{equation*}
$$

- Loc. cut ohap VIII, H137, 138.
and when x is outaide the contact area ($x^{2}>a^{2}$):

$$
\begin{equation*}
e_{\mathrm{rax}}=-\frac{\lambda+2 \mu}{\pi \mu(\lambda+\mu)} \cdot \frac{\mathrm{T}_{1}}{l a}\left[\frac{x}{a}-\left(\frac{x^{2}}{a^{2}}-1\right)^{\downarrow}\right] \tag{11}
\end{equation*}
$$

We next consider the normal operation of the wheel Assuming it to be running in the positive direction of the x-exis, let $A^{\prime} O A$ in the figure represent the contact surface, A being the point of first contact, and A^{\prime} the point of leaving Let $A B A^{\prime}$ be the ourve of limiting tangental traction $T_{1} \mathbf{P}^{\prime} / \mathbf{P}$ The actual curve of tangential traction will follow some line ADCA', starting at \mathbf{A} and never exceeding the hmiting curve. Over the portion ADC of the curve, the surfaces

in contact are locked together, and the aurface-strain is accordingly constant, for any variation of stran in one member requires an opposite variation in the other member, and this cannot be whero the boundaries in contact have no relatave movement. Beyond the point C, the pressure between the surfaces is insufficient to support the strain, and the surfaces aocordingly slip, with limiting tengential traction The value of the surface stran may be written -

$$
\begin{equation*}
e_{m}=\text { real part of } \operatorname{L}_{y \rightarrow 0} K\left\{\int_{-a}^{a}\left(1-\frac{x^{\prime q}}{a^{2}}\right)^{\prime} \frac{d x^{\prime}}{x+\tau y-r^{\prime}}-\int_{0}^{a} \frac{\phi\left(x^{\prime}\right) d x^{\prime}}{x+\tau y-x^{\prime}}\right\} \tag{12}
\end{equation*}
$$

in which K is put for the coefficient of $\pi x / a$ in equation 10 , and c is the absciasa of the point C in the figure. The function $\phi\left(x^{\prime}\right)$ is zero at the limuts c and a, and positive between them it is such that, between c and $a, \epsilon_{\text {ra }}$ is independent of x. The first integral in equation 12 has, however (see equations 5 and 10), been shown to be proportional to x for points within the contact areu, the socond, accordingly, when $a>x>c$ should be a linear function of x, cancelling the first and leaving a constant

Consader

$$
\phi\left(x^{\prime}\right)=\frac{a-c}{2 a}\left[1-\left(\frac{x^{\prime}-\frac{1}{1}(a+c)}{1(a-c)}\right)^{2}\right]^{1}
$$

Changng the vansble to $y^{\prime}=x^{\prime}-1(a+o)$, the second integral in equation 12 becomes.

$$
\frac{a-c}{2 a} \int_{-(a-c)}^{1(a-o)}\left[1-\left(\frac{y^{\prime}}{1(a-c)}\right)^{2}\right] \frac{d y^{\prime}}{x-\frac{1}{1}(a+c)+u y-y^{\prime}}
$$

This has the same form as the integral in equation \bar{b}, and, with $a>x>0$, and $y=0$, ita value is

$$
\begin{equation*}
\frac{a-c}{2 a} \cdot \pi \frac{x-\frac{1}{b}(a+o)}{\frac{1}{2}(a-c)}=\pi\left[\frac{x}{a}-\frac{a+o}{2 a}\right] \tag{13}
\end{equation*}
$$

Hence, with $a>x>c$, equation 12 gives the constant value:

$$
\begin{equation*}
e_{x}=\mathrm{K} \pi \frac{a+0}{2 a} \tag{14}
\end{equation*}
$$

The tractive effort of the wheel is

$$
\begin{align*}
T & =T_{1}\left\{1-\frac{2}{\pi a} \frac{a-c}{2 a} \int_{-1(a-c)}^{1(a-r)}\left[1-\left(\frac{y^{\prime}}{1(a-c)}\right)^{2}\right]^{1} d y^{\prime}\right\} \\
& =T_{1}\left\{1-\left(\frac{a-c}{2 a}\right)^{2}\right\} \tag{16}
\end{align*}
$$

Hence c is given by :

$$
\begin{equation*}
\frac{o}{a}=1-2\left[1-\frac{T}{T_{1}}\right] . \tag{16}
\end{equation*}
$$

The quantity f is now readily determinable for the oase considered 0 on entenng the contact area, and for a oertain dutance within that area, the surface strain e $e_{z a}$ is given by equation 14 Consider a pair of points on the driving and driven wheel-rims reapectively, attuated an infinitesumal distance δx ahead of A (see figure), and therefore about to enter into contact with one another. The unftraned length of rim represented by δx is ($1-e_{x x}$) δx for the druving wheel, and $\left(1+e_{\text {mex }}\right) \delta x$ for the driven wheel. The ratio of angular rotation of driving and driven wheel is therefore as $1-e_{\text {m }} \cdot 1+e_{\mathrm{max}}$ or as $1-2 e_{\text {me }} .1$. The ratio of rolling rotation is unity, and the quantity - $2 e_{\mathrm{za}}$ accordingly represents the oreepage as defined above. Writing q for $T / T_{1}, f$ is then given by :

$$
\begin{array}{rlr}
f & =\frac{q \mathrm{~T}_{1}}{-2 \theta_{n e}} \\
& =-\frac{q \mathbf{T}_{1}}{\pi \mathrm{~K}} \cdot \frac{a}{a+c} & \text { (eqn. 14) } \\
& =-\frac{\mathrm{T}_{1}}{2 \pi \mathrm{~K}} \frac{q}{1-(1-q)^{\dagger}} & \text { (eqn. 16) } \\
& =\frac{\pi \mu(\lambda+\mu)}{2(\lambda+2 \mu)} h \frac{q}{1-(1-q)^{4}} & \text { (eqn. 10) } \\
& =\left[\frac{\pi \mu(\lambda+\mu)}{2(\lambda+2 \mu)} \mathrm{R} / \mathrm{P}\right]^{t} \frac{q}{1-(1-q)^{l}} . & \text { (eqn. 7) } \tag{17}
\end{array}
$$

Thus f depends on the trective effort, increasing in the ratio 12 as T falls from T_{1} to zero

For the value $\mathbf{T}=\mathrm{T}_{\mathbf{1}}$, or $q=1$, and with forces and lengths expressed in ordinary engineering unita of the subject, the approximate value of f for steel wheels and rails is as followa -
(1) With forces in kilogrammes and lengths in millimetres

$$
f=93[\mathrm{R} / \mathrm{P}]^{1} .
$$

(2) With forces in lbs. and lengthe in inches.

$$
f=3500[\mathrm{RlP}]^{l} .
$$

The effective value of l, the length of contact transverse to the rall is matter for conjecture, and doubtless variable A representative value $1 s$ perhaps of the order of 25 mm . or 1 in .

On the Spectic Heat of Ferromagnetic Substances

By W. Suckbmith, B So, and H. H. Potter, Ph D, Lecturera in Phybics, University of Bnatol
(Communicated by Prof A P. Chattock, FR S.--Received April 2N, 1926.)
According to the Werss theory of ferromagnetism, there is an intimate connection between the speafic heat of a body and its maguetisation Weiss* has shown that the magnetic energy per cubic centimetre of a ferromagnetic substance is - -

$$
\begin{equation*}
\mathrm{W}=--\frac{1}{2} \mathrm{HI} \tag{1}
\end{equation*}
$$

where I is the intengity of magnotisation and $\mathrm{H}_{\text {is }}$ the molecular field Further, it is assumed that

$$
\begin{equation*}
\mathrm{H}=\mathrm{NI} \tag{2}
\end{equation*}
$$

where N is a constant depending on the material itself Thus

$$
W=-\dagger N I^{2}
$$

and

$$
d \mathrm{~W} / d \mathrm{~T}=-\frac{1}{\mathbf{1}} \mathrm{~N} d / d \mathrm{~T}\left(\mathbf{1}^{\mathrm{Q}}\right)
$$

where T is the temperature $d W / d T$ will contribute to the apecific heat of the substance which will become equal to

$$
\mathrm{S}=s+\frac{1}{\rho \mathrm{~J}} \frac{d \mathrm{~W}}{d \mathrm{~T}},
$$

- Waus and Bech, ' Jeum de Phyn,' vol. 7, p. 249 (1008).
where a = specific heat negleating maguetio contribution,
$S=$ total specific heat,
$\rho=$ density ,
$\mathrm{J}=$ mechanical equivalent of hest,
Therefore

$$
\mathrm{S}=\varepsilon-\frac{\mathrm{N}}{2 \rho \mathrm{~J}} \frac{d}{d \overline{\mathrm{~T}}}\left(\mathrm{I}^{\mathrm{I}}\right)
$$

From consideration of the shape of the magnetisation-temperature curves, Weisa concludes that the specific heat should rise to a manimum at the critical temperature and then decrease dascontinuously, owing to the sudden disappearance of the magnetic term.

The first measurements to test this theory were made by Weiss and Beok (los. cu) on mickel, aron and magnetite, using the method of muxtures The mean spectic heat between room temperature and the temperature \mathbf{T} was determuned for increasing temperatures $\mathbf{T}_{1}, \mathrm{~T}_{\mathbf{2}}, \mathrm{T}_{\mathbf{3}}$, otc The specific heat over the ranges $\mathrm{T}_{\mathrm{a}}-\mathrm{T}_{1}, \mathrm{~T}_{\mathrm{s}}-\mathrm{T}_{2}$, cte, could then be calculatod Other determinations of the specific heat of iron have been made by Harker,* Oberhofier \dagger and Meuten \ddagger These three observers used the Bunsen ice-calonmeter method, but their experiments were not aufficiently detailed for satisfactory theoretical intcrpretation Further expenments were made by Dumas,8 and Weiss, Piccard and ('arrard, || who elaborated the method of mirtures to seoure a higher order of accuracy In these expenments the specimen, which had been heated to a temperature \mathbf{T} in an electric furnace, was dropped into a masa of wator, the rise of temperature being messured by a platinum resistance thermometer, The mean specific heat S_{m} between $16^{\circ} \mathrm{O}$. and $\mathrm{T}^{\circ} \mathrm{C}$ was plottexl against T , the curve thus obtuined showing a sudden change of alope at the cntical temperature From this ourve the true specific heat, S , was obtaned for various temperatures The results of the expenments were not whally in agreement with their theory ${ }^{9}$ The best agreement between experiment and theory 18 obtaned in the case of mokel It 18 interesting to note, however, that mekel shows large deviations from the law of corresponding stater,** \dagger thich is a

[^34]direct result of the Weiss theory of ferromagnetism. Agana, to satisfy Lorentz'* equation, it is necessary to assume that the elementary magnet in meckel ronsists of three atome.

The experiments themselves were not altogether above cntucism for the following reasons -
(a) The continued quenching of the specimen may not be without some effect on its physical properties Westgren \dagger has obtaned some evidence that the size of the orystal lattice in nekel-steel depends on the temperature of quenchnue Such an eflect is almost certain to influence the specitic heat Weiss \ddagger has found that the magnetic properties of nuckel depend on its previous heat treatinent
(b) The mothod of amoothed curves was used, the gradient of these curvey being used to determue the true specific heat
(c) The method requres a high degree of accuracy, as may be seen from the following conalderations: To determine the specific heat in the range $350^{\circ}(1$ to $354^{\circ} \mathrm{C}$ to 1 part in 100 , it as necessary to know the mean specfic heats from $16^{\circ} \mathrm{C}$ to $350^{\circ} \mathrm{C}$ and $16^{\circ} \mathrm{C}$ to $354^{\circ} \mathrm{C}$ to 1 part in 16,000 For nickel, Weiss and has co-workers claim thus order of acruracy, which appears to ue to be over-estimated
(d) In view of the dependence of magnetic properties on heat treatment, it is dearrable that maguetic and calorimetre data should be obtained not only far the same specimens, but also simultancously. In the papers referred to, magnetic data are taken from the earler experiments of Cune The earher work of Weise and Beck has been enticised by Honda and Okubu§ on the same grounds They point oul that the constant N (equation (2)) varies from oue specimen to another so that magnetic and celonmetnc data can be compared ouly if obtnined from the same specimens Wriag's theoretical treatment has also been criticised by Ashworth, || and diffuculties have also been raised by de Weard. $\dagger \|$

In new of the above considerations, experiments by an independent method, enabling specific heat and magnetisation to be measured simultancously, sppeared desirable. The present experimenta, besides fulfiling this condition, enable the specific heat to be measured directly over small intervale of temperature.

[^35]
Outline of Methad.

The Speafic Heat Measurements -The method used in the present experiments was that of Nernst and Eucken, which has not to our knowledge been used at such high temperatures (up to $410^{\circ} \mathrm{O}$) in eny previous worlr. Heat is supplied by passing a current through a platinum spiral wound on the apecimen. The temperature nise of the specimen is measured by the change of resstance of this spiral Owing to the great increase in the radiation at high temperature, the difficulties of experiment are moch greater than those encountered at normal and low temperatures, but we have been able to ertend the method to temperatures above the critiosl points of mokel and Heusler alloy by suspending the epecimen in the interior of an evacuated vessel which was in turn enclosed in an electric furnace The latter could be mantanned at any desired termperature T while the specifio heat between the temperstures T and $T+8 T$ was determined by aupplying electncal energy to the specimen so as to ralse its temperature by an amount $\delta \mathbf{T}$ A correction for radiation was applied (see below)

Form of Spectmens -The specimens were made in two parts, the inner portion (fig la) being ground into the outer portion (fig. 1b) The former had a double screw thread out on it and unto this was wound a spiral of double-silk covered chemucally pure platinum wire The winding was non-inductave, the wire being turned back at the bottom by pasing round a ting glaes peg P,

Fra. 1.
embedded in the metal at a place where a manall flat had been filed The wire whe seoured at the top by tying it around a second glass peg B. Before winding the ailk insulation was saturated with a paste of chins olay, and after windung the wire the screw threads were filled in with more of the paste. On setting, this prevented any movement of the wre and so avoided the possiblity of a breakdown of the insulation when the silk coverng of the wire became charred. The slote at the top of the outer case (fig. 1b) ensbled the inner portion to be inserted without damage to the glass peg B. The platinum wire (42 SW W.G) was jouned to copper leads (95 S.W G.) as close up to the peg'B as possible, the copper also being secured to the peg so that the weight of the apecimen was not carried by the thin platinum hesting coll. The junction was made by bindung the platinum anre around the copper and pinching it with a chp made of annealed copper. It was undesirable for obnous reasons to use thick copper leads, but after applying an approxamato correction (see page 165) the error resulting from the use of leads of apprecisble reastance was neghgible,

The specumen itself was auspended in the anterior of a double-walled glass vessel shown in fig. 2. The vessel, which was silvered on both walls, was made of "Duroglass" and even when heated to $450^{\circ} \mathrm{C}$ would withstand the pressure of the atmosphere. It was joined on to the pumping apparatus by means of a glass cap and eealing-wax joint shown at S . A tiny hole in the inner tube at the point D enabled the space between the two walls to be evacuated During the experiments the pressure was mantaned at less than 0.01 mm . of Hg . In this way oxidation and loss of heat by convection were elimnated. The copper leads were brought out by the two sade tubes TT and were secured at the ends of these tubes by sealng-war joints., Beyond TT the gauge of the copper was increased to No 18.

The Electric Furnace -The furnace F (ig. 2) consisted of a coll of achrome tape, wound non-Inductively on a copper cylinder to promote unlormuty of temperature. The heating current for the furnace was supphed by accumulatore which gave a sufficuently steady current to keep the temperature constant to within $0.5^{\circ} \mathrm{C}$. at $400^{\circ} \mathrm{C}$. for an indefinite period. Such small variations of temperature as did oocur would be commumicated only very slowly to the apeomen on account of the double-walled vacuum vessel. In fact, once equilibnum between the furnace and the speoimen had been established, the latter oould be manntained for very long periods at temperatures whioh were constant to within $0.00^{\circ} \mathrm{C}$.

The Electrical Comnections.-The crrcuit employed for the measurement of the reastance of the platinum spiral and for the purpose of supplying and VOL. OXI - A.

Fie. 2
measuring the heating current was a Whestatone Bridge modified in auch a way that the posation of the battery and galvenometer were intarchangeable. The carcut is ahown in fig. 3.
P represents the platinum spiral, R_{2} an open wire manganin resstance of 11.5 ohms, \mathbf{R}_{1} a variable resistance from a standard ressistance bor (oorrect to 0.01 per cent), and R_{a} a atandard resistance of 2,000 obms. If the battery is connected at the points B and D and the galvanometer at the pointa A and O (by throwing switoh S_{1} to the right and S_{5} to the left) then the current through \mathbf{P} was so amall that the resistance of \mathbf{P} could be messured without oauning any appreciable rise of temperature If, however, the connections to battery and galvanometer were interchanged (by throwing S_{1} to the left and S_{1} to the nght) the current through P was sufficient to give the nee of temperature required in the measurament of the spectic heat. The resstance of P, however, could be measured during the passage of this curront (usually about 0.24 ampere)
so that the energy input was known The current was measured with a standard Weaton mulliammetar A, and a correation applied for fraction of the total current which passed along ADC.

Fha. 3
Estamation of Rese of Temperature 8 T on Heating.-The following procedure was adopted in measuring the speciflo heat in the range between T and $\mathrm{T}+\mathrm{yT} .-$ The furnace current was first adjusted to give the temperature T which was measured very roughly by means of a moroury thermometer. The real object of the thormometer was to indicate variation of furnace temperature and not its absolute value. The specimen was brought into temperature equilibnum with the furnace-the process beng expeditad by the passage of a current through the spral in cases where the preceding measurement of the specifio heat was made at a temperature considerably less than T and where otherwise the establishment of equilibnum would have taken a long tumo. Measurements were carried out only after the temperature of the furnace had remamed constant to within $f^{\circ} \mathrm{C}$. and the spiral to wrthin $1 / 20^{\circ} \mathrm{C}$ for at least 10 minutes, and even then corrections were applied for varations in the nitial temperature of the apocimen. The initial temperature was measured by eatimation of the resistance with the battery connected at B and D , then the awitohes S_{1} and S_{2} were thrown over to the other poastion, thus causing sufficient current to pass through the platinum spiral to give a nise of temparature of about $0^{\circ} \mathrm{C}$ in 4 minutes, after which the awitches were thrown back to the orignal position and the subsequent time-resistance curve taken. The change of resiatance was a rather oomplicated function of the time, risung aharply on awitching on the heating current and falling rapidly when the current was stopped. This was due to low thermal
capacity of the spiral, combined with the indufferent thermal contact between the apiral and the specimen A typioal resiatanoe tame ourve is shown in fig. 4. The portion $A B$ represents the heating part, the current being cut off st B. The portion BG represents the penod during which equilibrium 18 beng estabhehed between the apiral and the specimen, whust GD represents the subsequent cooling due to radiation and conduction down the leads The portion GD was, particularly at low temperatures, practically straight and the true rise of ternperature was estimated by producing DG back to the axis at the point E 'The ordnate AE would then give the true rise of temperature if the specimen had all along been cooling at the rate indicated by the slope of DG. This obviously 18 untrue, but assuming that the rise of temperature was unform and that Newton's Law of cooling 18 apphcable, it can be assumed that the mean rate of loss of heat during heatung was half that given by the slope of DG, and that the true nee was AJ, J being half-way between E and H, and HF being honzontal To test the validity of this assumption, observations were made uning various rates and tumes of hasting and vanous rises of temperature differing by 100 per cent. At room temperature the resulte agreed to $£$ per cent At higher temperatures the experments were not quite as accurate, due largely to the fact that Newton's Law is not strectly vald, the range over which it holds deoreasing as the temperature increases. The result was that at high temperatures GD was not perfectly straight and under these conditions, instead of producing DG backwards, it was necessary to draw a tangent to the curve BGD at some autable point. The method adopted was to draw the tangent to BGD at a point at a definte time interval (7 minutes) beyond the point B The principal error of experiment undoabtedly lay in drawng this tangent, but by adopting the same method for each expenment any errors introduced would affect difforent determinations simularly. An attempt to obtain the radation correction by assuming the fourth power law did not lead to any appreciable increase in the accuracy of expenment, As our prinoipal object, was to determune the shape of specific heat-temperature curve, errors of this sort were comparatively unimportant.

Soveral other faotora operated to make the absolute measurement of the specific heat somewhat inaccurate. Firstly, it was assumed that the whole of the platinum was embedded in the apecimen and that all the beat generated in it was communicated to the specimen. Actually about I om or 07 per cent. of the platinum was outside the specimen. Agaun, it was assumed that none of the heat generated in the leads was communcated to the spocimen. Another inaccuracy lay in the correction for resistance of leads at high temperatures. It was assumed that the mean temperature of the leads was half-way between room temperature and the furnace temperature. This assumption was based on the fact that about half of the leads was in the furnace and the other half was not. The error due to these last two causes must have been very small, as the total lead resistance was about 1 per cent of the whole. Again no allowance was made for the specific heat of the glass, platinum and china clay, but this could hardly have introduced an appreciable error owing to the amall mase of these substances concerned

The Magnetrc Measurements - -The magnetic measurements were made by the ballitic method The solenold A ahown in fig 2 was so arranged that the apecimen B was in a central position. The solenoid was wound in four layers of about 400 turns each, the layers being two in sernes by two in parallel. The cylinder was of brass, 50 cm , long and 15 cm diameter. To minumise eddy current effeots, the brass was splat along its enture length by a narrow saw cut, the reclosing of the alot being prevented by the insertion of a stnp of asbeatos. Thin asbestos paper was used as maulation between the vanous layers and between the innermost layer and the cylinder. A apcondary coil C of 108 turns of 20 s W G. copper was wound in a central position on the solenoid and was insulated from the primary by several layers of oled silk and one layer of mica. Good insulation 2 necessary here owing to the large area of contant Owing to the large dameter of the secondary conl, a considerable number of the lines of magnetic induction are ineffective By winding a teat coll directly on the speaimen, it was found that the lines out by the secondary wore 40 per cent. of the total number of lines of induction This (raction remaned constant throughout, and so does not affect our conclusions

Subaidsary coils in senes with the primary and ereondary windings of the solenod were so coupled that the reveras of a heavy direct current in the magnetising solenoid produced no defection of the galvanoneter when the speaimen was absent. The field obtainable was 20 gauss per ampart, and the marimum current used was 12 amperes.

Heusler Alloy.

Our first results were obtained with Heusler alloy, the original objeot of our experiments being to extend Weiss's resulta to a synthetic magnetic alloy whose magnetisation could be varred (by heat treatment).

Preparation of the Alloy.-The dufficulty of driling the large hole through the outer portion (fig Ib) of the specimen in a substance so brittle as the Heusler alloy was met by moulding the portion upon a central core of tarned copper. It was then easy to drill out the oopper, leaving a hollow cylnder of Heusler alloy. The alloy can be turned and a thread cut in it with high-speed ateel tools. The Heusler alloy used was 63 per cent copper, 25 per cent. manganese and 12 per cent. aluminum melted in a graphite crucible and poured into sand moulds The anner and outer parts of the specimen were, of course, poured from the same melt We tried alloys of various constatutions in an attempt to find a spocimen with a low cntical temperature (Tho Nernet-Eucken method 18 more accurate at low than at high temperatures) The critical temperatures of alloys of different constitution are given by Take.* Thoas with low entical teraperature we found to be extremely unstable, the critioal point nang to about $280^{\circ} \mathrm{C}$ after heat treatment of any kind For specimens of the constitution given above tho critical point was very stable, being unaltered by more than a few degrees after quenching from $400^{\circ} \mathrm{C}$. or after annealing at $720^{\circ} \mathrm{C}$. The rritical temperature for these apecimens was about $280^{\circ} \mathrm{C}$., and it thus appears that the oritical temperatures of unstable apocimens tend after heat treatment to nse to about the amme value as for the stable speoimens, although we have not aufficient evidence to verify this point conolusively.

Results

Heusler Alloy,-The results for Heusler alloy are shown in fige. b-8 in addtion to the specific heat-teruperature curves, marked (a), the curves counecting I^{2} with $\mathrm{T}(b)$, and $d / d \mathrm{~T}\left(\mathrm{I}^{2}\right)$ with $\mathrm{T}(c)$, are given. The ordinatea of the two last-mentioned are in arbitrary unts, the same units being used throughout. In figs. 6 and 8, which deal with Heusler slloy sfter hest treatment, the soale of the magnetisation curves is increased five-fold In all cases a complete ourve was obtained in one day, the successive points being obtained with inoreasing temperature.
The speoimen of fig. 5 was quenched from about $400^{\circ} \mathrm{C}$. and subsequent measurements are given in fig. 6 Both apecific heat and magnetisetion curves

[^36]

Fra. 5-Henler 1.

Fio. 8.-Heusler 2 Dernagnetised.
indicate e rise of $8^{\circ} \mathrm{C}$. in the ontical temperature. The fall in the value of the specific heat above the ontical temperature was reduced by about 47 per cent., but it is difficult to deduce anything from this owing to the fact that the saturathon intensithes of magnetisation before and after quenching were not known

The curves for a second specimen of Hearler alloy are given in fig 7, and fig 8 shows correaponding curves for this speomen after annealing at $720^{\circ} \mathrm{C}$ An examination of the curves for Heusler alloy shows large discrepancles botween theory and expenment A full discussion of the results is given below, but one point which concerns Heusler alloy alone will be discussed here In the osse of the second specimen the apeoifio heat curves before and after demagnetisation do not show any very great change, wheress the magnetisation in weak fielde is greatly reduced This is not a true measure of the reduction of the saturation intensily with which we are concerned in this experiment. We measured the saturation intensity, however, for two preces of alloy from the game oast as those used in the specific heat measurements referred to One of these preces was subjected to identical heat treatment to that given to the specimen referrod to above The magnetisation was measured by a ballistic method using an electrornaguet, and it was found that although the magnetisation in weals fields was vastly different, the saturation intenaity (5,000 gauss) of the " demagnetised "specmen was 73 per cent. of that of the onginal Heusler. Using Weiss's Theorem of Corresponding States,' it can easily be shown that the magnetic contribution to the specific heat in the case of the demagaetised specimen should, according to Weiss's theory of specsfic heats, be 54 per cent, of that for the normal specimen We found the ratio to be 87 per cent., so that the magnitude of the drop in the value of the sproitic heat in the neaghbourhood of the oritical point was affected to a`far less extent than would be expected from Weiss's theory

We have asaumed here that N (equation 2) remans constant The conflict between theory and experiment could be reconciled if N increased with heat treatment. We made some attempt to measure N by observations on the change of the paramagnetiam above the cntical temperature. \dagger We were unable to get any eatisfactory data on account of the fact that N was continually decreased by heat treatment of the specimen. The ourves connecting $1 / x$ and $T(\chi=$ susceptibslity, $T=$ temperature) became less and less steep (uang

[^37]$1 / x$ as ordinate) as the speoimen was subjected to heat treatment similar to that used in demagnetsing it.

Thus the change in N is in the opposite direction to that demanded if the experimental resulte are to be brought into line with Weise's theory. It will be noticed that there 18 no sudden discontinuity in the value of the speaifio heat at the cntical point. This will be discussed later on in conjunction with the results obtanned for mickel.

Niokel - We were molined at first to attmbute the results obtamed with Heusler alloy to the fact that its magnetism is aynthetic. This led us to carry out experiments on nickol Unfortunately it is impossible to obtann " chemically " pure nuckel in the form of rods such as are required in this experiment We thercfore used mokel of three arades of punty-ordinary commercial nuckel, commercially pure nickel, and Mond electrolytic mickel remelted and drawn into rods by Messra Johnson and Matthey, Weiss and Piccard used Mond nickel in their measurements, but the analysis they give rofers to the mokel befure the process of remelting We give below an analysis* of the three mekels used.--

The Mond nickel was analysed after the remelting process In the case of the commercially pure and Mond nockel the umpunty is almost entarely uron. Thus was not present in a ferromagnetic condition, as examination of the nickel between $450^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$. showed that the substance was paramagnetic, and further the susceptibility was independent of field. We could have detected by this method the presence of $\mathbf{0 . 0 0 2}$ per cent. of ferromagnetic iron This might be aocounted for in several ways, nz , fine dinision of the impurity, the iron boing alloyed with the nakel or present as an oxide By using niokel of different degrees of purity we have been able to deduce evidence that the results we have obtanned are not dependent on the quantity of impunty. The results obtaned with nickel are samilar to those given by Heusler alloy, and are shown in figs 9, 10, 11 The experiments are more duficult to carry out

[^38]on acoount of tho higher temperature at which the forromagnetism disappears, and also because the ohanges in the value of the spectic heat are not so pronounced in the case of nickel

The most atribing feature of the specuic heat curves of both Heusler alloy and nuckel is the absence of any sudden disoontmuity at the critical temperature. The decrease in the value of the specifio heat whioh takes place in the neigh-
bourhood of the critical point is spread over about $40^{\circ} \mathrm{C}$. in the case of Heusler alloy and $25^{\circ} \mathrm{C}$. in the case of each of the nickel specimens. The curves shown

in figs. 5-11 are typical of a number, all of whub exhbit the aame general features.

Unıformaty of Temperaturc of Specumen.-The "ypread" could be most easly explanned by a non-uniformity of temperature of the specmen We examined thas pont by the une of thermo-couples made by securng coppar wires to vanous points of a nuckel specimen by means of small nuckel screws. For positions of these junctions see fig lc Any two of the junctions could be need to give the temperature dufierence between any two pointa of the specimen. We assured ourselves pernodically of the satusfactory working of each thermocouple by hanng a subsidiary copper-nickel jonction kept in loe Thus the actual temparature as well as the difference of temperature could be ineasured with any of the thermo-couples. Under the actual couditions of specific heat determunations we were unable to deteot any difference of temperature amountug to more than $12^{\circ} \mathrm{C}$, which is negligible in companson with the temperature range over whioh the measured fall in the specific heat takes place.
Dhscussion of Magnetic Curves.-Whereas the specific heat curves show consadersble spread, the $d / d T\left(I^{2}\right)$ - T curvea ahow a much more audden drop at the ontical point, 95 per cent. of the drop in the value of $d / d T\left(I^{\text {i }}\right)$ talcing place within about $5^{\circ} \mathrm{C}$. Our resulta indicate that the temperature st which
the maximum value of the specific heat 18 attained conncides with the critical point." The fact that the carvea connecting $d / d T\left(I^{9}\right)$ and T show a more sudden drop at the critical point than the specific heat curves cannot, for reasons stated below, be taken as conclusive endence againat the view that under ideal conditions these two curves would be of similar shape
Suppose that the impurity in the nickel is unevenly distributed (We have made three determinations of the iron content for commercially pure neckel, using test specimens from three difierent portions of the rod. Identical values of the iron content were obtamed, but this dors not preclude the posmbility of uneven distribution in regions amall compared with the volume used in ohemical analyas)

Such an uneven distribution might give nse to regions of varging critical points. Suppose a volume v_{g} is above the critical temperature, whereas a volume v_{1} is below the critical tomperature and has an intensity of magnetisathon I. The measured magnetisation is proportional to $v_{1} \mathrm{I}_{\text {, whereas had the }}$ whole spocimen been magnetio the measured value would have been ($v_{1}+v_{2}$) I

The ordinate of the $\mathrm{I}^{2}-\mathrm{T}$ curves is thus reduced in the retio v_{1}^{2} to $\left(v_{1}+v_{2}\right)^{2}$.
The region v_{1} will contribute to the magnetic specific heat a quantity $=v_{1} d / d T\left(\mathrm{I}^{2}\right)$, whereas had the whole specimen been magnetic the oontribution would have been ($\left.v_{1}+v_{\mathrm{s}}\right) d / d \mathrm{~T}\left(\mathrm{I}^{\mathrm{Z}}\right)$. The ordinate of the $\mathrm{I}^{\mathrm{y}}-\mathrm{T}$ curve is thus reduced in the ratio $\left(v_{1} / v_{1}+v_{2}\right)^{2}$, whereas the specific heat curve is reduced in the ratio $v_{1} /\left(v_{1}+v_{2}\right)$.

Another important point 18 the self-demagnetseing action of such amall regions The magnitude of thus effect can be calculated assumng the regions to be sphencal The effect is probably amall since the untensity of magnetisation is amall in the neighbourhood of the critrical temperature, and since, in addition, the intensity reaches saturation for a field of a few gauss There is another effect which operates in the opposite drection and probably is greater than the last-mentioned effeet. At room temperature the apecimens are very far from saturated in the field available. This is due in some measure to the demagnotising action, reducing the effective field to about 50 gauss Near the critical temperature saturation is almost complete in a very much smaller field, and the actual apphed field is greater since the demagnetising effect is amaller.

[^39]This has the effect of making the measured alope of the $I^{2}-T$ curve leas then it should be and also of reducing the ordinates of the curve except near the cntical temperature The effioot 18 equivalent to incresang the ordinates of the curve near the entioal temperature in proportion to those of the rest of the curve This also accounts for the sharp nise in the value of $d / d T\left(I^{2}\right)$ on the low temperature aide of the critucal point.

Anothar factor to be conadered is that our magnetisation measurementa give values whoh are proportional to $4 \pi I-\mathrm{H}_{0}$ where H_{0} is the demagnetioung field. The effect of this near the critical point will again depend upon the shape of the small ferrornagnetic domains, and the same genaral conaderations as those in the preceding paragraph would apply.
It would thus appear that quantitative relationships between our magnetio and specific heat data cannot be eatablished if we assume uneven distribution of impurty and consequent regions of varying critical points. The difference between the specific heat and the magnetisation ourves 18 very marked, however, and thas, combined with the fact that we have obtained samular resulta with three asmples of nickel of different degrees of punty, seems to invaludate this explanation.

Conclustons.

There is considerable ducrepancy between the form of the apeofic heat and magnetisation curves obtained erpenmentally for nickel and Housler alloy, and that demanded by Weiss's molecular field theory The dafference betweon the results of Wesss, Piccard and Carrard and those obtamed by the present authors for neckel could be entirely accounted for by a change in the neughbourbood of the ontical point of about 01 per cent. in the mean specifio heat measurements of the former. The experiments of Dumad (loc. ott) do not appear accurate enough to be consudered as evidence for Weiss's new as opposed to ours In addution to the difference in the shape of the curve, the decrease in our valnes of the specifio heat for pure mickel is only 60 per cent. of that obtained by Weiss.
There is considerable endence that the changes in other physical properties are not discontabuous in the neighbourhood of the cnticel point. This has been discussed in some detall by Benedicks* A paper by Honds and Ogura \dagger is of special interest in this connection. Using Kablbsum nickel wire they obtaned ourves connecting the temperature change of magnetiastion and electric resistance. Neither curve showed a descontinuity at the critioal pount.

[^40]Again, the magnotisation-temperature curves for a field of 160 gauss are very similar to those obtained in our experiments, neither ahowing such a rapid approach to zero as demanded both by the theory and experiments of Weiss * Wein's results are strongly enticised by Honds and Ókubo, \dagger who take the new that what Weisa measured was not an actual apecufio heat, bat a quantity of heat evolved during the transformation at the oritical point. The nature of this transiormation is somewhat obsoure The crystal structure of nickel is a facecentred oube both below and above the critical temperature \ddagger Such consideration as Benedicks applies to the case of uong could hardly be tenable in the case of mickel, where there is nothing corresponding to the A_{3} transformation If a atructural change takes place, it must be aomething other than a change in the arrangement of the atomio centres. That such a change can take place has been indicated by some experiments on the properthes of tungsten arystals by the Research Stafl of the General Electric Company.|| Our results would point to some such view as that taken up by Honde and Okubo. There can be no doubt that the changes in apecuio heat and magnotiantion are closely related, but apparently this relation is not so intimate as that suggested by Weiss. Both, however, are undoubtedly tracesble to a common cause It 18 suggeated that the critical point indicates a certain stage in a transition which talres place over a range of temparature of probably some hundred degrees, and which is not complete at the critical temperature.

Summary.

The Nernst-Eucken method of measuring specific heat has been extended to temperatures up to $410^{\circ} \mathrm{C}$. The specific heats of the ferromagnetic substances nickel and Heualer alloy have been measured úp to temperature considerably above their cntical points, and no discontinuties in the values of the specifio heat have been found. Magnetic measurements have been obtained simultaneously with those of specific heat in order to investigate relationahipe between the two effecte.

Heat treatment of Heusler alloy rcsulted in a considerable reduction in the saturation intensity of magnetsation without a corresponding decrease in the value of the specific heat

```
* Weurs, 'C R.,' vol. 178, p 1871 (1924).
\dagger Honds and Ôkubo, 'Phy: Rev ' vol, 10, p. }740\mathrm{ (1017),
\ddagger F. Wover, 'Mitt s.d. Kalser-Wilholma Inst. I Eisenforschang ' (1022).
| Benediaks, 'Journ. Iron and Steol Init,'' II., p. }242\mathrm{ (1012).
|| ' Phil. Mag.,' vol. 48, p. 299(1824).
```

Endence that these effects are not due to the presence of impurity nor to inequalities of temperature is presented.

The results of the experimente do not appear to be in agreement with the Weiss theory of speofic heate of ferromagnetio substances.

We are indebted to the Colston Research Society of the Unversity of Bristol for a grant towards the expenses of the investigation. Our thanks are due also to Prof. Chattock and Prof Tyndall for valuable suggestions and entriciems.

On the Change of Refractive Index of Iinseed Oil in the Process of Drying and uts Effeot on the Deterioration of Oil Paintings.

By A. P Laurie, M.A, D.Sc.

(Comrnunicated by Sir Arthur Schnster, F R S - Recenved April 30, 1928)
The following paper is the results of expenments undertaken for the information of the Commottee appointed by the Hoyal Academy to investigate the problems affecting the durability of pictures.

One of the main defecta of the modern picture in oil is that in course of years there is a lowering of tone over the whole of the picture-in contrast not only to the early ifitcenth-century pictures in oll, but to many of the later sehools of painting, such as the Dutch protures. As the medum-linseed, walnut or poppy oll-rs the same, and as the modern painter uses in many casee the mame pigments, and in other cases nuperior subetitutes, the cause of this lowering of tone must be found rather in the unscientific methods of using the materials than in the materials themselves This view is confirmed by the fact that an examination of modern pictures-by which I mean pictures painted in the last hundred years-reveals marked differences in the extent to which lowering of tone has taken place The pigments, if properly selected, being permanent under the conditions in a picture gallory, the lowering of tone must be ascribed to the meduum This necessitates a study of the properties of the medium with a view to finding out the reasons why lowering of tone taken place
It is well known that oxudised films of all these oils yellow with age, linseed oll filme yellowing more than poppy or walnut oul. 太uch yellowng will alter some pigments more than others-pugments at the green and blue end of the
apeatrum nore than pigmenta at the red and yellow end, and a transparent more than an opaque prgment. A prgment, for instance, such as cobalt bluc, if painted on thickly, consisting as it does of transparent blue particles, and inta the mass of whoh the light penetrates deeply, will be more ufficted than an opaque blue pigment

I have seen examples of cobalt blue in oil which have become black in 10 years, exposed to the ordinary light of a atudio. A couple of montha' exposure in a window, so an to bleach the yellowed oll, restored the colour

Besides the nature of the pigment in the oil, the amount of oil prevent and the thickneas of the panted layer will obviously all have thesr effect, the oll nasing to the surface if a pigment ground in excess of oil is panted on thickly.

The conditions governing this yellowing, the effects of light and time and moisture, are all well worth in vestigation
There is, in addition to the yellowing, another change which may take place in the oil which would cause lowering of tone. It 18 known that when the puinter has painted uver a portion of his picture, in rourse of time the underpainting shows through, and if a checkboarl of white and black squares 18 painted over with white lead in oil till invisible, it gradually shows through the over-painting in course of time. This has been explaned by gradual interpenetration of the pigment by the dried oul film, causing an increase of translucency, but if that is the explanation, one would expect pigments ground in oil and kept in tubes to grow more translucent, and I am not aware of any evidence to that effect. A more reasonsble explanation is that the linseed oll film, which we know as slowly undergong changes which alter the first drying is causing it to increase in density, is at the saine time increasing in refractive inder.
Pigments may be regarded as transparent bodies of high refractive index.
When light is passing through a transparent medrum of low to a transparent medum of high refractive index, part of the light is tranminted and part refected. The ratio of transmutted and reflected lught depends upon the angle of incidence and upon the planes of polanzation, and on the difference between the refractive indices of the two media. The well-known equations indicate that an increase in the difference between the refractsve indices of two media is accompanied by an inorease in the amount of reflected light It is sufficient Lor our purpose that the greater the difference between the refractive indices of the two medsa, the more light will be reflected at the interface, and the less transmitted, other conditions being the same.
Abney's researches on pigments show that the light reflected by them VOL CIII.-A.
covers the whole of the spectrim, but with an excess in certain partions, or as we might crudely express it:-Vermilion reflectes a mixture of red and white light, ultramarine a mirture of blue and white light, and so on

If, then, we are jutified in regarding pigments as consisting of tranaparent partclen with thr property of absorbing certain parts of the spectrum, wo should expect to find their apparent opacity and brillancy depending on their refractive inder and the refrnctive index of the medium with which they are mived

That this is so, every painter knows. A chrome yellow, for instance, becomes deeper in tone and less brilliant when air is replaced by water, and atill more deep and lowered in tone when water 19 replaced by ool

In the first place, it reemed to me of interest to take aome of the commoner pigments of the artint a palette aud mux themin and grind them in media of high refractive index. For this purpose I took bromo-naphthalene, which bxy a refractive index of 1 65, and methylene-todde saturated with sulphur, which has a refractive index of about 18 White lead mixed with bromo-naphthalene becomes a greyish translucent powder, while the pale yellow, like pale radmum and pale chrome yellow, becomes orange

The investigations of Breyer, in the study of zinc oxide, and Depew in Ruby and Green, have shown the transparent crystalline nature of white lead and zino oxide In their experiments the pigments are very highly dispersed and examined anth immersion lenses up to 1,500 diameters ('Chemical and Metallurgical Engineenng,' vol. uxviu, p. 53) Therr examanation was made in ordinary media.

In each case I ground the pigment with a muller in the medium, much as would be done in prepanng it for une, and examined it under a quarter-inch objective with transmitted light, using the three media, linseed oll, bromonaphthalene, and methylene iodide

White lead when ground in liromo-naphthalene proves to consist of transparent, doubly-refraoting crystals. Zinc oxide is equally transparent With the exception of white lead and lead chrome and vermulion. all the pigments I examuned were apparently isotropic. Professor Eibner describes the cadmum yellow as consisting of hexagonal crystala, and in order to decide whether any or all of these pigments are in resilty crystalline, it will be necessary to examine them under the higher powers in hquids of much higher refractive inder such as a fused mixture of sulphur and selenium

By examinng plgneents in this way, and finding how high a refractive inder wea required to make theru appear transperent under the microscope,

I have been able to prepare a rough table of order of oparity for the more moportant bright pigments, starting with those which are tranaparent in hngeed onl and ending up with red oxide of iron, which proves to be opaque, even in methylene iodide saturated with sulphur
The following table shows the pigments arranged both in order of oparity and in order of colour-the plament nt the one corner, namely red oxide of iron, being both opaque and red would be less affected by changes taking plare in the linseed oll, while Prussian blue and cobalt blue at the other extreme would be most affected

Red	Yellon	Creen	Hlue
Madder Alizarine Jakes	colbalt Y'pllow	Viridan	Cobalt Hlue Pruasian Hlue
Burnt Sionnu	Rave Stenna		Ultramarine
Vermilion.	Chrome Yelluw Yellun Ochre	C'obalt Groen	Cerulean Blut
Cadmum Scariet	('ulminm Yellowr		
Venctian ladian Bed			

It is obvious that such a table, while not pretending to be quantitative, supplies the artist with useful, practical information as to when he should use a pigment for solid painting and when he should use it for thin glazing

The next question which I investigated was-whether a linseed oll film does alter in refractive index. For this phurpose I selected a linseed oil whioh had been prepared for artists' use, by exposing "cold-pressed " oul to anr and light over water A film of this oll was painted out on the glass surfare of a Herbert Smith refractometer. Its refractive index measured with a sodium flame was 1480 It was kept in the dark and allowed to dry and measurements taken from time to tune The dagram on \mathbf{p}. 180 gives the result of theas mexsurements
There 1 evidently n couwiderable rise in refractive index during the drying process, and that a lowering of tone takes place during this process is quitwevdent if we compare pignents freshly ground in oil with the same pigmentoil maxture when the oll is dry But from the point of view of thas investigation the interest was whether the rise in refractive index was going to continue On July 16 the refractive index was 1492 , and on July 16-that was two days

CHANGE IN REFRACTIVE INDEX OF LINSEED OIL WHILE DRYING
Fic 1.
after the film had been surlace dry-1 494 From that time onwurde the rhange in refractive index has been alow but continuous

During this tume there has been a slight drop in temperature, the temperature being from 17° to $19^{\circ} \mathrm{C}$. during the summer months, and now being about $12^{\circ} \mathrm{C}$. It was necessary therefore to make a sught temperature correction on these readngs, the $R I$ changing 0001 for a range of $10^{\circ} \mathrm{O}^{\prime}$

Judging by these results the film is slowly but steadily increasing in refractive inder, and ay we know that alow chemical changes, accompanied by increase in denaty, contanue in linseed oll for years, we may, I thunk, safely assume that thin increase in refractive index is going to continue-that consequently the lowering of tone which takes place in oil pictures is due not only to the yellowing of the oll, but also to its increase in refractive index. A change in refractive index from $1-480$ to $1-500$ causes a perceptrble degradation of tone in white lead and makes a pale cadmum yellow appear dull and more orange in tint

The bearing of these experiments on the practice of the oil painter is obvious, and it is of anterest to aee how far the earher painters had learned by atudio tradition to avord these dangers.
In the time of the Van Eychu-and considerably later--there is nufficient
svidence, from unfinushed pictures, to show that the practice was, beguning with the white geaso panel, to lay in black and white, and even colour, in a low refractive index medum hike egg or saze, and to glaze thinly with oul pigments over this under-psinting. Under these conditions the increase in refractive index of the oll would tend to correct the lowening of tone owing to the yellowing of the oll, as more light would be reflected from a bright tempers surface below A very interesting example of this technique is to be seen in the unfinished picture in the National Gallery by Michael Angelo, No. 790. Later, when the practice of beginning in tempera wes dropped, the paintinga were still done upon a white gesso and the high lights were painted very thinly on the geaso, as I have shown by actual borings and measurementa, so as again to ensure luminosity from the gesso below

It is evident from this brief account of 15th and l6th century methods of painting oil pietures that the pariters of that time had thoroughly masteren the posaibilites of the oll film, both in the matter of yellowing and of change in refractive index, and there can be no question that under modern conditions of painting in oll, the neglect of these two factors is the explanation of the lowering of tone which no often takes place, and if results an permanent as those of the Old Masters are to be obtaned, the painter in oul must take both these changes into account and modify his methods accordingly.

In conclusion, I wish to thank Mr Balsilis of the Mineralogical Department of the Royal Scottish Museurn for the assistance he has given me in preparing this paper

The Ejoct of Oocluded Hydrogen oas the Tenoile Sorength of Irem.

By L. B. Pymu, M.Sc., A.R.S.M.

(Obmmunicated by Prof. H. C. H. Carpenter, E.R.S-Received Hay 10, 1026,)
(Plates 6, 7.)
For mainy jears attention has been directed to the embentiling of iron and ateel by ecid, and it is generally considereal that the embrittling is dup to the occlusion of hydrogen by the metal.

This subject is of particular importance in thoee branchen of the iron and ataed undustry where acid is used to remove oxide from the surface of the metal before tinning, galvanixing, wre-drawing, eto. There is aleo some ramson to muppose that oertain boiler falures may be connected with the occlusion of bydrogen by the metal. A large number of invertigations dealing with various aspects of the subjeot have been pubhehed, notebly by Longranir (1), Andsew (2), Fuller (3), Coulson (4), Parr (5), Watts and Fleokenstein (6), Langdon and Groseman (7) and Edwands (8)
In the above-mentioned papars much interesting quantitative data are available on the effect of hydrogen on the mechawical properties as determined bead testa, impact tests, alternating stress teste, and the Eriohben test. For the purpose of this paper it does not seem necessary to give an acoount of the resnite described in these papers, for comparatively little data dealing with the tensile propertieas of aron have bean recorded.

The experimental work carried out during this researoh may be divided anto three sections .-.

I Tests on iron in the normal finely crystalline condition.
2. Teste on single iron crystals.
3. Testa on the boundary between two large orystals.

Fig 1 is included to illustrate tho very striking type of result obtained wher specimens made up of large cryatels ate embrittied by hydrogen. The photograph shows a strip of iron 8 inches by $1 t$ inches by $\frac{1}{1}$ inch, mainly componed of crystals about 1 inch in diameter. The strip wes piokled for 90 ninutes in 20 per cent. sulphuric avid, and wes then snapped into pieces with the greatest ease. In the illautration it is clearly evident that fracture took place mainly through the crystel boundaries. Only in one place, neax the top of the atrip, hed the fracture passed through a oryital.

Fia 1

Pferl. Roy Soc Pior , A, col 112, Pl. 7.

It hie luag beap known that ferroua metals embrittled by pickling recover their normad properties on standing, and for thes reason quantitative tests can ouly be satiafactory if this tume factor be taken into account It was decided, therofore, to carry out the tensilo tests in the first matance whule the specimens were actually immersed in the acid. Sunple ammersion was nut astisfactory, for the corrosion occurring during the test greatly decreased the accuracy of the results. Electrolytio pickling was used throughout the oxperiments to be described, for by this means corrosion was enturely prevented.
The simple apparatus which was employed is illustrated in fig $2 \quad \mathrm{~A} \geqslant \mathrm{t}$-inch length of 1 -inch diameter glass tube (A) was closed at the lower end by a rubber

Fia. 2.
bung (B), through which parsed one end of the text prece (C). A 1-inch diameter coil of platinum wire (D) within the glass tube formed the anode, and the test prece was made the cathode. The upper end of the test prece carried a rubber duse (\mathbf{E}), a loose fit on the top surface of the glass tube to prevent the acid spray
from damaging the testing machne In some experimenta a ooil of amall diameter rubbet tubing (F^{\prime}) was wound round the glass tube and carried a stream of oooling water. With the aid of a funnel with rubber tabe attached the sulphurc acid eleotrolyte was introduced after setting up the epparatus in a $\mathbf{1 0}$-tou Buckton tensile machine.

The matenal employed was $\frac{1}{2}$-inch diameter mild steel rod. All the carbon, however, was removed by a prolonged annealing at $750^{\circ} \mathrm{C}$. in hydrogen gas, leaving iron of the following composition -

$$
\text { C, nil , Sı, } 0064 \text {; S, } 0034 \text {; Mn, } 0.46, \mathrm{P}, 0.020 \text { per cent. }
$$

Some of the material was tested in the fully annealed, finely oryatalline condition as it left the furnace, while the remainder was converted into angle crystala by a method adapted from that devsed by Carpenter and Elam for converting finely crystaline aluminum into single crystals (9 and 10)

Tent preces were turned to the following dimensions --

The machnning was carried out very carefully so as to avoid any distortion of the material of the test piece. The parallel portion was finished with emery papera down to the 000 grade so as to give a very smooth surface

Trats on Finely Crystaline Iron ($\mathbf{1 5 0}$ Crystala per square mm)

As a standard for comparison a number of test pieces were broken in the normal manner. The results are given in the following table :-

Table I --Finely C'ryatalline Aggregete Tested in tho Normal Manner.

No. of lest	Tenaile strength Tons per square meh.	Fiongation Per cent. un 1 inoh
$\begin{aligned} & 1 \\ & 2(A)^{*} \\ & 3 \\ & 4 \end{aligned}$	1816	020
	18.50	635
	18.42	625
	1860	690
	Arerage 18.34	Average 028

[^41]Bome prelimunsry testa mere oarred out to determine the most suitable conditoons for carrying out the tensile tests during pickling The variables taken into acoount were..-

1. The strength of the sulphuric acid electrolyte

2 The atrength of the electrolysing current.
3 The time the current passed before begrining the loadung

1. The diameter of the test precess
b. The rate of loading
B. The temperature at which the test was made.

1 Acid strengthe of $5, \mathbf{1 0}, \mathbf{2 0}, 25$ pre cent concentrated sulphuric acid (by volume) were tried, but no dufference in resulta was observed Ten per cent; acid was used in all further tests
2. Tests were carried out using currents from $\frac{1}{1}$ to 4 amperes, equivalent to a current density of 02 to 16 amperes per square anch of cathode surface No variation was found proviled that when the heavier currents were employed a rise in temperature was prevented by water cooling A current of I ampere was atundardised.
3. Similar test pleces were broken after electrolytic pickling for $\frac{1}{1} 1,2$ and 18 hours. A quarter of an hour was insufficient, f an hour appeared to be sufficient, but to avoid any uncertanty pickling was continued for 1 hour in all the tests which followed.

No further change could be detected by prolonging the pickling beyond 1 hour
4. Test preces of the same material, but with three different dasmeters for the parallel portion, wers tested under identical conditions, and gave almost identical results. It was clear, therefore, that the conditions so far determuned upon gave a complete penetration of the hydrogen even in the test pieces of larger diameter than those employed in the remainder of the work
b. The time taken from the commencement of loading until fracture occurred was vaned from approximately 2 to 30 munutes without any appreciable effect on the final reaults. An effort was made, however, to keep this time constant at 10 minutes.
6. The temperature at which the experinent was carried out was found to be a factor of considerable importance. Comparatively ansill varistions had a marked anfluence not only on the tensile strength and elongation, but also upon the actual path of the rupture The lufluence of temperature will be made slear in what follows.

In Table II the resulta are given for tests on the finely crystaline aggregute
at a temperature of about 28° C. and under the standard condrtions already mentooned (One ampere for 1 hoar, 10 per cent salphurio ectd, fracture in 10 manutes)

Table II.-Finely Cryatalline Aggregates Tested during Pickling at $25^{\circ} \mathrm{O}$.

No of teat	Tensile strength 'I'ons per aquare inch	Elongation Per cent on I inch	Remarks
5	1010	8-0	
0	18.72	100	Interurystalline fractures,
7 (B)	15×0	110	\} interurybtaluno irsoturen,
8	1714	185	
	Average 10 (18	Avprage 10.0	

The tensile strength shows a docrcase of 9 per cent, while the elongation is. only one-sixth of that obtamed in the normal test The most striking effect of the ocrluded hydrogen as seen in the nature of the fracture, which passes entirely between the crystals (interirystalline) The specimens broke suddenly as if made from a hard and brittle metal, the fracture frequently occurring mear the shoulder. The fracture was, in fact, smular to that obtaned when metals are brokn at temperatures near them melting ponts, in which circumstance an intercryataline fra ture also results (11).

Fig 3, A, shows a sice a finely cryatalline test prece fractured under normal conditions The specimen shows very marked nerking at the fracture. Fig. J, H , shows a piece of the same molal broken during pickling. The very minall elongation and absence of necking are clearly evideut.
As the temperalure of teating was raseed, the tensile atrength increased a hatic, the elongation increasel most markenlly, and the character of the fracture changed. Figures to illustrate these points are given in Table III
The tensile strength is intermedate between that obtamed in the normal test (18 34 tons per square inch) and that obtained durng pickling at lower temperatures (1669 tony per suluare inch)
The elongation figures show a progressive incrense with increasing temperature, while the fracture changes from intercrystalline to transcrystalline *

[^42]Table III-Finely Crystalline Aggregates Tested during Picking at 'Temperatures from $30^{\circ} \mathbf{C}$. to $50^{\circ} \mathrm{C}$.

No of teat.	Tempersture of tent. ${ }^{\circ} \mathrm{C}$.	Tenaile utrength Tons per wquere Inch	Plongation Per cent on 1 moh	Hemarky
0 (C)	30	1754	22π) Intercryataline fractures,
10	35	1782	255	\} with uracks and a ten-
11	35	17 4	265	dency to local contraction
12 (D)	40	1780	420	\{ Tramoryataline Iraclurea,
13	45	1783	490	\% with cracka and locial un-
14	50	175	440	\int trartion
		Averag* 1771	Avernge 34 日	
18(F)	40	17.7	298	\} Maximum load reacherl, but
18(N)	40	17 41	345	\} preen not broken

Specimens 9, 10 and 11 broke with an inter ryatalline fracture accompanied by a number of amall cracke in the parallel portion, and No 11 showed, in addition, a tendency to nerk at the frasture Fig 3, C, shows the fracture and cracks in No. 9
In the case of specunens broken at the higher temparatures, the fracture was accompanied by a considerable amount of local contraction, und many cracks were visible The cracks were approvimately at nght angles to the length of the specimen, as a rule short in leugth and not very deep Near the fracture the cracks had opencl up under the influence of the stress und the fracture itself occurred in the position of the greatest crack. Fig. 3, J, shows a fracture, charactenstic of this type

A serios of test pieces showing stages in the approach of fracture were prepared by intercepting the straming at various loads Two pheces from such a semes are illustrated in fiy. is at E and F In both piccep the maximum load had been reached In F local contraction had searcely spt in, but the cracks may be seen over a considerable portion of the gauge length, and in the actual specimen minute cracks may be gren farly uniformly distributed over the whule of the parallel part
In E a conaderable amount of necking hal occurred, some of the cracks had opened out to large fissures. Fracture was about to octur.
Sections through these cracks have been prepared and examined under the microscope. The large cracks were partly intercrystalline and partly cleavage. The amallest cracks (visible only under the mieroscope) were due to cleavage, each passing in a straight line through or nearly through a orystal.

Sections through the fractures showed that the mana part of each was transorystalline in character, the minute cryetals having drawn down by alp, and in consequence exhibited after etching the darkened surfaces charsoteristic of coldworked crystals. As already indicated, the remainder of the fracture passed through the cleavage planes and along the crystal boundaries.

In new of what is stated in the section of this paper dealing with single crystals, it must be pointed out at this stage that the cracks in finely orystalline uron which have just been describod were not due to strains set up in the metal durng the machining operations

Some tests were carried out to determine for how long the effect of the oceluded hydrogen remained after pickling. Specimens were pickled for I hour and then rapidly washed in cold water and dred Results are given in Table IV.

Table IV. - Finely Cryatalline Aggregate Teated after Pioklung.

No of test	$\begin{aligned} & \text { Tume elapaed } \\ & \text { uince } \\ & \text { pickling } \end{aligned}$	Tansllo atrength Tons per aquare inoh	Elongation Per cent on 1 Inch	Hemarks
17	*	18.17	090	A fow amall crucke
18	15 senonds	1844	60 0	1 A
18	31 minutes	18. 30	66.5	, Narmal Iracturen
20	20 minutes	1850	620	
		Average 1837	Aversge 630	

* This npecimen mas not waihed, but was broken wet immedistely after pioling

It appears from these results that the effect of the hydrogen does not parsist for more than a very short time This cannot in reality be true, because shock testa reveal a brittleness which remanns long after the end of the pickling It has been shown by other investigstors thet ocoluded hydrogen 18 driven off by cold workng and by warming. It seems most probable, therefore, that in the early atages of the tensile test, when pracking has been discontinaed, the hydrogen is driven off and the normal properties regained

Tests on Single Crystals.

The resalts obtamed from four sangle erystal teat pieces of curcular crosssection broken without prekling are given in Table V.

The method of frecture in these specimens was sumilar to that obtained by Carpenter and Elam in single aluminium crystals of circular cross-section (12). The crystals flattened in one dimenaion drawing down finally to a "double knife-edge" or grooved fracture.

Table V.-Single Crystale Tested in the Normal Manner

No. of teat.	Tenslie atrength Tond per equare inch	Elongration Per cent on 1 inch.	Remarka,
21	1022	550	
22 (G)	1082	575	Double kulfe edge or
23 24	$10 \cdot 46$ 1081	555 $\mathbf{5 3} .0$	grooved fracture
	Average 10 ¢5	Average 652	

Results obtained from aingle crystals broken during picking are given in Table VI.

Table VI -Single Crystals Tested dunng Fickhing at $25^{\circ} \mathrm{C}$

It will be seen from these fgures that the tensile strength of the aingle cryatal was scarcely altered by occluded hydrogen, and that the elongation was only reduced by $12 \frac{1}{6}$ per cent. The presenco of the bydrogen, bowever, entirely altered the appearance of the fracture Fig. t, G, shown a single crystal broken in the ordinary manner, while fig. $4, \mathrm{H}$, shows one broken during pickling. In these two, onc-half of each test piece is whown in side elevation and the other half in end elevation Cracks may be scen running arross \mathbf{H} at right angles to the length, and fracture occurred at a point where one of the largest cracks hal appeared

In a number of specimens straining was stopped at various stages in the test and the specimens examinel The cracks did not develop until a considerable elongation had coccurred, by which tome the crystals had fattened The cracks appeared on the broad sides of a crystal and were alwaya at right anglea to the length of the teat piece. They passed into the crystal approrimately at night
angles to the surface, and penetrated to an mocreasing dopth ${ }_{d}$ as the strainag was more severe. In fig $4, I$, a single crystal is shown at a stage when the first crack appeared Fig 4, J, a later atage, is shown where cracks have oceurred thronghout the parallel portion, and fig. 4, K, shows one crack opening out at a point where fracture is about to occur The reverse side of K is ahown at K^{\prime}, where a lens-shaped area may be seen at the point where fraoture 18 about to occur, auch as waq referred to by Carpenter and Elain in connection with sluminium crystals (13).

In view of the work described in the next section, where it is shown that fracture through cubic cleavage planes may orcur at low stresses when crystals are stramed in tenaion during puchling, it was at first thought that the cracks 1n queation were due to incomplete cleavage. The fact that the cracks were alwaya very nearly right angles to the axis of stress made this explanation unlikely, for there was certanly some variation in the orientation of the crystals tested.

Investigation showed that the cracks were not due to cleavage and were not, in all probability, connected in any way with crystallographic planes A number of crystals were stramed untul the cracks appeared - that is, untal a stage was reached such as that illustrated in fig 4, J. Sections were cut exactly parallel with the cracks and then polsher Needle point indents were then madn on the polshed surfaces, and, from the shape of the salbouettes so produced, it was clear that the acctions did nut all concide with a cube plane (17) and (18) A further prool that the cracks were not due to cleavage was obtained by subjecting a cryatal, in which the cracks had been produced, to a sudden blow before the embrittling effect of the hydrogen had disappeared. Cleavaye fracture is readily produced in this manner and Gig. 4, L , shows a typical case In the lower fracture a cubic cleavage plane makes an angle of about 48 degrees with the cracke prevously produced; the upper fracture, ulthough it appears to pass straight across, is in reality made op of two cleavages, both at 45 degrees to the cracks.

The only simple explanation for the formation of the cracks which remained was that they were due to the straining of the erystals during the machining Attention must again be drawn, however, to the great care taken in the turning and the excellent surface finsh produced. The view that the cracks were due to atraining was supported by some simular tests on single crystals in strip form. These were milled to size, the outter travelling parallel to the direction of the tensale stranng. In these test pieces дo cracks developed.

To teat this possibility, a further supply of single crystal test pieces were
turned, but they were annealed beforn the tensale teat Annealing for 1 hour at 650° ($)$ did not prevent the formation of the eracks during the subsequent testing Anncaling for 1 bour at $\mathbf{8 5 0} \mathbf{0}^{\circ}$ (${ }^{\prime}$, howevar, preventerl therr formation except for some very amall ones in the mmedinte neighbourhond of the actial fracture.

The appearance of annealed crystals when ctrhed in dulute nitrir atid way particularly intereating and instructiva Minute eryatals had formed, due to recryatallisation, in four bands along the length of the parallel portion Two of these bands were about $1 / 10$ of an inch wide and the other two sompwhat less than this The test prece was atill essentially mono-cryatalline and showed the usual light and sharle effects caused by the reflection of hight from the facets of the minute etching pits. The bands of minute crystals would, in fact, probably not have been observed had their presence not been expected. The hands were distributed in a symmetrical manner--a broad band at each end of a diameter, and a narrow band at anch end of n diameter, but the tho diametery were not at right angles

The recrystallisation makes it. clear that some surface cold working ocrurred during the machnnag The symmetrical arrangement of the recrystallised parta shows that some cryatallographic planes (juiging from thre appearance of the etched cryutals, probably either the octahedral or the cosetetrahedral planes are more liablo than others to be affected by the turning operation (19) Finnlly. the absence of cracks in single crystals tested nfter a sutable annealing treatment indicates that the cracks in cryatals not mo treated were due to machining strains which are intensufied in some way by the occluded hydrogen.

Table VII.--Single Cryatals Annealed for 1 hour after Machining and Broken during Pickling at $25^{\circ} \mathbf{C}$

In Table VII (p. 191) some results are giten for angle cryetals andealed afton machining and broken during pickling. It will be seen that when machining strains are absent occluded hydrogen has no important effect on either the tensile strength or the elongation.

Tests on the Boundary between Two Large Crystals,

Teat pieces were prepared from matenal made up of cryatals $\frac{1}{2}$ to $\frac{1}{4}$ of an inch long, mont of them occupying the whole crose-section of the rod. The parallel portion of such test pieces consisted of two or three orystals.

These test pieces when broken in tho ordinary way always faled by the drawing down of one of the cryatals to a knife-edge fracture, the tenale strength being practically the same as if the whole parallel portion had been occupied by one crystal. When broken during pickling, buwever, very different results were obtained. The five following types of fracture have been encountered --
(a) The fracture passed entirely through the boundary between two crystals. (Intercrystalline)
(b) The fracture passed entirely through one of the crystals exactly as in the case of a augle crystal tested during pickluy. (Transeryatalline)
(c) The fracture passed entirely through cleavage planes (Cleavage)
(d) The fracture was partly intercrystalline and partly cleavage.
(e) The [racture was partly intercrystaline, partly cleavage, and partly transcrystalline

Tensule atrength and elongation figures for one or more of each of these typess are given in Table VIII.
Of these specimens, three are illustrated at M, N and 0 in fig. 4, representing the intercrystalline, the cleavage, and combined intercrystaline and cleavage types respectively 0 is of particular interest, as it shows, in addition to the type (d) fracture, many cracks, both intercrystalline and cleavage, throughout the parallel portion. At the fracture one amall crystal broke away and was not included in the photograph

It is of interest to note the very low tensile strength accompanying the intercryatalline type of fracture and the exceedingly low elongation accompanying both intercrystalline fractures and cleavage fractures The tenaile strength of apecimens showng a purely cleavage fracture was found to be very varisble. (The lowest value was 496 tons per square inch and the highest $12 \cdot 64$ tons per mquare inch) It is probable that the angle between the cleavage plane and the axis of atrest is the determining factor in this coanection, for it wes found that the nearer this angle approached 90° the lower was the tensile atrength.

Table VIII -Test Preces Consisting of Two or More Crystale in the Parallel Portion Brokan during Pickling at $25^{\circ} \mathrm{C}$.

No, of tert,	Temile itrength Tons per equere lach.	Elangetion Por cent. on 1 noh	Pemarts
$\begin{aligned} & 97 \\ & 6(\mathrm{M}) \end{aligned}$	884 880	$\begin{array}{r} 70 \\ 7.0 \end{array}$	$\} \begin{gathered} \text { Type (a) } \\ \text { Intereryatalline fraotaro } \end{gathered}$
30 40	1038 11.72	$\begin{aligned} & 40 \mathrm{~B} \\ & 260 \end{aligned}$	$\} \begin{gathered} \text { Type (b) } \\ \text { Trencryetalline (ructure } \end{gathered}$
$42(\mathrm{~N})$	486 124	10 30	$\text { \|\} Clesvage fracture. }$
43	$\begin{aligned} & 1067 \\ & 1060 \end{aligned}$	85 60	$\left\{\begin{array}{l} \text { Type (d) } \\ \text { Intercryatallino and oleav. } \\ \text { age Irachure. } \end{array}\right.$
45 (0)	1100	100	$\left\{\begin{array}{c} \text { Type (d) } \\ \text { With eleavage and intor. } \\ \text { cryutalline cranks } \end{array}\right.$
40	837	40	$\left\{\begin{array}{c} \text { Type (e) } \\ \text { Intorcrystaline, transcrya* } \\ \text { Lalline and olosvage } \end{array}\right.$

Consideraton of Results

1. Occluded bydrogen has a remarkable weakening effect on the intercrystallune boundary This apphes not only to the boundances between very large cryatals, but also to the boundanes between the very minute crystals of which ordinary iron consists The strength of the boundary between two angle crystals has been ahown to be about of tons per square inch and of the boundary between very small crystals about 17 tons per square inch It is probable that this marked difference is due, not to any reai varnation in the strength per unit area, but to the dufference in the ratio between actual area of fracture and the cross-sectional area of the test prece in the two cases. This ratio is certanly much greater in the case of the aggregate than it is in the case of the two large cryitale.
It may be mentioned here that a few experiments which have been made indicate a progressive fall in boundary strength as the crystals are larger. Since the tensile strength of iron obtauned in the normal maner is nearly constant over a considerable range of crystal sures (14), the ratio between tensile strength as normally obtained and boundary atrength as obtained by teats during pioklong will be found to vary with the size of the crystals in the specimens tested.
2. In addition to ite effect on the boundaries, hydrogen decresses the cothesion acrose the cubic cleavage planes, a pull of $\overline{5}$ tons per square inch applied at nght angles to the cleavage plane being sufficient to cause separation
3 Orcluded hydrogen does not prevent deformation by slipping on the icosetetrahedral planes of the iron crytal (15) Judging from the behoviour of the single crystals during these tests, it seems inprobable that the hydrogen has even any important effect on the resustance to movement along the elip planes.

4 In a single iron cryatal certain crystallographe planes or durections are particularly lable to damage during machining operations (16). The surface cold working does not become evident in an ordinary tensile test, but is made very evident when the tent is made during pickling
b. The effect of hydrogen on the finely crystalline iron is very much less marked at temperatures a little above room temperature Under these oonditions the cryatal boundaries are not so greatly weakened. Fracture taken place manly through the crystala atter they have drawn down by slipping, but the point at which fracture occurs is determined by craoks which form as a result of a limited oleavage and intercrystalline falure. The cracka probably onginate in those crystals so set at the surface of the test plece as to present a cleavage plane at right angles to the atress, these being particularly lable to fracture at low stressen. The minute notches so produced lead to large cracks. which, deoreasing the effective crosa-section of the test prece, cause a low value to be recorded for tenaile atrength.
© Unless the pickling were continued during the atressing the effect of the hydrogen was scarcely noticeable in these tests This indicatea how limited in value in the tensile teat as a means of nevestigating mysterious failures which sometimes occur in steel structures for which ocoluded hydrogen is suspeoted as being responsible

The author wishes to express his gratitude to Prof. C A. Edwards, D.So, for allowing this work to be carried out in his laboratories and also for the encouragement which he constantly gave.

heferences.

(1) Longmuir, ' Journal of the Iron and Steel Institute,' No 1, p. 163 (1911)
(2) J H Andrew, ' Tranactions of the Faraday Boolety,' vol 9, p 310 (1919)
(9) T. B. Yoller, ' Tranasctions of the American Eleotrooheraloal Society,' vol 52, p. 247 (1017), and vol. 36. p 118 (1819).
(4) Coulson, 'Trananchons of the Ameriosn Electroahemical Soclety,' vol 32, p 237 (1017)
(6) \triangle W. Parr, ' Univeralty al Chinoin, Bulletin No. 18 ' (Janaary, 1917)
(6) Watts and Fleokenatein, 'Trammotiona of the Amerioan Eleotroohomical Soolety,' vol 38, $p 160$ (1018).
(7) Langdon and Grossman, 'Transactions of the Amenoan Eleotrochemical Sooistv,' vol 97, p. 543 (1020)
(8) C. A Edwards, 'Journal of the Iron and Steel Inatitute,' No 2, p 9 (1924)
(9) H O. H Carpenter and C F Elam, ' Roy. Foo Proc.,' A, vol, 100, p 329 (1921)
(10) C. A. Edwarde and L. B. Pfeil, 'Journal of the Iron and Steel Inatitute,' No 1, p 129 (1824).
(11) W. Rowenhain and D Ewen, 'Journal of the Institute of Motaln,' No 2, p. 118 (1913).
(12) H. C. H. Carpenter and C. F Elarn, 'Roy Soc. Proo-,' A, vol 100, pp. 348-347 (1921)
(13) H. C H. Cerpenter and C. F. Elam, 'Roy. Soc. Proo;' A, vol. 100, p. 346 (1921)
(14) C A Edwarda and L F. Pfenl, ' Jourual of the Iron and Steel Inatitute,' No. 2, p l00 and p. 106 (1920).
(15) L B. Pfeil, ' Journhl of the Iron and Stoel Institute, Carnegie Scholarship Memoirs,' 1026.
(18) Beo Prof. Carpenter's contribution to the disenssion of Edwards' and Pfeil's paper, 'Journal of the Iron and Steel Institute,' No. 2, p. 114 (1925)
(17) F Oamond and G Cartaud, 'Journal of the Iron and Steel Inatitute,' No 3, p 44 (1006)
(18) L. B. PYoll, 'Iron and Steel Institute, ('arnegie Soholarship Memoirs ' (1026).
(10) C, F'. Elam, 'Jouranal of the Iron and Steel Institute,' No 2, p 112 (1925)

The Infra-red Secondary Speotrum of Hydrogen.

By T. E. Aumbone, M Sc., Physics Department, The Univeraty, Sheffeld.

(Communcated by Prof. B. R. Miner, F R 8.-Recerved May 19, 1926)
(Platil 8.)
The first observations of the " many linod" apectrum of hydrogen in the inlra-red were made by Croee," who measured the wave-lengths of 72 lines between 6836 A.U and 8027 A U. to the nearest integer on the Rowland aystem. Porlezza \dagger measured the wave-lengths of 43 lines between H_{a} and 6963 A.U. with greater accuracy, but failed to observe lines of greater wave-length than 7000 A.U, even though his photographic plates were specially sonsitised. Watson \ddagger had likewise falled to detect lines in the infra-red above H_{a}, though his plates were treated to record up to 8000 A U Croze§ corrected some of his earber lunes and added nome 27 more, but did not extend the further hmit beyond $8027 \mathrm{~A}_{1}$, and his later results were still only given to the nearest integer As Merton and Barratt|| had investigated the sccondary spectrum only for wave-lengths less than \mathbf{H}_{*}, it was thought dearable to re-inventigate the infra-red region, to obtain a more accurate record of the wave-lengthe of the lines, and to push the limit, if possible, to longer wave-lengths.

A plain diffraction grating spectroscope fitted with quartz lenses was used. The grating had 14,500 lines to the inch and gave a dispersion of 25 A per mon. An H-shaped vacuum-tube, fitted with aluminium disc electrodes at the heads of the upright stems, contaned hydrogen, and to one stem of the tube a large glass bulb was acaled, so that a considerable vulume of gas was available at about 2 min pressure. The capllary tube connecting the stems was 2 mm , internal dameter, and light emerging from tho end of this tube parallel to the tube was directed on to the slit of the spectroscope with a quartz lens. In this "end-on" position the intensity of the secondary spectrum was at a maxmutn

The discharge was excited by an induction coll with hammer break, and it was found that addition of inductance or capacaty to the clrcuit reduced the sbsolute intenaty of the secondary visible apectrum. The intensity was, bowever, incressed by running the coll on a high voltage (60 volts) with rheostats,

```
* 'C R,' vol 152, p 1574 (June, 1011).
\dagger 'Atti. Acond. Lnmen,' vol. 20 (2), p. }176\mathrm{ (August, 1011).
\ddagger'Roy, Boo. Proc,' A, vol. 82, p. 189 (1809).
5'Ann. Pbynique,' vol 1, p 35 (1014).
|f 'Phll. Trens.;' A, vol, 222, p 360 (1022).
```

when the discharge hed almost the esme appearance at each eleotrode, and the intenaity of the $H_{\text {a }}$ was considerably reduced. The large applied voltage had the additional advantage that the conl worked ateadily for houra without attention

Adjustments of the spectroscope were made with light from the Cu or Fe arc, both possessing strong infra-red spectra. A red fllter cut out the second order apectrs. The hydrogen spectrum was photographed adjacently to the uron arc, and an exposure of six or eight hours gave a strong auccession of hnes extending from $\mathrm{H}_{\text {, to }} 8300$ A.U., simular in appearance to the visible secondary apectrum.

It was impossible to focus the whole of thes region of the spectrum on one plate, so it was measured in two sections. Vibual estimates of intensitien (0 to 20) were made on each line, the mean wave-lengthe reduced to vacuo, and wave-numbers calculated.

The photographic plates were sensitised according to a formula developed by Mr. L. Wright in this laboratory. Two solutions, A and B, were mized just previous to use -

Solution A. 0.005 gr . dicyanine dye dissolved in 10 ccs methylated - sprrit.

Solution B. Fifty eca, methylated spint, 50 ccs . datilled water, and 5 c.cs ammonis Sp. gr 088.
The first solution had to be freshly prepared for each plate, but the other could be made up in bulk. The plate was immersed in the bath for 10 to 15 minutes, moning the solution continuously over the suriace of the plate ; then it was dried rapidly in a current of air. As the sensitiveness diminisbed after about three days, plates had always to be sensitised just previous to use. After exposure, they were bathed in a solution of methylated apirit and water to remove any graus of dyo adhering to the surfaco, but even this did not prevent a "spotting" of the plates occasionally Ordinary panchromatic developer was used.

Some 320 lines have becn observed of wave-length greater than H_{a}, and these are recorded in Table I, H_{a} (wave-number $v=15233 \cdot 22$) to $8349 \cdot 52$ A.U. ($v=11979.44$), the wave-lengths being referred to the aecondary standards of the iron arc.* The spectrum, nas atated before, was photographed in two sections, 8349 A U to 6921 A. U. and 6963 A U to H_{a} In the first section two plates were taken, A and B, and the wave-leugths recorded in the table are the mean of calculations on the tro plates, each plate having been measured on the comparator twice In the second section only one plate was taken,

[^43]but it was measured on the comparator three timea, Thus the estimated arror can only be given for linea falling in the section 8349 to 6921 A.U. In a few cases lines appeared on plate A which drd not occur on plate B, and uice verad, bat these lines, without exception, were of intensity 0 or 1 , so that, though observed on the one plate they may have been too daubtful to record on the second, these lines have been noted in the tables by the letter A or B. On the whole, the impression on plate B was slughtly stronger than on plate \mathbf{A}. Four curious anomalies occur which cannot be accounted for ${ }^{-}$lines 7442-39, $7423 \cdot 61,739591$ and 739497 have intensities 1 or 2 im plate A, but 5 or 6 in plate B The photographa were taken without any chango in seting of the apparatus, and, as far as was ascertained, the character of the duscharge did not alter Line $7362 \cdot 18$ in plate B was observed to be a doublet in plate A, 7263.48-7261 91. In sucocrding columns in Table I are recorded the wavelengths in I.A unts, the estimated errors where known, the intensities and the wave-numbers corrected to vacuo. For comparison the wave-lengthe of hnes found by Croze 8029 to 6836 A.U. (Rowland system), and recorded in his two papers, are given with those of Porlezza, 6962•82 to 6566.92 and Plazzi Smith, 6896.2 to 65875 It will be seen that there 18 very little correspondence between the author's renults and those of Croze, both with regard to wavelength and relative intensity of the lines. It is known that the character of the secondary spectrum depends on the conditions of excitation and pressure of the gas, and these factors may account to some extent for the marked discrepancy, but Croze's results published on 1914 differ by as much as 3 A U. from those published in 1911, and has dispersion was anly 185 A U . per mm , whereas the author used a dispersion of 25 A . per mus Porlezza's results are in closer agreement, but even here it should be noted that his measurements** of wave-lengthe of the lines below H_{4} in the vimble spectrum differ from those of Merton and Barratt by amounts ranging up to 1 A U In this region lolow H. the author's results agree with the latter's to within 0 I A.

With regard to the purty of the gas, it was found that in the visible secondary apectrum no lines occurred which are not also rocorded by Merton and Barratt. It is possible that helum may have been present to a small extent, but a photograph taken of the discharge in a tabe contaning helum and abowing atrong band spectra in the visible region gave no infra-red band spectrum in a sixhours exposure, so that it may be concluded that none of the lines here recorded 18 due to helum. Furthermore, two other tubes filled with hydrogen prepared electrolytically, and punfed by passing through a biquid arr trap, produced spectra identical with the first tube.

[^44]Table 1.

Wave-length, 1 A.	Error.	Intensity	Wave-number (Van.)	Weve-length (Croze, RA.)		Intanaty.
				1811.	1014	
	0.02	1	$\begin{aligned} & 1197844 \\ & 12000884 \end{aligned}$			
		2	8380			
28.67		1	1218810			
B. 1611	001	\%	${ }^{67} 80$			
		3	1324488 0585 88			
B $\begin{array}{r}30 \\ \\ \\ 3058 \\ \\ \hline 85\end{array}$		1	${ }_{68} 88$			
1510	001	2	1231932			
04.11	${ }_{0}^{0} 03$	1	3602			
00.08		1	4215			
8098.80	000	1	5020			
01.48 54.61	$\begin{array}{lll} 0 & 00 \\ 0 & 07 \end{array}$	I	1241185			
36.47	$\begin{aligned} & 0.07 \\ & 0.11 \end{aligned}$	1	3988			
H. 3225		1	4830	8027	8080	1
1875	0.00	3	0735			
- 1349	001	1	7884			
$\begin{array}{llll} \\ \mathrm{H} & 07 & 07 \\ \mathrm{~B} & 07 \\ 005\end{array}$		0	83 83 94 83			
B. 780464		0	12004484			
01-55	000	1	0877			
B 8789		1	1045			
8578	$\begin{array}{ll}000 \\ 0 & 00 \\ 0 & 05\end{array}$	2	18 dis			
$84 \cdot 10$		2	21 ± 6			
7013 67 8	008	3	43 470 475			
(000	1	0427			
	0.04	1	6848			
		1	64 20			
	0 0 10000	1	7512		70.00	2
B4727 3.329	002	1	7849			
		J	1260165			
	007	1	1745			
		1	4 4 明			
	003		64			
		0	1118			
	$\begin{array}{lll}0 & 07 \\ 0 & 08 \\ 0 & 01\end{array}$	1	7638 $0+61$			
		$\stackrel{2}{3}$	12724 01			
		1	6841			
	000				7827	${ }^{6}$
1206		3	9621	7810	7809	θ
04.17	$\begin{array}{ll} 0 & 01 \\ 0 & 01 \end{array}$	3	$12810 \cdot 14$			
		1	1836		7797	3
	$\begin{aligned} & 0.04 \\ & 0.00 \\ & 0.01 \end{aligned}$	0	3313			
		2	6081			
		1	8788	*		
	0.08 001	1	$\begin{array}{r}0116 \\ \hline 200724\end{array}$			
		1	1280724 16.47		46	σ
			2838			

Table I,-(continued).

Wave-langth, I \AA	Error	Intenaity.	Wevo-namber. (Vac.)	Weve-learth (Crome, B.A.)		Intanelty.
				1911.	1014	
B. 772878		1	12985.07			
B. 2428		1	4268			
2167	000	1	4700			
1901	008	2	51.40			
06.22	000	3	72-86			
A. 0488		1	7597		7706	5
B. 08.18		1	78.11			
7688 40	000	1	8098			
8207	012	0	9581			
8040	010	1	8988			
8548	000	6	13007.96			
784	002	2	1828			
7981	000	1	2929			
1887	003	1	9597		7609	
8109	006	6	4838	7685	7460	6
0483	000	3	608			
60.80	002	4	6682			
4776	0.09	4	72.14			
B 45.18		1	7603			
B. 1187		1	8221		7839	2
8881	001	1	9361		703	2
3146	000	1	1310005			
2317	001	2	1429			
2076	0.01	2	184			
1394	002	2	3018	7618	7015	0
0981	004	1	3722			
0428	005	4	4345		07	8
0342 750727	002	0	4836			
750787 8480	001	9	0801			
日S 80	001	1	0002			
8469	014	3	8082		7880	3
					82	5
7033	001	2	8015			
$78 \cdot 38$	003	4	95.37		76	$\boldsymbol{6}$
+ 7163	008	3	1320950			
A 6715		0	1139			
6632 0148	$\begin{array}{lll}002 \\ 0 & 08\end{array}$	13	1488 2137	7868	7565	3
58.95	003	3	2571			
45.13	000	4	4098	7648	7557 7640	4
42.09	002	4	60.37		1.0	
38-61	003	0	61.80			
3724	001	3	63.79	7830	7538	7
3000	002	2	67.75			
31-75	002	2	73.47			
2840	009	1	79.38		7520	-
$24 \cdot 64$ 2288	001 001	8	8002			
2286	001	$1 d$	0028			
1477	000	1	13509 40	7518	7010	3
	004		0761		14	1
0725	002	5	1878			

Table I.-(continued).

Table I.-(continued).

Wavo-length, 1 A	Error.	Intenaty	$\begin{gathered} \text { Wsve-number } \\ \text { (Vec) } \end{gathered}$	Wave-loagth. (Crobe, R.A.)		Intantity.
				1011	1014	
7383	004	T	139300	7337	7397	4
		3		30	81	4
28. 20	001	8	4109			
				25	25	$\begin{aligned} & 6 \\ & 3 \end{aligned}$
1072	0.05	3	57 B5			
1829	001	2	6082			
1601	001	2	6311			
1302	002	J	$70 \cdot 40$	15	IS	B
10088	001	6	7635			
0719	009	H	8179			
0378	0.01	1	87-80	04	04	7
0176	001	1	91-54			
(0) 20	001	4	94.d2			
729562	o) 00	8	1370308	7200	7207	6
0088	() 00	d	1108			
8918	001	6	1018			
87 46)	001	2	1804			
8686	001	1	2011	Ad	85	\checkmark
H4 10	002	1	2474			
9010	003	5	3228			
7574	001	1	4050	78	76	7
7482	001	1	$+202$			
7218	007	1	4728			
7007	003	10	5125	16	70	8
$67-04$ A 6248	001	7	5607			
A A. 61248 1		5	6561			
$\begin{array}{llll}\text { A. } & 61 & 01 \\ \text { B } & 12 & 18\end{array}$		$1{ }^{5}$	(f) 68			
- 6005	005	4	7021		58	6
5421	004	10	6132			
5341	002	10	82.82			
$51 \cdot 12$	001	6	4817			
4435	0010	10	1890008	45	43	5
4) $\mathbf{1 0}$	002	12	0722			
31106	000	10	2542	34	34	5
2807	002	0	3115			
	009		3430	28	27	3
2201	004	3	4102	22	22	J
1835	005	3	1078			
1510	010	3	5000	10	10	5
1100	${ }^{0} 05$	1	6371			
10 108 058	000	7	10.31	08	10	3
0516	000	1	7427			
0340	0.00	2	7850			
0114	002	H	8208	02	08	5
719800	009	2	8898			-
O5 82	000	10	9313	7105	7100	8
8807	002	1	1300600			
8420	002	10	15.44	88	87	8
70 85	000	10	2441	80	80	5
74.4	008	5	30.58			

Table I.-(continued).

$\begin{aligned} & \text { Wave-length, } \\ & 1 \AA \end{aligned}$	Ehror	Intenniny	Wave-number. (Vse)	Weve-langth. (Croes, B.A.		Intanaty
				1911	1914	
$\begin{array}{r}7178.13 \\ \\ 70.10 \\ \hline 6898 \\ \hline 67.59 \\ \\ \hline 66.78\end{array}$	001	4	1309707	7171	7171	7
	000	2	4208			
	000	8	45.25			
		1	4784			
	000	1	4853			
00.42				65	68	5
58.83	002	1	7077			
6242	0.00	3	7743	$\begin{aligned} & 53 \\ & 43 \end{aligned}$	6348	$\begin{aligned} & 6 \\ & 5 \end{aligned}$
3940	007	4	14002.91			
3817	0.02	4	05.33			
8492	001	0	1170			
B. 2051		0	2283	80	28	3
26.65	0 O5	1	2788			
24.42	005	2	3237			
$21 \cdot 65$	000	1	8783			
16.78	002	3	47. 53	10	16	0
1438	004	2	52.17			
12.66	000	10	5058			5
0488	003		7164	07	07	
7090.61	000	1	8189			
0039	000	f	89.77	7097	7090	6
81.36	000	2	14117 69			
7520	004	0	2880	89	80	3
7520				72	72	10
B 6713		0	4611	67	67	2
8907	003	3	5424	61	02	
- 81.50	$0 \cdot 01$	3	57 37			3
A 59.18		0	6204			
B. $\quad 55.78$		1	68184 74616	Et	50	θ
588 4888	013	10	74.16			
4888	001	10	80.74	47	48	8
4618	002	a	NK IN			
44.88	002	3	00 AI)			
40.78	000	2	0010			
A 3989		3	1420186			7
35.70	008	10	09 Jl	34	37	
81.41	000	1	1798			
2720	003	1	2049			
B. 24 21		2	3230			
A 2888		2	3311			
2288	005	1	3627	21	$\begin{aligned} & 23 \\ & 13 \end{aligned}$	$\begin{aligned} & 5 \\ & 4 \end{aligned}$
10.78	$\begin{array}{ll} 0 & 04 \\ 0 & 04 \\ 0 & 01 \end{array}$	311	ग\% 80	05	04	
04.15			7312			4
02.27			7715			
608847	008	4	14305. 33	0905	6091	4
				80	80	4
7800	005	3	26813			
B. 6561		1		79	78	4

Table I.-(continued).

Infra-red Secondary Spectruni of Hydrogen. 205

Table I.-(continued),

Table I.-(continued)

Fulcher's First Band.

It has been possible to extend Fulcher's first band into the infra-red, and the wave-numbers of the members of the $\mathrm{S}_{1}, \mathrm{~S}_{\mathrm{p}}$ and S_{s} bands are given in Table II below. Thelines marked with an *are in the infra-red; the others in the vasible spectrum are taken from Merton and Barratt's table \dagger

Table II

Membor.	H_{1}		S		\rangle_{3}	
	Wave No	Intens	Wave Nu	Intens	Wive No	Intens
$m=1$	16574.14	(10)	J6596 41	(7)	1681143	(10)
2	1628453	(8)	10510.64		1843006	(10)
3	1002535	(8)	1604034	(7)	1006081	(9)
4	18767.10	(6)	1578728	(5)	1580073	(8)
5	11532005	(3)	1553943	(2)	1555241	(b)
6	+10984.03	(b)	+15303 77	(4)	1531003	(4)
7	-15043.48	(3)	-15082 20	(1)	-18092 67	(${ }^{\text {d }}$
8	-14807.04	(2)	-14877 30	(2)	-14884 87	(4)
${ }^{9}$	*14048 64	(3)	14187 07	(12)	-1409888	(l)
10	-1448101	(2)	*14017 64	(1)	-1452日 08	(1)

[^45]The intensities of the lines are given in brackets, but those in the infra-red are not on the same banis of eatimate as those of Merton in the visible region

Between the first and second member of the S_{1} series there is a frequency difference of, roughly, 280 unts; between the second and third a difference of 270 units, between the third and fourth 260 unts, and so on. That is to say, the first differences decrease in appronimate arithmetical progression Now if we plot in a graph the wave-numbers of the spet trum along a set of horizontal x-axes placed one below the other, and an arranged that the wave-numbers in one row are removad from those of the preceding row by a frequency difference of $\mathbf{2 8 0}, \mathbf{2 7 0}, \mathbf{2 6 0}$, ote, for the first, second, third, etc, row, then a spectrum series, the first differences of which decrease in arithmetioal progression sturting with $\Delta^{v}=280$, will appear in this graph as a group of hines extendung down the graph parallel to the y-axis. Any exteusion to this "straight-line 'series will be more easily docided upon than one to the original parabolic series. so that thas method is of particular value in a comphented apectrum such as that of hydrogen. In fig. 1 all the
lines in the epectrum from $y=16611$ to $y=14450$ occurring in the region of the band are plotted, the intensity of the apoctral lune being represented by the

ength of the graphed line The members of each of the three series are joined by dotted lines, all three of which are slightly curved, due to the second differences $\left(\Delta^{2} v \sim 10 \mathrm{~b}\right)$ being not quite equal to the A.P. differences $(d=10 \cdot 0)$ between succebsive x-ages.
It will be seen upon examination of the graph that even with this simphified representation the choice of an extension is somewhat arbitrary owing to the involved character of the spectrum, and it is neoessary to bear in mind the differences-first, second and therd-of wave-numbers between succeselve hnes and between corresponding lines in adjacent serics. The first six members
in each series have second differences which increase slightly with m (thus $10 \cdot 4,10 \cdot \theta, 11 \cdot 2,11 \cdot 0$), and Allen* and Curtis \dagger have represented the senes by quadratic formulmo in which this amall inorease has been neglected The quantum thoory of band spectra, in fact, supplies an explanation of the quadratic expression, but it has not yet been extended so ss to explain the presence of more complicated terms in the formule A careful oxammation of the posmbility of extending the series, however, shows that extensions in which the parabolic oharacter of the series is mauntanned are not possible, and that the only extensions possible are such that the second differences continue to increase more and more with m. Hence the whole series from $m=1$ to $m=10$ are better represented by formulm of the type $v=\mathrm{A}+\mathrm{Bm}+\mathrm{Cm}^{2}+\mathrm{D} m^{3}$. This formula gives good agreement between observed and calculated values of lines for the S_{1} and S_{1} series, as shown in Table III, where the " $0-C$ " 18 given for each line, but it is not so good for the S_{3} senes, where a fourth term

$$
\text { Table III.-" } 0-C \text { " for } S_{1} \text { and } S_{1} \text { series. }
$$

m	- I	2	3	4	J	6	7	8	θ	10
8	-0 88	-0 83	-0.29	+063	+1.07	+0 60	-0 05	-0.07	-0 08	-0.63
\mathbf{B}_{1}	-188	-170	-0.10	$+1.18$	$+1.78$	+136	+085	+070	-0 92	-1 38

is apparently necessary for the acourate representation of the series. The oalculated constants for the S_{1} and S_{2} series are given in Table IV. The extent of this deviation from the parsbolic formula is shown graphically on p. 208

Table IV.-Constants for the S_{1} and S_{1} series

		A.	B	C	D
$\begin{aligned} & \text { Laeding llne } \\ & m=1 \end{aligned}$	8 8 8	$18881-97$ 1688689	- ${ }^{201.29}$-29200	3. 3 3	0188 0.218

by the dotted line which represents the S_{1} series assumed to be purely parabolic.
Passing to the other series $\mathrm{S}_{4}-\mathrm{S}_{7}$ of the first band, we find again that it is umposesble to extend these series in a parabolio form, and the extensions ruggested follow the general trend of the earler series, as shown in the figure. As these are misaing lines in the visible and infra-red regons, no formulm have been calculated; the wave-numbers only are given in Table V.

> + 'Royal Soo. Proo.,' A, vol 106, p. 69 (1924).
> t ' Roy. Soo, Proo ,' A, rol 107, p. 670 (1826)
T. E. Allibone.
Table V.-EItension to First Band

	$m=10$.		$m=0$		m=8		m $=7$.		$m=6$		m $=5$
S		172-53	$\left.\begin{gathered} 14608 \mathrm{~B} \\ 19 \cdot 13 \end{gathered} \right\rvert\,$	18940	$\begin{gathered} 1483799(2) \\ 1936 \end{gathered}$	20554	$\begin{array}{r} 1500378(3) \\ 1872 \end{array}$	22145	$\begin{gathered} 15284-\mathrm{Es} \\ 18 \cdot 84 \end{gathered}(6)$	23512	$\begin{gathered} 15580-05(3) \\ 19.38 \end{gathered}$
B ${ }^{\text {a }}$	$\begin{array}{r} 14517.54(1) \\ 11.49 \end{array}$	1701 s	$\left.\begin{gathered} 14687-67(12) \\ 818 \end{gathered} \right\rvert\,$	180 63	$14877 \cdot 30(2)$	20490	$\underset{10 \cdot 47}{15082 \cdot 20(1)}$	22167	$\begin{gathered} 16303.77(4) \\ 1216 \end{gathered}$	23568	$\begin{gathered} 15589 \cdot 43 \text { (2) } \\ 1298 \end{gathered}$
8. --	14559.03 (1)	16682	$\begin{gathered} 14090 \\ 7656(1) \\ 762 \end{gathered}$	189.62	$\begin{array}{cc} 14884 & 87(4) \\ & 89 \\ 09 \end{array}$	207.88	$\begin{gathered} 15092 \cdot 67(8) \\ 6443 \end{gathered}$	22336	$\begin{gathered} 18215-03(10) \\ 5998 \end{gathered}$	23688	$10552,41(5)$
84 -			$\underset{6.75}{14770} 37(0)$	183.53	$\begin{gathered} 1405380(1) \\ 7.02 \end{gathered}$	203-80	15157-10 (2)	218.81	$\begin{array}{r} 16375.91(2) \\ 490 \end{array}$	285-09	LE610.91 (1)
B,			$\begin{gathered} 1477712(0) \\ 10-64 \end{gathered}$	18380	$\begin{array}{r} 14800 \\ 982(1) \\ 981 \end{array}$				$\begin{array}{r} 15390181(2) \\ 972 \end{array}$		
8			$\begin{gathered} 1478778(0) \\ 2637 \end{gathered}$	18897	$\begin{gathered} 1497973(4) \\ 26.07 \end{gathered}$	201.77	15172.50 (3)	2184	$15500 \mathrm{cb} \mathrm{(2)}$	231-49	1662202 (6)
8, --			14813.13 (1)	18367	$1400880(0)$						

Table V is constructed as an cxtension to Allen's* table of the Fulcher band, and is introduced for completeness. The last column of his table is reproduced as the first column here, $m=\delta$, and the table extends to $m=10$. The firat differences, horizontal and vertical, are given in italics and the intensities in bracketa.

The Zeeman Effect on the Secondary Spectrum.

Dufourt examined the secondary upectrum of hydrogen under the influence of a strong magnetic field ($H=11,700$ gauss), and found that in the green and yellow region of the spectrum, lines could be grouped into three classes, those showing a separation of 0.12 to 0.18 A.U-a "normal" effect,--those showing a distinct separation but less than 0.12 A, and those in which no effect was viable More recently, Kımura and Nakamura \ddagger showed that in a field of $7,000 \mathrm{~g}$. there occurred a selective reduction of intensity of the lines--the resolving power wes too small to separate any Zeeman components if present-those least affected being those which Dufour atated showed no Zeeman effect

The author applied a field of $7,000 \mathrm{~g}$. transversely to the capullary tube at the end nearest to the apectrograph, the pole pleces of the magret being $1 \frac{1}{2}$ cms apart. The dascharge becanc highly constricted and turned yellowish, the secondary spectrum being reduced in intenaity by a half and reduced with respect to $\mathrm{H}_{\text {. Water was aprayed on to the tube to prevent excessive heating, }}$. Water and the discharge was then increased till the intensity of the secondary spectrum wes restored to its formor value. A Rochon "double-ımage" prism separated the beam into two components of almost equal intensity (the non-rotating apectrum showing H_{4} as a doublet) By turning the prism until the two mages were in the same vertical line they could be photographed on the same plate. An exposure of 11 hours was given, but, due to an accident, the rotating image apectrum only received an eight-hour exposure. The region of the spectrum photographed was the B349-6921 A. only.

The effect on the lines was remarksble. Every line increased in intenaity at its extremuties at the expense of the central portion, showing that the discharge was splut into two streams in the field, the one above the other Also the lines of the non-rotating apectrum were widened at their intense portions, whilst the lines of the rotating spectrum remained at constant width. From the photograph it was found that there was no selective action of the field; every line of the non-rotating image was almost equally affected (widened), though

[^46]
212

 Infra-red Secondory Spectrum of Hidlragen. $^{\text {St }}$It wes impossible to distinguish tro separate components of any line, Theare was no marked relative intensty ohange between corresponding lines in the two spectra, and a comparison with the plete A showed a aimilarity of inteasity in every hne. Thus there was no " normal" Zeeman effect in the region photographed; any "abnormal" effect was masked by a widening shown by every. line of the " non-rotating" spectrum.

Summary.

Using specially aensitised platea a large number of lines have been photographed in the many-linod spectrum of hydrogen in the infra-red. Their wave-lengthe are recorded in Table I, together with the correoted wave-numbera, and wave-lengths measured by prevous investigation Photographs of the speotrum are reproduced in Plate 8.

An extension has been made to Fulcher's first band in all seven series. To represent these adequately a term Dm^{a} is requred in the formula The complete bands are set out graphically in the Agure.

The effect of a transverse magnetic field was noted. No selective effect could be detected, but there was a general broadening of all the lines.

In concluaion, the author desires to express has indebtedness to Prof. S. R. Milner for his constant assistance and dreotion during this work.

Allıbone.
Roy Soc Pror, A, rol 112, Pl 8.

(Fiterng p 2la)

Wrıght.
Roy. Sor Proc, A, rol 112, Pl 9

Fion l

Fin 2

Fu: 1.

lis 4

A further Note upon "Inter-traction."

By Sit Almrote E. Whabt, M D, Fr.s.

(Received June 22, 1926)

(Phation)

I pointed out in a previous communication* that a mixture of fluds can be brought about not only by the operations of mechanical convection und diffusion, but also by the impulsion of a force which can very rapidly carry down a lighter overlying fluid into a heavier underlying fluid in the form of characteristic pseudopodial streamers, conveying at the same tume the heavier underlyng fluid into the lighter superjacent flud in the form of a palisade of ascending streans. I have ventured to call the agency by which this reciprocal instreaming is produced -inter-traction.
These phenomena which I desonbed as occurng when salt, and also sugar, solutions are brought into contact with albuminous solutionscan, as Schoneboom \dagger showed, be obtaned also with a very wide range of substances; and they have been ascribed by him to the operations of negative interfacual tension, and identified with phenomena theoretically anticipated by Clerk-Marwell. Adam and Jessop, in a further communcation, \ddagger have insisted that the pseudopodial atreaming is attributable to operations of diffusion and resulting changea in apeoffic gravity, and they have stressed the point that the characteristio appearances can be oltained ouly when the lighter is auperposed upou the heavier fluid, and not when the fluids are disposed side by side In view of the fact that the conclusion that horizontal streaming cannot be obtained rests only upon experiments conducted by fillong fluds of difierent specifio gravity into adjouning cell compartments, and then removing the dividing wall, it seemed desirable to try fur horizontal inter-traction with a technique which would get rid of the complication of the hesvier fluad sanking to the bottom and the lighter going to the top of the vessel, and would allow of more accurate and deliberate observation. The quite sumple technique now to be described satiafies these desiderata.

A disc of filter paper is fixed, with a minute pellet of plasticine, to the surface

[^47]of a cover-glass of larger dameter, and the four edges of the cover-gless are now rimmed with parafin in such a manner as to pernut of the cover-glass with sttached dase being conveniently flosted upon any desired fluid That done the filter paper is ampregnated with an albaminous fluid-such as serumcoloured with an anilin dye, and the cover-glass is now set aflost upona watch glass of hypertome salt solution (conveniently a $4 \cdot 5$ per cent solution of NaCl , for this is a little heavier than the serum). The atreaming effecta which are oharacteristic of inter-traction now come into vew almost immediately, presenting at first the appearance ehown in the photographs figs. 1 and 2 The streamera then extend outwards upon the surface until, sfter about 5 minutes, they stretch out far beyond the limits of the cover-glass (Gga. 3 and 4).

The Molecular Fields of Hydrogen, Nitrogen and Neom.

By J. E Lennard-Jones Reader in Mathematicul Physice, The Univeraty, Bristol, and W R. Cook, B Sc , The Unversity, Bnatol.
(Communicated by I'rol S Chbpman, F R.S - Received May 26, 1926)

§1. Introduction

Since the publication of some recent papers on molecular fields,* some new erperimental information has become avalable, which permuts of further determinations of the forces between molecules Hydrogen, nitrogen and neon are now added to the last of gases whose isotherms have been obtained by the precise methods of Holborn and Otto \dagger The publication of these results for neon is of special interest, because one determination of the molecular field of neon has already been made, \ddagger and it us valusble to have another independent method of attacking the same problem.

A method of determinng molecular fields from measurements of the isotherms of a gas has been described in an eariner paper \& It proceeds on the assumption that the molecular field is spherically symmetrioal and that it can be expreased in terms of inverse power laws, one to represent the repulaive force and one to

[^48]represent the cohesive force. The method shows whether any partioular model is a suitable ons or not, and, when it is, leads to a determination of the force constante.

It is satisfactary to find that the appliostion of this method to the isotherms of neon, as given by Holborn and Otto, leads to results which are almost identical with those found in a former paper from its niscosity and thermal conductivity.

Although the theory of the equation of atate as applicable only to fields which are spherically symmetrical, it has bean applied to hydrogen and nutrogen It wha not expeoted that there would be agreement between theory and experiment in these eases. The point of interest was rather to examune the ortent of the divergence. There proves, however, to be a remarkably close agreement between the two, from which the inference may be drawn that hydrogen and nitrogen can both be adequately represented by spherical fields Thas result is interesting in vew of the theorics of the structure of the nitrogen molecule which have recently been proposed to explan its spectral hnes *

In view of these resulta, the evidence of viscosity as to the molecular fields of hydrogen and nitrogen has also bcen examuned. In the oase of hydrogen, careful measurements have been made from 20° absolute to 4573° absolute and these provide a stringent test for any theoretical formula. However, that which corresponds to a spherically aymmetrical field of an inverse power type seems adequately to fulfil this test. Furthermore, the theory leads to a value of the force constant which is in remarkable agreement wath that found by the othe. method mentioned above A ammiar agreement was found in the caso of helum in an earler paper \dagger
The viscoanty data for nitrogen are not so extensive nor so numerous as those for hydrogen, but they have none the less been used to make theoretical calculatrons of the repulave force constants In tins case there is not the same agreement between the results obtained from the two methods. The discrepancy, ourioualy enough, is about the same as that found in the case of argon in earher papers. \ddagger It is singular that the two methods should have lod to concordant results in the osses of hydrogen, helium and neon, but discordant reaults in the ceses of nitrogen and argon. Reasons are given for aupposing that in the latter cases the results obtanned from the equation of state are more reliable. All the results about the molecular fields of gases, obtained in this and preceding papers, are here oollected and oompared.

[^49]
82. The Equation of State of Neon.

When an earlier paper was written on the atomic field of neon, there was no astisfactory information avalable about its equation of state. This need has now been met by the work of Holbarn and Otto," who have extanded their socurate $p v$-measurements of gases to include neon. Therr experimenta cover the range of temperature $-183^{\circ} \mathrm{C}$. to $400^{\circ} \mathrm{C}$. for pressures up to 100 atmoapheres They show that oach equation can be represented by an equation of the type

$$
\begin{equation*}
p v=\mathrm{A}+\mathrm{B} p+\mathrm{C} p^{2}, \tag{201}
\end{equation*}
$$

when the coefficients are suitably chosen. These coefficients, usually referred to as vraal coefficients, are functions of the temperature only.
It is the coeflicient B and its variation with temperature which concerns us in thes paper, for a theoretical formula has been obtained for it on the assumption that molecales repel according to the law $\lambda_{a^{\prime}}{ }^{-n}$ and attract according to the law $\lambda_{m} r^{-m}$. According to this calculation, \dagger

$$
\begin{equation*}
B_{N}=-\frac{q}{g} \pi v\left(\frac{\lambda_{n}}{n-1} \frac{m-1}{\lambda_{m}}\right)^{B /(n-m)} F(y), \tag{2.02}
\end{equation*}
$$

where vas the molecular concentration at normal temperature and pressure, and

$$
\begin{equation*}
F(y)=y^{y / n-m}\left\{\Gamma\left(\frac{n-4}{n-1}\right)-\sum_{-=1}^{\infty} f(r) y^{\prime}\right\} . \tag{2.03}
\end{equation*}
$$

In this expreseion g is a function of the temperature given by

$$
\begin{equation*}
y=\frac{\lambda_{m}}{(m-1) k T}\left(\frac{\overline{n-1} k T}{\lambda_{n}}\right)^{(\omega-1) /(m-1)} \tag{2.04}
\end{equation*}
$$

and the coefficiente $f(r)$ are writen for

$$
f(r)=\frac{3 \Gamma\left(\frac{r \overline{m-1}+n-4}{n-1}\right)}{r!(r \cdot m-1-3)}=\frac{3 \Gamma\left(\frac{r \cdot \overline{m-1}-3}{n-1}\right)}{r!(n-1)} .
$$

The sobscript N is added to \mathbf{B} to emphasise the fact that it is referred to the concentration at normal temperature and pressure, whereas the coefficient detarmined by Holborn and Otto refers to a unit of presanre of one metre of mercury The results of Holborn and Otto cen be transformed to the more usual units by means of the formula \ddagger

$$
\begin{equation*}
\mathrm{B}_{\mathrm{V}}=\frac{l \mathrm{~B}}{\mathrm{~A}_{0}+\mathrm{B}_{0} d+\mathrm{C}_{0}{ }^{2}}, \tag{2.06}
\end{equation*}
$$

- Holborn and Otto, ' Zan I. Phys ;' vol 3s, p 1 (1925).
\dagger ' Ray Soc. Proo.,' A, vol. 100, p. 463 (1924).
\ddagger 'Roy Soo Proo,' A, vol 108, p. 474 (1024)
where $l_{1 n}$ the magnitude of an atmosphere in metres of mercury and A_{0}, B_{0}, C_{0}, are the values of the coefficients in equation (201) for the isothermal $0^{\circ} \mathrm{C}$ For neon, $A_{0}=0.99097, B_{0}=0.62510^{-8}$ and $C_{0}=049.10^{-6}$ The values of \mathbf{B}_{31}, or rather $\log \mathbf{B}_{18}$, determined in this way from the results of Holborn and Otto (B, in the second column), are given in the following table :-

Table I.-The Virial Coefficients of Neon

T	B ${ }^{10}$	$\log \mathrm{B}_{\mathbf{N}}$
400	08000	4.7889
800	08080	4.7880
200	07650	47648
100	06890	\$ 7232
0 -50	066287 0 0	4.6770 4.6089
-50 -100	0 0 0 0 087860	[19089 ${ }^{4688}$
-150	0 0058	A 6440
-1820	-0 4800	46818 (n)

When the laws of force assumed in this paper sufficiently represent actual molecular forces, the graph of $\log F^{\prime}(y)$ plotted against $\log y$ on a suitable scale becomes identical with that of $\log B_{\mathrm{N}}$ plotted against $\log T$. For each parr of values of n and m there is a defints theorotical ourve, and a comparison of a series of these curves with the experimental one (the $\log \mathrm{B}_{\mathrm{N}}$ curve) picks out those values of n and m which can be regarded as suitable To show how the ahape of these curves depends on n and m a number of curves have becu given in a former paper* When agreement is secured between the theoretical and experimental curves, a knowledge of \mathbf{X} and Y, the co-ordinates of the parallel transformation necessary to obtain this result, determines λ_{n} and λ_{m}, for they are connected by the linear equations \dagger

$$
\begin{align*}
& \log \frac{\lambda_{n}}{n-1}=\frac{n-1}{n-m} X+\frac{n-1}{3} Y-\frac{n-1}{3} \log \frac{2 \pi v}{3}+\log k \\
& \log \frac{\lambda_{m}}{m-1}=\frac{n-1}{n-m} X+\frac{m-1}{3} Y-\frac{m-1}{3} \log \frac{2 \pi v}{3}+\log k \tag{208}
\end{align*}
$$

The following curves have been found to give good agreement in the case of neon, vir (i) $n=9,(11) n=11$, (in) $n=14$, and (iv) $n=\infty$ (ngid sphere), with $m=5$ in each case. As in the case of argon, considered in a former paper, the expenmental results allow of considerable latitude in the value of n, the index of the repulsive field. However, by caloulating the aum of the squares

[^50]of the distances of the expenmental pounts from the theoretical ourve when the best fit is socured, a definte order of priority is indicated. This pleoes $n=11$ first, and $n=\infty$ legt * The curve for the first model together with the experimental points is ehown in fig. 1 .

Fio 1 -Theoretiond Curve for the Second Firial Coemeleat for the Model, $\lambda_{8}{ }^{-1}-\lambda_{\mathrm{A}} \mathrm{r}^{-1}$, with the Erperimental Volues for Neon.
The order of accuracy to be expected from the method may be gauged from the following results. These give for two cases the onter limits of \mathbf{X} and \mathbf{Y}, for which the curves could be said to be in agreement, and the corresponding values of the force constants.

n	X.	Y	λ_{n}	λ_{m}	$\sigma_{\mathrm{n}} 10^{0}$
	0.725	8. 363	$60710-14$	2-17.10-4	4.90
	0.788	8374	6.74.10-'4	2. 22 10-60	008
$\infty \quad\{$	1.670	${ }^{1} 807$	0	$688.10-4$	2.41
	1.608	3916	0	$78510-4$	2.44

[^51]As a convenient method of companing the $\lambda_{n}{ }^{\prime} s$, which are of difierent ordert of magutude, a quantiy σ_{n} is calculated, as in former papers, from the formula

$$
\sigma_{n}=\left(\frac{2 \lambda_{n}}{3 . n-1}\right)^{(1 / n-1)}
$$

This is called a generahsed "diarneter" because it corresponds to a diameter in the ordinary sense when $n=\infty$,

The results obtained from the best fits of the curves are given in Table 11
Table II.-The Force Constants and " Diameters" of Neon from the Equation of State

| \boldsymbol{u}. | X | Y | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

In the last column are included the correaponding results of a preceding paper* from niscosity and thermal conductivity The agreement between the two sets of reaults is strikng. It is signaficant that the agreement is best for that model (viz., $n=11$) which had proviously been decided upon as the correct one by the use of crystal messurements. \dagger The two sets of results are shown graphically in fig. 4, along with the " diameters" of other gases

83 The Molecular Fields of Hydrogen and Nitrogen

(i) The Equation of Slate.-Earler measurements of the isotherms of hydrogen - and there are many-may be regarded as displaced by the precise measurements recently made by Holborn and O tto \ddagger These range from -183° to 200° C., a widor range than has previously beon attempted. The values of the second virial coefficient, as given by them, and the corresponding values for ordinary units§ are given in Table III. In the same table are included the values for nitrogen, also deduced from the work of Holborn and Otto.

[^52]Table III.-The Virial Coefficiente of Hydrogen and Nitrogen.

T.	Hydrogon.		Nitrogen,	
	B $10{ }^{\text {a }}$	$\log \mathrm{B}_{\mathrm{R}}$.	B. 10^{8}	$\log \mathrm{Br}_{\mathbf{r}}$
400 800			$1 \cdot 38086$ 121207	3.0209 4.0642
200	0 02168	48458	0.80133	${ }^{1} 8358$
150			0.67717	4.7112
100	091400	48416	039057	4474
D0	0 Bg 000	T. 8300	-0 01514	$\overline{50606(n)}$
0	$0 \cdot 82004$	T. 7849	-060716	46838 (n)
- 80	0 71000	- 7.7319	-154884	$40700(n)$
-100 -120	085700	18109	-3 068600	33042 (n)
-150	017800	(1.1187	-468504	
-183	-0 32500	4. 3925 ()		

As the theoretical work referred to in the preceding paragraph refers only to spherically symmetrical fields, it would not be expeoted to apply to datome gases such as hydrogen and nitrogen The attempt to apply the thoory to these gases was in the first place purely tentative, for it was felt that it would be of interest to know to what extent theory and observation could be brought into agreement. The application of the method deacribed in the preceding paragraph leade, however, to a striking agreement in buth cases This is evident from figs. 2 and 3 For hydrogen the molecular models $n=9, m=5$, and $n=11, m=5$ are the most suitable, higher values of n involving greater discrepancios.* However, the readings of \mathbf{X} and \mathbf{Y} are given for the same models as in the case of neon.

Table IV -Force Constants of Hydrogen from Equation of State

n	X	Y	λ_{n}	$\lambda_{n m} 10^{4}$	$\sigma_{8} 10{ }^{10 m s}$
0	07045	S 448	$09010-9$	284	8.28
11	0.8640	3 3405	$738.10-6$	188	4.54
14	10248	g 246	488.10^{-14}	156	3.02
∞	1.5380	\$.091	0	0 ES	260

The limits of accuracy were about the same as those given above for neon. The corresponding results for nitrogen are given in Table V \dagger In this case the model $n=9$ is definitely the most suitsble.

[^53]Molecular Fields of Hydrogen, Nitrogen and Neon.

Fib 9.-Theoretioal Curve for the Second Virial Coeffiolent for the Model, $\lambda_{11} r^{-11}-\lambda_{8} r^{-1}$, with the Experimental Falzee for Hydrogen,

Fris, 8.-Theoretioal Curve for the Second Virial Ocefilicent for the Model, $\lambda_{1} r^{-1}-\lambda, r^{-1}$, with the Experimental Valaen Ior Nitrogen.

Table V.-Force Constants of Nitrogen from Equation of State.

n,	x	\boldsymbol{Y},	λ_{n}.	$n_{\text {m }} \cdot 10^{4}$	
0	0.841	5738	18810^{-7}	1810	7 10
11	1-1528	3-641	2.20.10-17	10.06	636
14	18815	8887	3-1610-111	1928	S. 48
∞	2081	834	0	774	8.88

(ii) The Viscosity of Hydrogen --The observations of Markowaln* on the visoosity of hydrogen, supplemented by the joint work of Kamerlingh Onnes, Doraman and Webert at low temperatures, provide results from 20° absolute to $457 \cdot 3^{\circ}$ absolute. Between these temperatures the niscosity of hydrogen uncreases its value tenfold and so there is ample experimental information for the testing of any theoretical formula. As Kamerlingh Onnes has shown, thas variation of viscosity can be represented to a remarkable degree by the formula

$$
\begin{equation*}
\mu=\mu_{0}\left(\frac{T}{T_{0}}\right)^{.}, \tag{3,01}
\end{equation*}
$$

with $\mu_{0}=0.844 .10^{-4}$ at $\mathrm{T}_{0}=0^{\circ} \mathrm{C}$. and $s=0.695$. The observed values and those calculated by this formula, together with those calculated from the usual Sutherland formula, are reproduced from the paper by Kamerlangh Ondea in Table VI.

Table VI -The Virooatty of Hydrogen.

T	$\mu_{\text {atan }} 10^{7}$	ma^{101}	$\mu_{\text {crala }}{ }^{10}$
457 g	1212	1203	1207
3796	1048	1050	1058
293 日8	-	887.8	888
2876	877	874	875
2780	844	843	243
2812	821	814	816
2568	802	800	803
2332	$7 \% 0$	747	767
2129	710	697	709
1944	670	648	668
$170 \cdot 2$	109. 3	882	608
8963	3922	328	389
7087	3193	257	399
20.04	108-111	88	137

Although the latter formula was given as an emprical equation, it oorrespands

* 'Ann. d. Phyvit ,' vol. 14, p, 742 (1804), Also Fohmitt, 'Ann d. Phyvik.,' vol, 80, p. 308 (1808).
\dagger ' Comm. Phyn. Lah, Lelden,' No. 1344 (1919).
to a theoretical formula far viscosity when molecules repel avcording to an inverse power law. If this law be $\lambda_{7} r^{-4}$, the formula is*
where m is the mass of the molecule, and c_{c} and B_{a} are numbera, depending only on n, the former lyng between the narrow limits 1.000 and $1 \cdot 016, \dagger$ and the latter boing given by

$$
B_{n}=\frac{5 \pi^{1} k^{(n+1) / 4(n-1)}}{4 I_{4}(n) \Gamma\left(4-\frac{2}{n-1}\right) 2^{(4-B) /(n-1)}}
$$

In this expression, k ns the asual gas conatant ($\left.1 \cdot 372 \cdot 10^{-16}\right)$. $\ddagger \mathrm{I}_{1}(n)$ is a function of n, its value hanng been compated for some values of n by Chapman, $\{$ and for others by one of the prosent authors ||
Since the index of the empirical formula is related to n by the relation

$$
\begin{equation*}
\theta=\frac{1}{n-1}, \tag{304}
\end{equation*}
$$

we conolade that viscosity resalta for hydrogen require a value $n=11 \cdot 2$.
It is, however, more convement to have an integral power law, and so we ohoose $n=11$. For this value we can find the appropriate value of λ_{n} from the formala given above The numerical values to be ansertod in the formula are $\mathrm{c}_{\mathrm{a}}=1 \cdot 000, \mathrm{I}_{\mathrm{I}}(n)=1 \cdot 0008, \mu_{0}=084410^{-4}, \mathrm{~T}_{0}=273 \cdot 1$ and $m=3 \cdot 3210^{-m}$ grams. The result proves to be

$$
\lambda_{1}=7 \cdot 19.10^{-80} .
$$

This result is in remarkable agreement with that obtained above for the same model by the other method. They are compared in the followng table :-

Table VII,-Repulsive Foroe Conatants of Hydrogen for $\boldsymbol{n}=11$.

-	Equation of State	Viocoulty
	$\begin{aligned} & 7 \cdot 3810-10 \\ & 4 \cdot 5210-8 \end{aligned}$	$\begin{aligned} & 71010-80 \\ & 45110^{-8} \end{aligned}$

[^54]We conclude, therefore, that a repulaive force of the inverse 11 th power type astisfies the requiraments of both visoosity and equation of state results. Only the latter method determines the corresponding ettractive field. This is found (Table IV) to be of the inverse 5th power with a force constent $\lambda_{m}=1 \cdot 98.10^{-\mu}$. The molecular field of hydrogen may therefore be regarded as given by Table VIII, the repulsive foroe constant being the mean of the two resulta given in Table VII.

Table VIII -The Molecular Field of Hydrogen

n	m	λ_{n}	λ_{m}	$" \sigma_{n} . "$
11	0	$7.29 .10-\infty$	$1.98 .10-4$	$40810-0$

The attractive field is evidently amall* and presumably has an inappreciable effect on miscoaty.
(iu) The Viscosuty of Nutrogen - The visconty of nitrogen has been measured st various temperatures by Sohmitt, \dagger Vogel \ddagger and Kıa Lok Yen. $\$$ Their resalta, if plotted as a function of temperature, he on a amooth curve and are evidently consistent. They are given in Table X below.

The simple theoretical formula, which has been used for hydrogen, is found to be unsuitable for nitrogen, from which we infer that mitrogen oannot be represented by a repulsive field alone A more general formula has, howevar, been guven, whoh applies to moleoules possessing a weak attractive field aa well as a repulaive field of the inverse power type. Thia formula is\|

$$
\begin{equation*}
\mu=\mu_{0}\left(\frac{T}{T_{0}}\right)^{n} \frac{T_{0} \frac{n-1}{n-2}+B}{T n-1}+B \tag{3.05}
\end{equation*}
$$

where S is a constant, independent of temperature, whioh represents the effect of the attractuve field
To secure the best fit between theory and expenment, various values of n are ohosen, and the values of S , requred to give agreement between theory and experiment, are oslculated from the observed values of μ. The values of μ at the temperatures $23^{\circ} \mathrm{C}$. and $15 \cdot 4^{\circ} \mathrm{C}$. are, however, omitted from this calcula-

[^55]thon owing to the amall range of temperature between them and the temperature of $0^{\circ} \mathrm{C}$., which is taken as atandard. The resulta are given in the nart table.

Table IX - Values of the Attractive Constant (\$) of Nitrogen.

T.	$\pi=\infty$	15	11	0
455.8	114.08	2080	6809	-0 50ad
5782	10808	2067	7171	03298
816	101.94	82.4	18075	11.2172
Value uned	108-01	2480	10888	3680

The average values are given at the foot of each column. With these values of \mathbb{S}, the nsoosity is then calculated from the above formula and the results are grean in Table \mathbf{X} along with the observed values The value $n=\infty$ (correaponding to rigid aphere + attractive field) is clearly the most successful. The smaller the value of n, the greater the discrepancy between the observed and calculated values. Thas is contrary to the requirements of the equation of atate conadered above There the smaller values of n were the more successful

Table X.-The Observed and Calculated Viscosity of Nitrogen

T	Maban $10{ }^{4}$	Authority	Mave 104			
			$n=\infty$	15	11	0
465.8	2458	(1)	2445	2470	2409	9 600
3782	2.193	(1)	2123	2138	2140	2144
2961	1.7648	(3)	1.787	1787	1788	1.788
2885	1747	(1)	1751	1780	1782	1768
2781	1.678	(3)	(1 678)	$\left(\begin{array}{ll}1678\end{array}\right)$	(1078)	(1.678)
81.6	0.600	(3)	0.601	0.598	0612	0680

(1) Buhmitt, loc oth.
(2) Kid Lok Yen, boc, out
(3) Vogel, loc cit

The appropriate force constants for these models can be calculated from the formala"

$$
\begin{equation*}
\lambda_{n}^{\frac{2}{n-1}}=\frac{B_{n} \pi^{\mathrm{b}}}{\mu_{0}} \frac{T_{0}^{3 / 2}}{T_{0^{4}-1}^{\frac{n}{4}-1}+8} \tag{306}
\end{equation*}
$$

with the same notation as used in equation (3.02) above. The results are given in Table XI.

> * 'Roy. Sco. Proo.,' A, val. 106, p. 41, eqn (7-01), (1024).

A general formula for \mathbb{S}, which representa the effeot of the attractive Geld, has not been worked out and so it is not as yet possible to dotermine the attractive force constants from viscosity data

Table XI -Repulsive Force Constants of Nitrogen.

*	9	11	16.	∞
	$\begin{aligned} & 7.0010-n \\ & 8.81 \end{aligned}$	$\begin{array}{lll} 0 & 08 \\ 5 & 81 \\ 5 & 10-01 \end{array}$	$x_{48}^{1 \cdot 170^{-117}}$	${ }_{3}^{0} 10$

The repulave force constants found by this method are consistently amaller than those found above (Table V).

The relation between the two sota of results can be seen at a glance from fig. 4, where the "diameters" σ_{n} are plotted as a function of $1 / n$. The disorepancy

Fic 4.-The "Dhametarn" of Geses detarmined from (1) equation of atate, (2) piscosity. (2) orgital dete The aumbera in the figure indronte which of the methods las been used The values of n which have been chosen in the various onses are indiosted by oromea.
between them is about the same an that found in the case of argon * Applications of the latter rosults to crystal calculations have decoded in favour of the

[^56]Moleoular Fields of Hydrogen, Niirogen and Neon.
equation of stato reanlte," Whether or not the same conclusion applies to nitrogen cannot at present be decided.
$\$ 4$ Summary of Prevous Results.
For convensence of reference, the knowledge about moleoular fields gained in this end preceling papers from the properties of gases is collected in the following table, the attractive field being assumed in each case to be according to an inverse fifth power law. The correaponding ' diameters' are written below the force

Table XII.-Hepulsive Force Constants and "Diameters '" of Gases

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \& Method \& \(\mathrm{n}=\mathrm{g}\), \& 11 \& 14 \& 14* \& 15 \& 21 \& \(\infty\) \\
\hline He \& \begin{tabular}{l}
(J) \\
(2)
\end{tabular} \& \(\begin{array}{lll}1 \& 14 \& 10-16 \\ 4 \& 09\end{array}\) \& \[
\begin{array}{lll}
1 \& 25 \& 10^{-1} \\
3 \& 03
\end{array}
\] \& \[
\left|\frac{0 \cdot 74 \cdot 10^{-112}}{512}\right|
\] \& 2.15
3.10 \(10^{-114}\) \& \& \& \\
\hline No \& \begin{tabular}{l}
(1) \\
(2)
\end{tabular} \& \[
\begin{array}{lll}
\hline 8 \& 39 \& 10^{-14} \\
4 \& 90 \& \\
6 \& 64 \& 10-r i \\
5 \& 02 \&
\end{array}
\] \& \[
\begin{aligned}
\& \hline 438,10^{-80} \\
\& \hline 429 \\
\& 445 \quad 10^{-80} \\
\& 4 \cdot 30
\end{aligned}
\] \& \& \(\begin{array}{llll}2 \& 22 \& 10 \& 11 \\ 3 \& 70 \& \& \end{array}\) \& \& \[
\begin{aligned}
\& 389 \quad 10^{-101} \\
\& 8183
\end{aligned}
\] \& \[
\begin{aligned}
\& 242 \\
\& 235
\end{aligned}
\] \\
\hline Ar \& \begin{tabular}{l}
(1) \\
(2)
\end{tabular} \& \(\frac{101 ~ 10-71}{7-05}\) \& \[
\begin{array}{lll}
\hline 1 \& 31 \& 10-67 \\
6 \& 03 \& \\
3.92 \& 10-06 \\
5 \& 35 \&
\end{array}
\] \& \& \[
\begin{array}{ll}
164 \& 10^{-14} \\
5.11 \& \\
357 \& 10-140 \\
470
\end{array}
\] \& \& \[
\begin{array}{lll}
2 \& 34 \& 10^{-108} \\
4 \& 34 \& \\
2 \& 82 \& 10^{-100} \\
3 \& 80 \&
\end{array}
\] \& \[
\begin{gathered}
8 \cdot 13 \\
2 \cdot 84
\end{gathered}
\] \\
\hline Kr

$\mathbf{K e}$ \& | (3) |
| :--- |
| (3) | \& \[

\frac{(n \min 10)}{\frac{74,10-10}{606}}

\] \& 6 | a $110-67$ |
| :--- |
| 706 | \& \& 1 \& \& \&

\hline H. \& | (1) |
| :--- |
| (2) | \& 019

0.23 \& $$
\begin{aligned}
& \hline 738 \\
& \hline 4 \cdot 62 \\
& \hline 70-00 \\
& \hline 4 \cdot 61
\end{aligned}
$$ \& \& 480

382 \& , \& \& $$
\sqrt{10}
$$

\hline \mathbf{N}_{1} \& | (1) |
| :--- |
| (2) | \& \& \& \& \[

$$
\begin{array}{lll}
8 & 61 & 10^{-111} \\
0 & 42 & \\
\end{array}
$$
\] \& $\begin{array}{lll}1 & 17 & 10-14 \\ 4 & 84 & \end{array}$ \& \& 378

$3-15$

\hline
\end{tabular}

- This fractional number bas advantages in numerical epplinationa of the formula for the equation of etate.
(1) From equation of state.
(2) From piscosity
(3) From oryital dala.
* 'Roy. Boc. Proc.,' A, vol. 109, p 476 (1925), \&f. p. 480, lootnote
constants. These are given in Angstrom units, and, being of the same order of magnitude, are convensent in giving a graphoal represantation of the resulta. Fig 4 shows these quantities as a function of $1 / n$, and gives a convenient summary of the results. It shows that the geseous properties of a ges do not always of themselves determine the molecular field. They do, however, limit the molecular model to one of a definite series Other methods hfive then to be employed to select from this series the one of most general utility.
In two cases, viz, hydrogen and belium, the viscosity and equation of atate results have themselves fixed the molecular model. In the case of neon, the results from viscosity in conjunction with certan crystal data* have led to a valuc $n=11$ It 18 satisfaotory to find that this paper provides additional evidenoe un fevour of this model It shows that this model pives the best agreement between theory and observation in the equation of etate. Moreover, the force constants, which this method of this paper determines for this model, is in excellent agreement with that prenously found from viscoasty. The figure shows the consistency between the two scts of rosulta.

Argon and nitrogen differ from hydrogen, helium and neon in that their gaseous properties do not lead to consistent results The reason for this discrepancy is obscure Table XIII, however, throws some light on the question. This table gives the attractive force constants of the respective gases, as deduced from the equation of state. These force constants are all messured in terms of the same unit, since the law of force assumed in each case is accordung to an inveree fifth power, and so they indioate the relative magnitude of the forces of oohesson for the various gases. \dagger It is to be observed that the gases, for which we have found consistent results from the two methods, possess the weakest attractive fields. This is signuicant because it is to be remembered that all the theoretiosl formule for the coefficient of viscosity are subject to the limitation that the attractive field 18 weak. It looks, therefore, as though this condition does not apply to argon and nitrogen end that none of the theoretical formula for niscosity are strictly applicable to these gases. A rigorous theoretical formula for viscosity, true for attraotive fielda of any magmatude, might lead to force constants different from those which have now been found. This problem is being considered

The equation of state method has the advantages that it apples to all felds,

[^57]whether atrong or waak, and it determines the foroes of attraction as well as those of repulsion. For this reason $1 t$ is to be preferred.

Table XIII.-The Attractive Force Constants of Gases ($\boldsymbol{\lambda}_{\boldsymbol{m}} \boldsymbol{r}^{-5}$).

$\lambda_{m 1} 1^{*}$	$n=0$	11	14\|	∞
He	435	291	180	-
Ne	228	178	138	73
H_{1}	254	108	150	88
$\mathrm{Ar}_{\mathbf{N}}$	1680 189.0	1890 181.0	1198 128	70 77
N_{1}	182.0	181.0	1230	770

The models which appear most suitable in the various cases are indicated by Clarendon type in the tables and by crosses in the figure The cases of lrypton and renon have been dealt with from cryatal data alone owng to the lack of expenmental data about their gaseous properties.
Fhally, as an indication of possible apphcations of tho force constants, we give in Table XIV a quantity ϕ, which represents the work requred to separate two molecules to unfinty from their positions of equilibrium under the influence of their mutual fields This quantity, which corresponds to a "heat of dissociation," should be an important factor in determining the boilng point of a gas It is satisfactory to find a correspondence between the observed and the caloulated quantities.

Table XIV.-The Boling Points of Gases (T_{B})

-	π.	m	λ_{n}	λ_{m}	$\$_{\text {arge }} 1010$	T
H0	14	5	[5410-114	$18810-46$	3.43	4.3
H_{0}	11	5	7 98 10-58	$18810^{-\mu}$	1231	204
No	11	6	$4.3810-45$	1.72 10-4	1381	341
N_{1}	${ }^{*}$	5	1.5810^{-71}	$18210-4$	2614	77.4
\mathbf{A}_{1}	9	Δ	10110^{-5}	1.62 10-40	9270	871

*This velue has bean mesumod for nitrogen beoause of the nomiarity between ita curve of
"diametors" and that of argon
The force constents given in this paper should provide a starting point for a more complete quantitative explanation of the boling points and other propertiss of these gases then has yet been given.

The Forces between Atoms and Ioms.-II.

By J. E. Lennard-Jones, Reader in Mathematical Physios, Bnatol University, and Beryl M. Dent, B.Sc., Brigtol Univaraity.

(Communjcated by Prof S Chapman, Fr.R S -Received June 8, 1926)
§ 1 This note 18 supplementary to a paper recently publahed on the same subject.* It extends the results so as to provide a complete table of forces between the monovalent and divalent ions of the inert gas type as well as between the inert gases themselves The method follows that of the previous paper, in which the forces hetween ions are deduced from the forces between inert gas atoms by the use of publushed data on onic refractivities

The table of force constants, which as givon, should have numerous applications in theoretical calculations of orfatsl structures. It ahould, for instance, be useful in reterminng parameters in crystal structures, which are difficult to determine from \mathbf{X}-ray measurements.
§2. Forces botween atoms and ans anse from various oanses There are between ions electrostatic forces of attraction and repulston owing to their effective electrostatic charges These depend only on the valency of the ions concerned and neod not be oonsidered further In addition, there are forces between the neutral cores, just as there are forces between the inert gas atoms to which they are simular From the physical properties of these gesee, wo learn that at large distances the atoms attract, whle at amall dastances they repel. It is convenient, therefore, to regard the cores as exerting on each other two forces, one attractuve and the other repulaze, the former preponderating at large dastances, the latter at small. Thas is vurtually what van der Waale did in doducing his well-known equation of atate. We may, therefore, convemently refer to the attractive force as the van der Waals allmetwe forct. Thas dastingurbes it from the electrostatic attractive force just mentroned.

The repulaive force was represented by van der Waals as a mgid aphere, but this is now recognied as not beng sufficiently goneral for most purposes. It is replaced in this paper by an inverse power law, which, being a continuous function, is mare lukely to be in accord with fact This repulase force between cores may be called the Intrinsic Repulonve Force.

There are as well forces due to polarisation. Atome or lonc cores sre hable to be distorted by the presence of neighbouring electrostatio charges, oo that

[^58]there is a relative daplacement of negative and positive charges This creates an effective dipole at the centre of the core, and the mulual influence betwepn the dipole and the charge producing it gives rise to an attractive force Certain simple assumptions indicate that thas is likoly to be of the inverse fifth power type.*
The forces just enumerated arise betwoen ions whose clectronce structure ${ }^{18}$ aumlar to that of the inert gases and may therefore be regarded as apherically symmetrical. Ungymmetrical ions or molecules have to be considered diffirently. These sometimes possess permanent dipoles, \dagger whose mutual influence is to be considered separately from the forces of attraction and of repulsion
f 3 In crystals of a high degree of nymmetry, such ay rocknalt, tho forces due to polarisation need not be cousidered A dapole created in an ion by a neighbounngion is neutralised ly the effect of another ion diametncally opposite Nor is it neoessary to consider the van der Wasla cohesive forces, because these are negligibly amall compared with the electrostatic forces of attraction between neighbounng ions \ddagger Only in crystala of neutral atoms, such as sold argon, are the van der Wanls forces important

The difference in magntude between the two kinds of attractive forces is indicated by the difference in the physical properties of crystallune argon and rocksalt, in particular by their widely different melting points \& For the intrinesc repulsive forces are of the same order in the two cases.
Hence the forces between $10 n \mathrm{in}$ crystals, auch as rocksalt, may be regurded an sufficiently determined when the intringic repulave forces are found l lt is theas forecs which are considered in this paper
It has been ahown in former paperss|| that when the repulave forces between the inert gasea are represented by tbe law λr^{-8}, neon requires the value $n=11$, argon the value $n=9$, krypton the value $n=10$ and xenon the value $n-\ldots 11$. These laws of forces aro held to be true also for ions of the same clectionic structure, so that the laws of force between ons are summarised in the following table .-

[^59]Teble 1.-The Laws of Force between Atoms and Ions (the values of n in λr^{-5}).

-	Neon group.	Argon group.	Krypton group.	Xemon group
Neon-like iona	11	10	10	11
Aryon like iona	10	B	0	10
Krypton-like jons	10	0	10	10
Tenon-like ions	11	10	10	11

The denvation of the appropriate foroe constants is facilitated by the use of a quantity $a^{(n)}$, which is proportional to $\left(\frac{\lambda_{n}}{n-1}\right)^{\frac{1}{-1}}$ and is of the dimensions of a length. This quantity is regarded as a measore (on an arbitrary sosle and for a given law of force) of the sise of the outer shells of electrons in ione so that ite value for one ion oan be derived from that of another ion from a knowledge of thoir ionic refractuvities.
These so called " diameters " are functions of n, as is evident from the following table where they are given for the values $n=\theta, 10$ and 11.* They are derived from the correspondeng quantities for the pure gases, the latter having been determined from the kunetio theory for $n=9$ and $n=11$, and by interpolstion for $n=10$.

Table II.--The "Dhameters" of Ions ($\sigma^{(m)}$)

7	$0^{-=}$	F-	Ne	Na*	Mg + ${ }^{\text {+ }}$	8--	Ol-	Ar	E+	Cs ${ }^{+}$
θ	726	6.88	¢ 02	471	4.10	077.	860	705	043	691
10	669	574	488	434	8.78	0.01	7.89	650	698	5.46
11	621	6. 88	430	403	3.61	8.38	7-27	6-08	S 80	8-05
7	80	$\mathrm{Br}-$	$\mathbf{K r}$	$\mathbf{R b}{ }^{+}$	Sr ${ }^{++}$	To- -	I-	\mathbf{X}	$\mathrm{Ca}+$	Bs ${ }^{+}$
9	058	880	788	6-98	649	$0 \cdot 66$	9.68	8. 26	7.61,	7.06
10	883	818	688	641	5.98	8.88	8.756	700	701	6.48
11	890	761	0.49	6 日	(558	8. 24	818	706	8.80	6.01

[^60]Forces between Atoms and Ions.
Table III -The Force Constants of Atoms and Ions

	$0-$	F-	Ne	Na+	Mg	8--	Cl^{-}	Ar	$\underline{ }{ }^{+}$			Br^{-}	Kr	$\mathbf{R L b}^{+}$	Br^{++}		I-	x	0^{+}	Ba+
$0-$		8	330	255	15	210	10		204	2.07	18		03	411	304		73	338		
	842	3-81	1-38	1.04	0 58	110	15.64	2.2	1.45	1.00	10.7	714	315	$2 \cdot 09$	151	425	33.9	170	10 B	$7 \cdot 67$
	330	133	0 44.	$0 \cdot 32$,	017	591	262	0.85	$0 \mathrm{K9}$	028	585	338	139	$0{ }^{188}$	061.	193	17.5	713	4.34	${ }^{2.73}$
Na+	255	1.04	0.32	0 28,	$0 \cdot 12$	4.87	218	074	0.46	089	$4 \cdot 31$	275	110	0 69,	048	15.5	14.1	5.60	2.37	8-09
+ +	151	058.	017	012	0 05,	331	139	0 46,	0.27,	0 17.	288	182	070	0	0 29,	101	0.10	3.40	2.03	23
	21	11				137				236	$12 \cdot$	9							25.	
	104	5.			1-30	800	449	220	159	1-18	7-34	538	2	2-10		,	343	178	126	10
	4.37	233	095	074	$0{ }^{46}$	413	220	100	070	051	3-76	268	125	$0 \cdot 08$	072	17.4	162	797	549	${ }^{3.78}$
	294	1.45	59,		0	306			048	0.3	2.78	1.05	0.06	066	050	12.4	11.5	5.50	$3 \cdot 68$	2.63
Ca++	207	100	38	29.	017	236		\%1:	034	0 24.	213	1.48	$0 \cdot 70$	0.	0.35	9. 22	8.52	3.9	2-68	1-77
	18	10.7			2 -92	127		76	27	13	604		29	16		62.	8.2	31.	28.7	16.7
	129	714	13	275	1-82	8.47		2		1	434	307	15.4	109	8.33	4		221	15.7	
	603	315	139	110	070	5.29	287	135	09^{1}		23	154	728	501	3.73	23	214	108	7-43	525
Rb	4.11	209	088			3	$2 \cdot 10$		$066{ }^{\text {a }}$	0 48	180	109	601	333	840	16.5	153	76	$5 \cdot 11$	${ }^{3} 55$
$8{ }^{+}$	304	151	0 6	048	0 294,	315	164	0 72,	0.50	035	124	B. 23	3.73	240	181	128	118	58	381	2 69
				15	10	67-9		174	124	9.22	32-0	445	230	165	12.8		2760	140	97	
I^{-}	73-4	389	175	14-1	0-10	338	34.3	162	115	8 52	582	14	214	153	118	276	256	1297	897	3
	33-8	170	7.13	5.00	346	348	179	787	550	397	318	221	108	7.62	568	1403	1297	62-4	41.0	29-0
Ca	22-1	10.8	43	3.37	203	251	126	542	368	262	227	157	743	511	381	973	897	419	27.7	18
Bat	149	707	273	209	123	186	10	378	253	1-77	18.7	11.4	585	365	262	694	637	290	18-0	12.6

Following the method of the former paper,* the force constants given in Table III are deduced from the "diameters" of Table II. Owing to the fact that these force constante depend on $\sigma^{(0)}$ to a bugh power (9 or 10), great accuracy oannot be expected. An socuracy of 10 per cent in a force oonstant is equivalent to an accuracy of 1 per cent. in a dismeter as ubually understood. Sumilarly in applications of the force constants to calculate distances, an accuracy of 10 per cent in the force constanta should yiold an accuracy of 1 per cent. in the answer. It is believed that the force constanta lie within these lumits of accuracy.

Some of these results were given in the proceding paper, bat they are given here as well for the sake of completeness They have been recaloulated and a few numerical errora have been detected and corrected The resulte of Table III are to be regarded as displacing any former results where there is \boldsymbol{p} discrepancy

The force constants are given in such units us give the force in dynes when the unit of length is the Angstrom The table is to be used in conjunction with Table I. For example, to find the force between Na^{-1} and Cl^{-}at a distance of 2 A , we note that the law of force is the anverse tenth and that the force constant is 2 12. The force 18 therefore (2.12)2 2^{-10} dyues, that is 0.002 dynes.
84. Our thanks are due to the Department of Scientific and Industral Research for a grant to one of us to pursue this investigation and to make the applicationa to be deseribed in later papers.

[^61]
The Origin of the Eleotrical Charge on Small Particles in Water.

By Thomas Alty, M.So., Ph D., Professor of Physice, University of Saskatchewsn,

(Communicated by Sir Joseph Thomson, F R S.-Received June 15, 1926)

Ineroduction.

The suriace of an air bubble is a purticularly simple one at which to examine the electrical conditions which attend all small particles when immersed in a liquid. An air bubble may be considered as a type of coarse suspensold, which, on being immersed in water, nequires a charge and moves in an electric field as if negatively electnfied.
The present work is a continuation of that already puhlished (' Roy Soc. Proe,'A, vol. 106, p 315 (1924)) and deals chiefly with the charge on the bubble immedately after it enters the liquid, this is examined experimentally and alyo theoretically In addition, a now method of calculating the potential difference between the bubble surface and the intemor of the hqued is suggented

For convenience, a few results of the former work must first be mentioned. It was there ahown that the gas phase has little or no influence on the surfuce electrification, so that all the electrical effects may safely be ascribed to the surrounding hquid medum. Expenmental evidenue indicated that the surface phenomena are due to the selvotive absorption of ions from the water Furthermore, the mobility of the babble dumanshed steadily with increasing purity of the surrounding water. It therefore appears probable that in perfectly pure water the charge would be very small, or evell zero

Expervmental

The experimental arrangements were as describod in the former work A small gas bubble (2 mm in diameter) is introduced into partally arr-free water contained in a cylndrical glass vessel which rotates about a horizontal axis. The bubble then takes up a position on the axis and moves along the latter when an eleotrio field as apphed between the tro ends of the oell The mobility is measured continuously as the bubble is slowly absorbed into the water untul it finally disappears. After each resdung of the velocity, the total time sunce the introduotion of the bubble into the water is also notel, so that the variation of the electrical oondrtions with the age of the surface can be investigated. It
has previously been shown that in water of apecific conduotivity 1×10^{-6} ohme to 2×10^{-6} ohms $^{-1}$ there is a slow and steady " ohargang up" of the surface, and that for some time after the introduction of the babble the charge varies continuously until its Ansl equubrium atate is attaned. Since the first object of the present work is a complete investigation of this charging up, water of the above-mentioned punty was used

For comparion, the expermenta were repeated un water of specific conductivity 6×10^{-6} ohms $^{-1}$; in this water the charging-up period is very short and the velocity of the bubble increases steadily with decreasing radius until the latter is about $0.05-0.1 \mathrm{~mm}$ At about this point the velocity is a maxumum and thereafter decreases steadily until the bubble desappears The explanation of the maximum is not clear. It may represent a true chango in the electrification of the surface, or it may be due to increased resistanoe to the motion of the bubble along the axis. At about this saze (005 mm , dameter) the bubble ceases to be perfectly stable, and if accidentally disturbed it oscillates aboat the axis before returning to its equibrium position. This vibration may increase the resistance of the water to the motion and consequently decrease the mobility As this point cannot be definitely settled, only bubbles hanng dametere greater than this minmum will be considered in what follows.

Further experiments were also performed to investigate quantitatively the relation betwren the charge on the surface and the rate of absorption of the bubble. Air-saturated conductivity water was used after a very amall quantity of air had been removed from it by evacuation. A bubble antroduced into such water was therefore absorbed very slowly On completion of the experiment more air was removed from the water and a second bubble introduced Thus was absorbed more rapidly than the previous one and gave different results. The process was repeated for a series of bubbles untal the rate of absorption became ao great as to render further observations impracticable.

If now the bubble is assumed to acqure a definite charge, E, by 1onic adsorption, then this charge may be calculated by an application of Stokea' Law If \mathbf{X} is the intensty of the elfetric field produeing the velocity v, η the coefficient of viscosity of water, and τ the radius of the bubble, then

$$
\begin{aligned}
\mathrm{XE} & =6 \pi \pi \eta_{\mathrm{v}} \\
\text { or } \quad \mathrm{E} & =6 \pi \eta \pi / \mathbf{X} .
\end{aligned}
$$

Thus E may be determined direotly from a knowledge of q .
The experimental results were represented graphically by plotting the total oharge, as calculated above, against either the bubble radius or the age of the
aurface. The total oharge at any time t wall indicate very directly the state of adsorption at that tume.
Fig. 1 shows a graph of charge aganst age of surface and was obtained in

very pure, alr-saturated water. In this water the size of the bubble changes only very slightly durng the expenment. It will be observed that the charge is extremely amall at first, inoreases to a manmum, and then falls to a value of about one-third of this maximum. After this stage, the charge on the bubble surface appears to be independent of the time
These exparimenta were repeated in water from which some air had been removed so that the diameter of the bubble deareased continuoualy during the experiment. It was found that the curve obtaned was very similar to that in fig 1 , and that when equlibnum had been attanned the total charge on the bubble remained independent not only of tume but also of bubble diameter This is somewhat surprising and appears to inducate that, once an equibbrum state is reached, the surface density of charge must increase unversely as the square of the babble radius, ance the total charge remans practically constant while the bubble area shnnks, sometimes down to about $1 / 20$ of its origual ase. Fig. 2 illuatrates one of these experimente.
The expermente in water of higher specific conduotivity test this point
further. In thas water the charging-up period is very ahort so that after the first few readinge the equilibrium state is reached, and it might then be erpected

Fia. 2.
from the above that the total charge on the surface would remain independent of the bubble radus and the time. Fig 3 lllustrates the results obtained in such water For the whole range of diameters the total charge remains almost constant, deoreasing very alightly with decreasing radus

Fig. 3
It was found possible to obtsin the shove type of graph (fig 3) only when the rate of absorption of the bubble was very slow. If the rate of absorption were great the total oharge decreased ateadily from the first observation.

Fig. 4 shows the results obtained from two successive experiments in which the water used had the same condactinty but contaned a difierent amount of

arr in each experiment. An exammation of such curves shows that the greater the rate of absorption the greater the imtial equilibrium charge (Fig 3 and fig. 4 together indicate that for zaro rate of absorption the total charge is independent of the radius of the bubble.) It will later be shown that there a a quantitative relation between the rate of absorption of the bubble and its charge This as illustrated in fig. 5

In all expermenta the volocity of tho bubble was measured using two different values of the electric field (X) alternately. In this way the velocity was shown to be proportional to the applied field throughout the chargng penod as well ss through the subsequent history of the bubble،

Theoretical.
The results previously obtaned as well as those described alove conflict with the usual thearies as to the electrioal structure of the surface of small particles in water. This being so, an endesvour is made here to account for the whole phenomenon on the basis of adsorption, and the relstions deduced are compared with expenment.

When a bubble 18 first introduced into water, the surface is composed of water moleoules, whoh being polar are all orientated and thus have a resultant eleotrie field Since the bubble aoquires a negatsve aharge, this onentation must be such that the surface molecules attract negative and repel poastive ions in the water, each inolecule thus being a posable point at which a negative ion may be attached to the surtase. In this way the surface steaduly becomes covered with negative ions At the same tume positive ions from the liquid strike the bubble surface. Any such ion striking one of the negative ions already adsorbed may be bound olose to the latter and neutralise its charge. Hence the acoumulation of the surface charge must conssist of two distinct processes ; firetly, the adsorption of negative sons on to the bubble surface, and, secondly, the binding of positive ions to some of the negative adsorbed ions. These two processes will contunue aide by side until equilibrium is attained, the total charge on the bubble at any instant being equal to the oharge on the uncovered negative ions on ite surface The bound positive ans, being farther from the surface, are held lesa firmly than the adsorbed negative ions and may be romoved by collisions due to the general motion of thermal agitation in the hquid. Equilibrium is therefore attained when the number of positive ions bound per second is equal to the number removed by oollision In this state there will be a nomber of uncovered negative ions as well as a number covered In this connection it is of intereat to note that Rinde (' Phll. Mag.,' vol 1, p. 32 (January, 1926)) found that on sulphur particles in an acid solution both Cl^{\prime} ions and also neutral HCl molecules were adsorbed. The process of adsorption in this csse may be very simular to that under discussion, the neutral molecules being due to the soverng of the Cl^{\prime} ions

In these experments pure distilled water was used so that the ions present would be chiefly H^{+}and OH^{\prime}. In addition, there would be minate traces of electrolytic impunties from the glass of the cell, ete, giving ries to ions which for convenience may be called \mathbf{X}^{\prime} and \mathbf{Y}^{+}. These in companson with the hydrolytic ions must be extremely few in number, and this number must decrease with increasing purity of the water $O n$ the other band, the hydrolytic ions are still present in relatively largo numbers even in water of the greatest purity, the ionisation of pure water yielding about $10^{16} \mathrm{H}^{+}$and $0 \mathrm{H}^{\prime}$ ions per c.c. Consequently it is impossible by punfication to remove all ions from the water. Nevertheless, it was found that the greater the purity of the water (as measured by ite electrical conductivity) the lower the mobility of the bubble, which in some cases was reduced as low es 1 per cent. of its normal value. From these considerations it is evident that the charge on the bubble is not produced by
the \mathbf{H}^{+}and $\mathbf{O H}^{\prime}$ ions, but is due almost entirely to the presence of stray iuns \mathbf{X}^{\prime} and \mathbf{Y}^{+}in the water

The inactivlty of the H^{r} end OH^{\prime} sons may possibly be a consequence of the amall dimensions of these particles. For being so small, when adsorbed they are very close to each other and to the bubble surface Thas arrangement will Mestit in intense binding foroes which may be sufficiently great to prevent many of the oovering ions belug removed by the inolecular agitation of the liquid Hence, when the adsorption of $\mathbf{O H}^{\prime}$ ions has reached an equilibrium condition, very few of them are left uncovered to give a resultant charge to the bubble At the same time, when equilibrium is attaned, these $\mathbf{O H}^{\prime}$ inns do not cover the whole of the bubble surfave but only a definte fraction of it Langmuir (' J A C.S.,' vol. 40, p. 1367 (1918)) has pointed out that once equilibrium is eatablashed the exact fraction of a surface occupied by any adsorbable molecule may depend ou the size and abape of that molecule It may, therefore, be possible for another ion (X^{\prime}), on account of its different aize and shape, to brcome attached to those points on the surface not occupred by the $\mathbf{O H}^{\prime}$ sons, al that finally the surface as covered mamly by OH^{\prime} sons but also to some 'xtent by X^{\prime} ions.

If it is assumed that there are $10^{18} 0 \mathrm{H}^{\prime}$ ions per cubir centimetre; and that any one of them striking an unoccupred surface molecule remanns attached, then a simple calculation indicates that these ions cover 90 pre cent of the surface in about $1 / 100$ sec Snnce the adsorption of covering \mathbf{H}^{+}ions procreds concurrently, only a very brief interval of time is required for the adsorption of both these tons to reach its equilbrium state, and this even in tho purest water.
The adsorption of X^{\prime} ions will be a much alo ecr process owing to therr scarcty In exactly the same way as for H^{+}and OH^{\prime} ions, the adsurbed X^{\prime} ions wall be covered in their turn by \mathbf{Y}^{+}ions from the hquid Since X^{\prime} and Y^{+}are larger than OH^{\prime} and H^{+}, they will be unable to approach so closely to each other and the binding forces will therefore be weaker For this reason the \mathbf{Y}^{+}ions will be more readily removed by the thormal agitation of the surrounding liquid Hence a certan fraotion of the adsorbed X^{\prime} ions when in equilibrium will still be uncovered, and it is to these that the bubble owes its charge. In the very puren water the number of such stray $10 n 8$ as X^{\prime} and $Y^{+}{ }_{\text {is }}$ small and as a result the equilibrium state is attained but slowly
According to this view the H^{+}and OH^{\prime} ions, although so numerous and occupying a large fraction of the surface, add but hittle to the bubble charge owing to the tight binding existing between them. Their chief function then
appears to be that of limuting the number of possible ponnts at which other ions can be adsorbed
Since such ions as \mathbf{X}^{\prime} and \mathbf{Y}^{\dagger} oceur aimply as impurities in the water and always in very minute concentrations, their exact number would be expected to vary from one expenment to another even when the speorfic condactivity remann practically constant For this reamon the rate at which the bubble acquires its charge in the purest water may vary widely in the diffarent experimenta. Such variation is found in practice, the longest charging period being shown in fig 1 . In other experiments in water of the same conductivity, the period varied from thas value to 100 secs. These variations are observed only in the purest water.

Although the number of X^{\prime} and Y^{-1} ions present vanes in this way, they are always so scarce that the conductivity of the pure water is chiefly due to the ions H^{+}and OH^{\prime}. Thus the fact that the rate ${ }^{\text {'of }}$ chargng varies while the conductivity remains practicelly constant (1×10^{-6} ohma $^{-1}$) is in accordance with the new that the charge is due to atray ions X^{\prime} and Y^{+}and not to the hydrolytio $10 n$ s

The experiments described show that in oquilibrium the number of uncovered ions per square centunetre of surface is inversely proportional to the square of the radus. This relation would hold true if the numbers $\left(\mathrm{N}_{\mathrm{r}}\right)$ of negative ions and ($\mathrm{N}_{\boldsymbol{v}}$) of positive ions per squaro centimetre each varied inversely as the square of the radius. $N_{\boldsymbol{p}}$ and N_{v} also depend on the age of tho bubble surface soo that it may be assumed that

$$
\left.\begin{array}{l}
\mathrm{N}_{x}=\frac{f(t)}{r^{2}} \tag{1}\\
\mathrm{~N}_{v}=\frac{q(t)}{r^{2}}
\end{array}\right\}
$$

where $f(t)$ and $g(t)$ are functions of t.
Hence the total charge on the bubble $=4 \pi r^{2} .\left(N_{w}-N_{\nu}\right)=4 \pi\{f(t)-g(t)\}$, which is independent of r, in accordance with experiment

Making certain assumptions it is now possible to calculate the total charge on the bubble at any time t after its formation For convenience, these assumptons are tabulated as follows:-

1. A fraction α of the bubble surface as alone capable of adsorbing the X^{\prime} ions from the water. The remaning fraction ($1-a$) is occupred by H^{+}aud OH^{\prime} ions in loose oombination. These prevent the close approach and adsorption of X^{\prime} ous to the surface.
2. Each adsorbed X^{\prime} ion is attached to a singlo surfaes water molecule.
3. The forces between an X^{\prime} ion and the surface molecule to which it is attached are grest enough to prevent appreosable re-evaporation of the X^{\prime} jons. Hence any such ion striving an unoccupied surface molecule remains attached.
(Evidence of this assumption is given later, p. 246.)
Let there be n_{s} of the X^{\prime} ions per c.c of the hquid
" v_{x} be their average velocity of thermal agtation (velocity of mean square)
," γ be the surface area occupied by one adsorbed \mathbf{X}^{\prime} ion $=$ area of a surface water molecule
" a be the fraction of the surface occupted in equhbnum by X^{\prime} ions
α then depends on the radius of the bubble and $=\beta i^{9}$ (experimental) Let $\mathrm{N}_{\infty}=$ number of X^{\prime} ions adsorbed por unit area at time $\boldsymbol{\ell}$. Then the number striking unit area per unit time is $n_{r} v_{x} / \sqrt{6 \pi}$.

Fraction of the area occupied by OH^{\prime} ions $=(1-a)$
Fraction of the area occupled by X^{\prime} ions at tirne $t=\gamma N_{x}$
Therefore fraction of the whole surface which is unoccupled at time $t=a-\gamma N_{x}$ and the number of free X^{\prime} ions striking these unoccupied spaces per second

$$
=\frac{n_{y} 1_{x}^{\prime}}{\sqrt{6 \pi}}\left(x-\gamma N_{x}\right)
$$

If all collsions between surface molecules and free X^{\prime} ions result in adsorption and if re-evaporation is negligible, then

$$
\frac{d N_{r}}{d l}=\frac{n_{x} l_{r}^{\prime}}{\sqrt{6 \pi}}\left(x-\gamma N_{r}\right)
$$

The solution of this is

$$
\mathbf{N}_{s}=\frac{\alpha}{\gamma}\left(1+\mathbf{C}^{-\frac{n_{r} \gamma}{\sqrt{(\pi i}}}\right)
$$

But $N_{x}=0$ when $\ell=0$. Therefore
$=$ number of adsorbed X^{\prime} ions at time t.
Let the same symbols ns aloove, with suffix y, refer to the Y^{+}ons Since these aus are bound to the surface only when thry strike an adsorbed X^{\prime} iun, the chance of any \mathbf{Y}^{+}ion beconung bound is proportional to the fraction of the surface occupipd by uncovered X^{\prime} ions

Fraction of aurface occupied by uncovered X^{\prime} ıons $=\boldsymbol{\gamma}\left(\mathrm{N}_{-}-\mathrm{N}_{\mathbf{v}}\right)$

Therefore the inoresse in the nnmber of \mathbf{Y}^{+}ions attached to unst ares of the surface in time dl

$$
=\frac{n_{y} y_{y}}{\sqrt{6} \pi}\left(\mathbf{N}_{x}-N_{y}\right) \gamma d t
$$

At the same time, some of those already attached are removed by the thermal agitation of the liquid.

Let $k=$ fraction of the positive covering ions removed per second in this manner. Then the equation for N_{v} is

$$
\begin{equation*}
\frac{d \mathbf{N}_{v}}{d t}=\frac{n_{y} v_{y} Y}{\sqrt{6 \pi}}\left(N_{x}-N_{y}\right)-k N_{\psi} \tag{3}
\end{equation*}
$$

when

$$
t=\infty, \quad \frac{d N_{x}}{d t}=0 \quad \text { and } \quad N_{x}=\alpha / \gamma
$$

Therefore

$$
\begin{equation*}
N_{1}=\frac{\alpha / \gamma}{1+\frac{V^{6} \pi k}{n_{\nu} v_{v} \gamma}} \tag{4}
\end{equation*}
$$

The number of uncovered negative ions in equilibnum 18 thercfore $\left(N_{r}-N_{v}\right)$ per square centimetre,

$$
\begin{equation*}
=\frac{a}{\gamma}\left\{1-\frac{1}{1+\frac{\sqrt{6 \pi} k}{n_{v} v v^{\prime} \gamma}}\right\}=\frac{k \alpha}{\gamma}\left\{\frac{1}{k+\frac{n_{n} v^{\prime} y y}{\sqrt{6 \pi}}}\right\} \tag{b}
\end{equation*}
$$

$=$ surface density on the bubble when egulibrium is attained.
Returning to equation (3)

$$
\begin{aligned}
& \frac{d N_{k}}{d t}+N_{v}\left(\frac{n_{y} v_{y}^{r}}{\sqrt{6 \pi}}+k\right)=\frac{n_{1} v_{y}}{\sqrt{6 \pi}} \mathrm{~N}_{x} . \\
& =\frac{n_{y} \sigma_{y} \gamma}{\sqrt{6 \pi}} \frac{\underline{\gamma}}{\gamma} \cdot\left(1-c^{-\frac{n_{r} r_{2} y_{1}}{\sqrt{\delta r}}}\right) \\
& \text { by equation (2) }
\end{aligned}
$$

Hence

Also

But the number of uncovered negative ions per square centimetre $=\left(\mathbf{N}_{\mathbf{z}}-\mathbf{N}_{\boldsymbol{v}}\right)$ Therefore $M=$ total number of uncovered negative ions on suriace of bubble $=4 \pi r^{2}\left(N_{z}-N_{v}\right)$

$$
\begin{align*}
& \left.-\frac{n_{x} v_{x} n_{v} v_{\mu}{ }^{-\left(\frac{n_{r} y}{\sqrt{\sigma_{\gamma}}}+k\right) t}}{\left(n_{y} v_{y}+-\sqrt{\overline{6 \pi}} \frac{k}{\gamma^{\prime}}\right)\left(n_{v} v_{y}-n_{x} v_{x}+\sqrt{6 \pi} \frac{k}{\gamma}\right)}\right] . \tag{6}
\end{align*}
$$

This expression (6) then gives the number of free negative ions on the bubble surface at ture t If the ions X^{\prime} and Y^{+}are monovalent thrn the tharge on the bubble at time t is M.e, enu ($\varepsilon=$ iontc charge)
The constants β and k are cvaluated below Using the values there obtained, equation (6) reduces to

$$
\begin{equation*}
M=191 \times 10^{0}\left[0 \cdot 1096+1 \cdot 19 e^{-3} 3 \times 10-104-1299 e^{-5 \cdot 4 \times 10-4}\right] \tag{7}
\end{equation*}
$$

The values of the total charge as calculated from (7) are shown in fig 1 by points marked \odot. The pounts + are expermental valucs It will be seen that the agrerment is exceedingly good. This agreement between theory and experiment lends support to the present view of surface electrification.

Evaluation of β and k

The constants β and k used in the above expression furnish much information regarding the number of negative and positive ions on the surface at any time. From the measurement of the electric charge at any mastant only the difference between the number of negative and positive adsorbed ions is obtained. By definition of β the total number of adsorbed negative ions on the bubble whea equilibrium is attaned is given by

$$
4 \pi r^{4} \frac{\alpha}{\gamma}=\frac{4 \pi \beta}{\gamma}
$$

and therefore can be obtained directly from a knowledge of β.
In order to evaluate β the above expression for M (equation 6) is apphed to the experimental curves Cousidering a representative graph (fg. 1), the total charge on the bubble attained a maximun value after 300 seconds, thes value heing $5.60 \times 10^{5} \mathrm{~s}$. Hence if the adsorbed ions were monovalent, the number
of uncovered negatives at this instanit was 5.88×10^{8}. Finally when equilibnum conditions obtaned on the surface the total charge was $2.099 \times 10^{5} \mathrm{e}$. Hence the experimental conditiona may be expressed.

$$
\left.\begin{array}{ll}
t=300 \text { secs } & \frac{d \mathrm{M}}{d \ell}=0 \quad \mathrm{M}=5.66 \times 10^{3} \tag{8}\\
t=\infty & \mathrm{M}=2093 \times 10^{5} .
\end{array}\right\}
$$

In equation (5) there necurs the average velocities of thermal agitation v_{s} and v_{y} of the two ions. These are not known accurately owing to the uncertainty of the nature of the ions X^{\prime} and Y^{+}, but, since in temperature equilbrium the kinetic energy of a liqud molecule is equal to that of a gascous molecule, an approximation to the required valuea mny be made from a knowledge of the mean square velocitics of gaseous molecules These range in general from $1 \times 10^{4} \mathrm{rm} / \mathrm{sec}$. to $5 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$, so that the desired values must he in this region For the purposes of calculation, therefore, it may be assumed that

$$
\begin{aligned}
& v_{r}=2 \times 10^{4} \mathrm{~cm} / \mathrm{sec} \\
& v_{v}=3 \times 10^{4} \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

This assumption, while being only approximately correct, will alter only the numerical value of the constants obtamed from equaition (6), it cannot affect their order of magnitude, which is of primary interest. It will be shown later that any error here introduced is negligible in the calculation of the potential difference at the surface. On differentiating (6), inserting the above conditions (8) and putting $n_{x}=n_{y}=n$, the constants are found to have values

$$
\begin{aligned}
n & =7 \times 10^{8} . \\
k & =5.96 \times 10^{4} . \\
\beta & =1.5 \times 10^{-10}
\end{aligned}
$$

This shows that the ions X^{\prime} and \mathbf{Y}^{+}, due to chance electrolytic ampurity, are very few in number compared with the H^{+}and OH^{\prime} ions.
The constant h gives very nesful information as to the binding of the covering $Y{ }^{\prime}$ ions. It appears that only about 6×10^{-6} of these $10 n s$ are removed per second by impact with surrounding molecules These positive ions are farthest from the water surface and will therefore be least firmly bound to it Hence, in the case of the negatuve ions, which are even more firmly bound, the number removed per second is quite neghgble, and the assumption that all the negative jons atriking blank apaces remain attached would seem to be jastried.

The total number of negative ions on the surface when equilibrium is attanned is

$$
4 \pi \beta / \gamma=185 \times 10^{\circ}
$$

The number of unoovered negative ions, as nessured by the resultant charge on the bubble is 2.09×10^{5}. Theso figures therefore indacate that about 88 per cent of the adsorbed X^{\prime} ions are covered by bound positive ions, while only about 11 per cent. are uncovered and thus charge the suriace negutively

From these figures the constitution of the suriace layer of the bubble way be summed as follows -

Taking the number of water inolecules per square centinetre as equal to 10^{15}, the very great majonty of them are covered by H^{+}and OH^{\prime} uns which are bound so tightly to the surface that very few of them "eveporate" to give a resultant charge Therr aro also $2 \cdot 35 \times 10^{8}$ negative ions of larger size attached per square centimetre and of these 89 per (ent, are covered by positive ions wheh are continually evaporating and recondensing on the negatives, the fraction evapurating per second being 00×10^{-4} In this way a definite resultant oharge as given to the bulbble by thowe neqative ious which are momentarily uncovered.

Relation between the ('harge und the Rate of Absorption of the BubWe
The above adsorption hypotheas as further contirmed by an examination of the bubble chargealter the aurface is fully formed At thes atage the adsorption has reached a state of dynamic equhbrium Hence, from equations (2) and (3), when $t=\infty, \frac{d N_{y}}{d t}=0$,

$$
\therefore \quad \mathrm{N}_{x}=x / Y, \quad \frac{u_{y} v_{y} Y}{V \frac{b}{b \pi}}\left(\mathrm{~N}_{x}-N_{v}\right)=h \mathrm{~N}_{v}
$$

Therufore

$$
N_{v}=\frac{x / \gamma}{1+\frac{h \sqrt{6 \pi}}{n_{v} v_{v} \gamma}}
$$

The equilhrium charge is therefore

$$
\begin{align*}
4 \pi r^{2}\left(\mathrm{~N}_{x}-\mathrm{N}_{v}\right) & =\frac{1 \pi \beta}{\gamma}\left(1-\frac{1}{1+\frac{k \sqrt{6 \pi}}{n_{v} v_{v} \gamma}}\right) \\
& =\frac{4 \pi \beta / \gamma}{1+\frac{n_{\nu}{ }^{0} \boldsymbol{\gamma}}{h \sqrt{6 \pi}}} \tag{0}
\end{align*}
$$

This is the equibrium charge when the bubble is not being absorbed into the water But when arr-free water 18 used, the gas molecules pass through the surface in a continuous stream. Consequently more positive sons will be
removed by oollisions between them and the incoming air molecules. Hence the total charge on the bubble is greater the faster the bubble is absorbed.
Tho number of positive covering ions removed by the ar moleoules will obvously be proportional to the number of air molecules passing per second through unit arca of the surface, and also to the number of pastive ions present per sq cm of surface But the rate of absorption of the bubble is

$$
\begin{gathered}
d(\mathrm{Vol}) \\
\frac{d t}{}
\end{gathered}=4 \pi r^{2} \frac{d r}{d t} .
$$

Therefore the number of air molecules passing through one square centimetre per second is $d r / d t$ Then the equation giving the number of positive ions per square centumetre will become

$$
\frac{d \mathrm{~N}_{v}}{d t}=\frac{n_{v} v_{v} v}{\sqrt{6 \pi}}\left(\mathrm{~N}_{x}-\mathrm{N}_{v}\right)-k \mathrm{~N}_{v}-\mathrm{CN} \frac{d r}{d t}
$$

where C is a constant
In equilibrium

$$
\frac{d N_{u}}{d t}=0 \quad \text { and } \quad N_{x}=\frac{\alpha}{\gamma}
$$

Therefore

$$
\mathrm{N}_{v}=\frac{\alpha / \gamma}{1+\frac{\left(k+\mathrm{C}^{\frac{d r}{d \ell}}\right) \sqrt{6 \pi}}{n_{\nu^{\prime \prime} \gamma} \gamma}},
$$

and the rharge per unit area

$$
\begin{aligned}
=N_{\tau}-N_{v} & =\frac{\alpha}{\gamma}\left\{1-\frac{1}{1+\frac{\left(k+C \frac{d r}{d t}\right) \sqrt{6 \pi}}{n_{v} v_{v} \gamma}}\right\} \\
& =\frac{\alpha}{\gamma}\left\{\frac{1}{1+\frac{n_{v} v_{\nu} \gamma}{\left(k+C \frac{d r}{d t}\right) \sqrt{6 \pi}}}\right\}
\end{aligned}
$$

The total charge is

$$
\begin{equation*}
\frac{4 \pi \beta}{\gamma}\left\{\frac{1}{1+\frac{n_{y_{r}}{ }^{2} \gamma}{\left(k+C \cdot \frac{C}{d} \bar{d}\right) \sqrt{6} \pi}}\right\}=M, \tag{1}
\end{equation*}
$$

but

$$
\mathbf{M}_{0}=\frac{4 \pi \beta}{\gamma}\left\{\frac{1}{1+\frac{n_{r} v_{y} \gamma}{k \sqrt{6 \pi}}}\right\}
$$

$=$ total charge when rate of absorption is zoro.

Therefore

$$
\mathrm{M}-\mathrm{M}_{0}=\frac{\left(90 \pi^{3}\right)^{d_{n_{\nu}} v_{\nu} \beta C \frac{d r}{d t}}}{\left\{\left(k+\mathrm{C} \frac{d f}{d t}\right) \sqrt{6 \pi}+n_{\nu} v_{\nu} \gamma\right\}\left\{k \sqrt{6 \pi}+n_{\nu} v_{\nu} \gamma\right\}}
$$

and

$$
\begin{aligned}
& =\left(\frac{k \sqrt{6 \pi}+n_{\nu}{ }^{\prime \prime} \gamma}{4 \pi n_{\nu} v_{v} \beta}\right)\left(1+\frac{h \sqrt{6 \pi}+n_{x} v_{v} Y}{\sqrt{6 \pi} \mathrm{C}} \frac{d t}{d r}\right)
\end{aligned}
$$

or

$$
\frac{1}{M-M_{0}}=A+B \frac{d t}{d r}
$$

where A and B are constanta so long as n, v and k are constant
If now a series of bubbles of constant diameter are examined in water of constant ronductivity but containing different quantities of wr in solution,

then n, v and k will be constant and by the above equation there ahoald be a. straight line relation between $1 /\left(\mathrm{M}-\mathrm{M}_{0}\right)$ and $d / / d r$.

This has been examined experimentally. A bubble of 0.05 cm . diameter was used in air-saturated water. The equilibrium chatge on thas bubblo gives the value of M_{0} The charge (M) on a bubblo of the same diameter was then measured in a serics of experiments in water ungaturated by air. By using water of vanous degrecs of aur saturation values of M could be determined for various values of $d r / d t$ (measured expenmentally). The $1 /\left(\mathbf{M}-\mathbf{M}_{0}\right)$ was then calculated and plotted agamst de/dr. The result is scen in fig 5, which is a straight lime graph and offers strong evidence in support of the theory

Evaluaton of the Potental Difference between the Surface and the Interior of the Liquud

Since it is assumed that an ar bubble has a resultant charge, Heluholtz' equation may not be applied On the other hand, the concentration of adsorbed ions on the bubble surface will result in a potential difference between the surface and the interior of the liquid Thus potential difference may be determined by the use of the Boltzmann equation

$$
m_{1}=m_{2} e^{-\psi / L},
$$

where m_{1} and m_{8} ure the number of particles in regions 1 and 2 in oquilibrum, and $\psi 1$ is the work done in moving one partacle from region 1 to region 2.

Now let m_{1} and m_{1} be the number of free negative rone per co. near the bubble surface and in the interior of the hquid respectively. If there is a difference of potential of V volts between these regions, the work done in moving one ion from the surface unto the interior of the liquid will be Ve/300 erge
Taking $e=1774 \times 10^{-10}$ e.s.u

$$
k=1372 \times 10^{-16}
$$

$$
T ー 300^{\circ} \mathrm{A}
$$

$$
\cdot \frac{c}{k T}=38 \cdot 65,
$$

$$
\log _{9} m_{2} / m_{2}=3865 \mathrm{~V},
$$

or

$$
\begin{equation*}
\mathbf{V}=\frac{1}{3865} \log _{n}\left(\frac{m}{m_{\mathrm{a}}}\right) . \tag{11}
\end{equation*}
$$

Hence a knowledge of the number of ons perce. in the liquid and on the surface will give the value of V. It has been shown above that in one representative cerperiment, the number of ions per c.c. in the liqud was 7.0×16^{6}. For the evaluation of $\boldsymbol{m}_{\mathbf{g}}$ it an only necessary to conader the uncovered negative
ions on the surface, ance those having a poitive ion attached will exert norepulsion on another negative ion approaching the surface

In equilibrium in the above experiment, the number of such ions on the bubble was 209×10^{5} Consider the time at which the area of the bubble was 5×10^{-8} qquare $\mathbf{c m s}$

Then the number of ions attached per square em -118×10^{6} and average distance between these ions $=\left(\frac{1}{1-18 \times 10^{6}}\right)^{h}$

$$
=489 \times 10^{-4} \mathrm{~cm}
$$

Hence in a small volume close to the bubble surface the negative inns are $4.89 \times 10^{-4} \mathrm{~cm}$ apart Consequently the number per car in thas region is $\left(\frac{1}{4.89 \times 10^{-6}}\right)^{3}=855 \times 10^{0}$,
hence

$$
\begin{aligned}
& m_{1}=7.0 \times 10^{8}, \\
& m_{2}=9.55 \times 10^{9},
\end{aligned}
$$

and therefore by equation (II)

$$
\mathrm{V}=0064 \mathrm{volt},
$$

which agrees well with the values determined directly by other observers.
Ance it is found that while the bubble shriuhs the charge remains constant, m_{2} and therefore V must increase as the bubble dameter decreaset.

Summary

The electrical charge on an ar bubhle in water is measured under vanous conditions and an examination is made of the inode of formation of this surface charge. For bubbles ranging in diameter from 20 mm to 02 mm . the total oharge is independent of the diameter uhen equilibrime conditions obtain at the surface

The constitution of the surface lajer is examined theoretically and a new method of mensuring the potential difference between the surface and the interior of the liquid is surgested

In conclusion the writer wishes to express his apprecistion of the unfailng kindness of Prol. Sir J J. Thomson, who has interested himeelf in the work and given much helpful criticism.

The Effect of Superposed Allernating Current on the Polarisable Primary Cell Zinc-Sulphuric Acid-Carbon Part II High Frequency Current

By A J Allmand, DSc., and H C. Cocks, PhD.
(Communicated by Prol S. Snules, F R.S -Received May 11, 1926)

In Part I of thes investigation, it was shown that, when ollernating currents of frequenctes between 20 and 400 per second are passed through the primary cell zinc-sulphunc acid-carbon, the depolarisation and increase in current output first observed by Brown, \dagger are essantially due to an effect produced at the carbon electrode, the potential of which becomes more positive by an amount depending on the atrength and frequency of the alternating current used The greater this current and the lower its frequency, the greater the effect, a result quite in line with what was already known on the subject of the action of superposed alternating currents on polarised eleotrodes

Brown had, however, also obtaned a marked action when using a ourrent of 12000 periods, and had ascribed it to an effect produced at the zinc electrode The results of Allmand and Puri indicated that such high-frequency ourrents would be unlikely to depolarise the carbon electrode perceptibly. In addition, the anodic solution of zinc is usuaily regarded as occurning almost reversibly, although Allmand and Puri had certainly noticed a small depolarising effect caused by their low frequency currents. Consequently, the results reported by Brown with a frequency of 12000 appeared to merit further investigation, and the present paper contains an account of experiments to this end.

The high-frequenoy current was generated by a valve osellator of simple design and construction. Thrue independent coils were used-a grid coil, an anode coll shunted by a condènser, and a tapped coupling voll These were wound with farrly heavy gauge D S C wire on large disc-shaped formers. When the apparatun was in use, the anode conl was placed on the grid coil, and the coupling coil placed on the anode coil, or supported at a small diatance above it, according to the output required. The most suitable tapping of the coupling coll for maximum output accorchag to the unpedance of the circuit with which it was connected was found by trial.

Three Marcou-Oaram L,S 5 valves wore used, theor grids, snodes and filaments

> *'Roy Soo Proo,' A, vol 107, p 120 (1925)
> \dagger 'Roy Soo Proun,, A, vol, M0, p. 26 (1914)
being connected in parallel. The gride were given a negative bias of 45 volts by means of a hugh-tension battery, thus avoiding the use of a girid leak and grid condenser The anode voltage was mantained at 940 volts, and an output of about 4 watts was obtained The anode current was furmshed by a 100 volt500 volt direct current rotary transformer. In order to diminish commutator nipple, it was passed through a "smoothing" unit, consisting of two $20-\mathrm{Henry}$ choke coila (one in the positive and oue in the negative lead) and two 2 -mirrofarad condensers (one connected across the input side and one acrows the output sile of the choke cols). The inductance of the anude coll was measured and found to be 0011 Henry, it was therfore shunted by a condenser of 0016 microfarad, this being the calculated value for giving a circuit resonant to 12000 cycles. The irequencics actually generated were menaured by meani of a heterodyne wave-meter, using the usual " zero beat" method. They were found to vary with the output of the oucillator in accordance with the following table - -

Table I

Experiments on Current Delvery.
The primary cell consisted of a carbon rod lcm in diameter, and a atick of amalgamated commercial zunc of about the sume dimensions, these being immersed to varying depths in aqueous sulphuric acid of 1 20) apecific gravity. The circuita employed were very ammar to those ased by Brown. The direct, eurrent circuit contaned a awitch, a moving-coil milliammeter, a choking-coll and a varinble resistance The alteranting current circurt was composed of the couplang-coll, a hot-wire ammeter, a variable reastance and a 1 -microfarad condenser. In each experiment, the drrect-current carcuit was hrst closed, and the cell allowed to furnish current, the regulating reasisance being adjusted until the amperage had settled down to a pre-determined figure. The alternating current was then switched in, kept running for a minute, and the new value of the direct current read off This was repeated for difierent alternatingcorrent atrengths, the direct current being adjusted to ita original figure in
betwoen the alternating-current periods when required. This was seldom nevesbary, as, in practically every case, the changes in direct current, on switching in and out the alternating current, were abrupt and at once ceased. Dunng all the experiments, the zinc electrode remained coated wath bubbles of hydrogen, and no difference in its apprarance could be detected when the alternating current was switched in or out.
The length of electrode immersed in the different expemments werc as follows :-

I - 5 c m, of pinc rod, 5 c m of carbon rod
II - 5 c m . of muc rod, tip of carbon rod.
III --Tip of zine rod. 5 cm . of carbon rod
In two other experimenta, the carbon rod was fully depolarised by immersion in a small porous pot containag atrong nutric acid (as in the Bunsen primary cell).

IV -- 5 cm of aine roll, 5 cm of carbon rod (in HNO_{3})
V.--Tip of zunc rod, b c.m. of carbon rod (in HNO_{3})

The voltages of these cells when furnaghing direct currest in the normal way were not actually measured, but it will be clear, when it is remembered that the man polarsation is at the carbon electrode, and, in every case, will be greater, the smaller the electrode, that they will stand in the order IV $>\mathrm{V}>\mathrm{I}>$ III $>$ II A calculation based on the currents supphed and the approxamate values of the senes resistances in the different casen points to figures of about $16,15,0 \cdot 2,0 \cdot 1$ and 004 volt reapectively.

The data obtamed are plotted in the figure.
The results are, of course, somewhat complex, owing to the fact that, as will be seenlater, polarisation is occurning normally at both electrodes, and that therefore, if it 19 relioved at one electrode, the increased cell output is, to a oertain extent, nillihed by the fact that the grealer current density causea increased polarisanon at the other electrode. They can, however, be explanned on the assumption that, as Brown supposed, the seat of the ilepolarising effect of the high-frequency current is solely at the zme, and not at the carbon, plectrode Thus, cells IV and V both give an increased current output. The percentage increase is, however, small, as the cells, to commence wath, are ouly slightly polarised. It as rather greater with V than wath $I V$, where the initial polarisation, owing to the larger muc electrode surface, is lres With cell I, the effects are much greater, corresponding to the low inttal valtage Curve III rises more rapudy
than I, owing to its onginally heavier polarisation. In cell II, the initial polarisstion is almost entirely due to the small carbon electrode, and this is not affected

by the alternating current Hence, its increase in output is relatively amall, even for a very high ratio of alternating current to initinl direct current

Experimpnts on Electrode Potentiol

The measurement of electrode potential, buwever, offers the most certain method of investgaling the nature of the effect, and such measurements wese next undertaken The general arraugement employed was armalar to that used by Allmand and Pur, but the problem was here a simpler one, in that the highfrequency currente allou ed of the use of a condenser in the alternating curreut, circuit, any leak of direct current into the latter being thereby eliminated The same oarbon electrode was used as in the above experments, whilst the amalgamated zinc electrode was of the pure metal, 1×1 (mm . in cross section Ruth electrolen were momersed in the electrolyte (sulphurie acid o[120 S (A.) to a depth of 5 cm . The auxihary electrole for leading in the alterasing current was of the amme matorial as the cell clectrode under investigation, whilst the choking-coil in the direct-current crrcuit prevented altornating current from passing through the other cell electrode The circuits wire otherwise practically julentical with those described abose Λ voltmeter was put acrose the cell elpotrodes in order to mensure the effect of the superposen alterngting current
on the cell voltagn The electrode potentiala were determined by the usual compensation method, employing a Luggin capillary, metre bridge, and moving coil galvanometer. A normal merctrous sulphate electrode was used as relerence electrode, and was connceted with the cell electrolyte by a brige of $\mathrm{N}_{2} \mathrm{SO}_{4}$.

In carrying out the experiments, measurements of open circuit E M.F and of electrode potental were firat taken. The cell was then allowed to discharge through a autable resistance in the direct-current circuit until the current was constant (30 minutes to 2 hours), when current, voltage and electrode potential were read Then an alterinting current of 0.1 amp. was allowed to flow for five minutes, and a fresh set of readings taken This was followed by an interval of five minutes with direct current only, the same realings as befure being taken, after which alternating current of higher amperage was apphed for five minutes, and so on The highest alternating current used was 1 ampere, whilst the direct current output of the cell varied between 0.023 and 00943 amperc.

The results obtained when the high-frequency alternating current was superpored on the carbon cathode are quickly desernbel. Two senes of readings were taken, and in nether of them was analteration in polarisation greater than one millivolt observed when switching in or out the alternating current In 10 out of 14 such changee, there was no perceptible effect Naturally, the cell vollage-rend to the nearcst mullivolt-was equally unaffected. The ratio alternating current . dircet current in these expenments varied between $2 \cdot 2$ and 45 We therefore conclude that alternating currents of frequency $10,000-$ 12,000 du not affect the polarisation of a carbon cathode charged with hydrogen, a result to be anticipated from the work of Allmand and Purt.

With the zine electrode, an effect was obtuined, and the data are given in Table II,

It will be noticed, first, that the effect of superposing the high-frequency altarnating current on the zinc elootrode is to increase considerably the cell current output Thus, with an alternating current of 0.9 amp., the cell current is doubled During the intervals in which alternating current in not flowng, however, it drops below its original value. This is due to the increased polarisetion at the carbon electrode, brought about by the heavier current passing during the preceding period. Column 4 shows the correaponding voltage changes, and jts last two readinga bring out the slow recovery of the polarised carbon electrode after all current has ceased to flow. The chief interest in the table, however, hos in columns 5 and 6 Column 5 shows that an amalgamated sinc anode,

Table II.

Time in minutes frons oombramosment of oxperiment.	Altornsting aurrent in smperea	Direot current in milisamperes	Voltage of prumary oell In valts.	Putondal of Zunc Eleotrodu $\left(e_{A}\right)$ in volta.	Change in potential in millivaltes due to alteruating eurront
0	00	0	13	0 740,	
80	00	60	012	0673	
40	01	50	0116	0 H02	- 0
60	00	48	0110	0.675	
65	0.2	62	0123	0704	-29
60	00	48	0108	(1)875	
06	03	61)	0. 140	() 737	-62
70	00	45	0106	(673	
75	0	70	0.163	0777	-104
80	00	45	$0 \cdot 105$	0072	
85	05	80	0190	0 818	--140
00	00	45	0105	0872	
95	0.8	99	0232	0886	-213
100	0	46	0109	0675	
115	0	0	074	0781	
160	0	0	0 Ol	0781	

subjected in dilute sulphuric acid to a current density of the order* of 10 milliamps,/om. ${ }^{2}$, is polarised to the extent of more then $0 \cdot 1$ volt, whilst column 6 shows that high-frequency currenta not only lower this polarisation, but, if sufficiently great, completely destroy it, und, eventually, make the electrode considerably less noble than a static zinc electrode Allmand and Pun (who were using a considerably lower direct carrent than here employed) make no particular reference to any direct current polarisation, whilst the depolarising effect of their low-frequency alternating currents was far less than here rocorded (although the maximum allernating current: direct current ratio in therr case was 200, as aganst 20 in the above table)

The zinc electrode in this experiment was covered with bubbles of hydrogen. Although no visible change of any kind was noticed when the alternating curreut was awitched on, some connection between the presence of this layer of gas and the unexpected polarisation and depolarising effect appeared possible. Accordingly, experments were done in which the zinc electrode was placed in a neutral ZnSO_{4} solution, whilst the carbon electrode was immersed in a dilute solution of sulphuric acid, contained in a prorous pot. Using a normal calomel electrode, the influence of the high-frequeucy current on the potential of the anc electrode (when the cell was polarised) was again investigated. The effects ohserved were less, and it suggested itself that they were connected with the diffusion of

[^62]aoid out of the porous pot surrounding the cathode. Accordingly, the oarbon cathode was replaced by one of amalgamated rinc, and the sulphunc acid by neutral ZnSO_{4} ealation, the anode now being polansed by an eccumulator placed in the direot current circout. The result was to reduce both the directourrent polarisstion (already much less than when the zinc was in the aulphario acad), and also the effeot of the alternating current, down to a few millivolts. On edding sulphuric acid to the electrolyte, both theme magmitudes rose to values comparable with those first observed with the acid solution. The aotual data are recorded in the paper which follows

Drecussion.

It thas appeara that high-frequency currents have a very considerable depolarising action on an anode of amalgamated cinc in a solution containing free acid, and that this effect, as auggeated by Brown, is the cause of the increased current output in the $\mathrm{Zn}-\mathrm{H}_{8} \mathrm{SO}_{\mathbf{4}}-\mathrm{C}$ cell Both electrodes in this cell contribute to the polarisation, the carbon to a considerably greater extent than the zino. But wheresa low-frequency altornating currents only affect the zinc electrode to a amall degree, whilst materially decreasing the polarisation at the carbon, high-frequency currents are without any effect whatever on the carbon, and profoundly influence the zinc eleotrode The depolarising action of the lowfrequency currents on the carbon eleotrode can be attribated to the partial destruction of the hydrogen charge during the anodic pulae, a reaction which is by no means instantaneous, and therefore the more marked the lower the frequency But the effects at the zinc electrode described in this paper are less easy to analyse. We haveinvestigsted them in more detail, and the resulta are described in the following communication. Here it will only be asad that they are apparently in no sense connected with the disruption of a visble film of gas by means of a rapidly alternsting electrical stress There is no perceptible change in appearance of the gas-ooverod cinc anodes when the current is applied. There is no change in appearance or decrease in overvoltage at the carbon cathode under the same curcumstanves And in the erperiments mentioned above, in which the zino was immersed in a zinc sulphate solution, under conditoons whioh made diffusion of acid from the cathode possible, although both polarisation of the anode and its removal by the high-frequency current. were observed, there were no visible bubbles of gas on the sinc.

These expenments were carried out in the autumn of 1925. We are indebted to a fund put at the dieposal of the laboratory by Brunner, Mond and Company. Limuted, for the purchase of the rotary transformer and the wave-meter.

The Polarization of Zino Electrodes in Neulral and Acd Solutions of Zinc Salts by Direct and Alternating Currents.-Part I.

By A. J. Alluand, D Sc, and H. C. Cocks, Ph D.

(Communicaterl by Prof. S Smiles, F R.S -Received Msy 11, 1926)

1. Introductory.

In the preceding paper* it was shown that an amalgamated unc electrode made anode in an acid znc aulphate solation undergoes considerable polarization, and that this polarization can be more than overcome by the superposition of a sufficiently large alternating current of high frequency Further, Allmand and Purit mention experiments in which a cathode of amalgamated zinc bad superposed on it alternating currenta of intensities up to 200 times that of the direet current, and of frequencles varying between 20 and 400 , the effect boing to inarease the polarization of the electrode, which became more negative. These results were not to be anticipated from previous work, and it seemed that a closer investigation of the whole aubject might not only explan the facta referred to, but perhaps throw fresh light on the mechanism of the electrode processes involved. As possible factors affecting the phenomens could be considered the amalgamation or otherwise of the zinc electrode, the presence or absence of free acid in the solution, the nature of the zinc salt ($\mathrm{g} g$, whether aulphate or chloride), duration of electrolyas, temperature, the absolute and relative values of the direct and alternating current densitues, and the frequency of the alternating currents The present paper contains an investigation of some of these points. Working at roorn temperature and with zinc aulphate solutions, potential measurements have been made with amalgamated zino electrodes in absence and in presence of free $\mathrm{H}_{2} \mathrm{SO}_{4}$, and with unamalgamated electrodes in noutral solution. Alternating currenta and compound currentat have been used, and a few experimenta made with direct corrente Frequencies varying between 50 and 11,000 have been worked with.

2 Experimental.

The expermental arrangement used was simple. The electrolysus vessel, a large beaker, was covered with an ebonite plate whoh carncd three zino

[^63]\dagger 'Roy. Soo Proo.,' A, vol 107, p 126 (1920).
\ddagger An alternating ruperposed on a direot ourrent will be tarraed a compound current in this pepor.
eleotrodes. These were of the purest zino available (amalgamsted or unamalgamated), identical in dımensiona (rectangular rods of cross-section $1 \times 1 \mathrm{~cm}$), and were immersed to a depth of 5 cm in the electrolyte Two of the three were placed olose together, and the third some distance away. In the oompound current experiments, the middle of the three was the one polarized by the compound current and the one the potential of which was measured The adjacent electrode led in the alternating-current, whilst the more distant one acted as the other direct-current electrode In the measuremente with alternating or direct current, two only of the electrodes were used The electrolyte was well stirred. The drect current was supplied by accumulators, whilat the low-frequency alternating currents were obtained from the generators described by Allmand and Puri By altering slightly the positions in the circuit of the moving coil mulhammeter and the hot-wire ammeter,
 the arrangement for compound currents used by Allmand and Puri was much improved on (see fig. 1) Although leakage of alternating current into the direot-current circuit and ence verses stall takes place, the actual readings given by the instruments messure the currents whioh pass through the electrode under expenment, and requre no correotion for leakage. When working whth highfrequency currente, the generator and arrangement descmbed by the authors in the preceding paper were employed An addutional set of couls was made for us by the Reseurch Staff of the General Electric Company, who found that, when they were used under the operating conditions described in the preceding paper, the frequencies of the currents generated were 535 cycles, 1050 cycles and 1950 cyoles when the anode coll was shunted by a condenser of 1 microferad, \ddagger nucrofarad and $1 / 16$ microfarad reapectively. These frequencues were cheoked by us when our apparatus was set up by comparing the note heard in a telephone held near the coils with that of known frequency produced by a tuning fork.

The potential measurements were made in the usual manner, using a normal calomel electrode, with a bridge of $3 \mathrm{~N} . \mathrm{KCl}$ Precautions were talken to prevent the diffusion of this salt iuto the electrolysis vessel Occasionally a normal mercurous sulphate electrode was used All potentials in the puper are referred to the hydrogen scale.

3. Unamalganuted Electrodes in Neutral Normal Zinc Sulphate Solution

In all these experiments, unless otherwise stated, the electrode under observation wes polished with emery cloth before use.

Indial Slatio Potential -This was observed on many oocamions The most negative figure obtained was - 0.793 volt (twice), the most ponitive -- 0777 volt (once), and the mean of 37 recorded roadinge - 0784 volt. lusually about 20 minutes were required for these potential differences to become constant.

Cathodic Direct-(urrent Polarization - With a current of 50 ma a, an initial polarization of nearly 80 mv . was observed. This fell in course of time, and, after an hour, the eleotrorle was about $60 \mathrm{~m} v$. more negative than its original static potential Higher and lower current denasties gave correspondingly greater and amaller polarizations On cuthing off the current, the potential of the electrode mmediately became more positive and, after a few minutes, settled down at --0.795 volt and remained there for hours This figure, which was alwaye obtained, is more negative than the original stafic putential The cathode after elcotrolysis was covered with o dark grey deposit, semi-crystalline in appearance.
Anodrs Direct-Current Polarization.-With the same current of 50 ma , the initual polarization observed was about 20 mv , if, considerably less than at the cathode It fell with time, but only about $4 \mathrm{~m} v$. in the hour, a mmaller rate than with the cathode A change in current denuty caused a chango of polanzation in the usual direction On cutting off the current, the potential at once became more uegative, and, on those occnsions on which it was read momediately, was found to have passed its original statie potential by a few millivolta This effect, however, was only transitory, and in half-an-hour the onginal potential had been regained - in fact, the electrode sometimes becume more positive than ita original figure The eloctrodes under anodic treatment roughened slightly and became dark grey

Alternating-Current Poluriution -Measurements were carried out with frequencies of $50,450,1,950$ and 11,000 cycles. In general, the potential of the electrode whilst the current was flowing was more negative than the static value, but the result was complicated by two facts. The static potential itself, except in the hagh-frequency experiment, was altered in the negative direction by the passage of the current, and only returned to ite original figure comparatively slowly after the current was cut off. Further, the polarization duc to the alternating current became lens with increased time of electrolyas, whether
referred to the original atatic potential, or to its intermedicte value, determined durng the course of the expenment, either immedistely before or immedistely after the measurement on the polarized eleotrode.

With the high frequency, the effect produced was amall-thus, an alternating ourrent of 0.9 emp . only obanged the electrode potontasl from -0.790 to -0.799 volt With frequenotes of 1,950 and under, care had to be taken to avoid getting apurious resulta, owing to the time effects mentioned. Measurements were accordingly made in which (a) the frequency was kept constant and the alternating current increased by ateps, periods of current flow being intercalated with equal periods duning which no current was passing, (b) an alternating current of constant amperage and frequency wa allowed to flow for a conaderablo time-up to one hour-then cut offi, and the rate of return of the electrode potential to more positive values noted, (c) experiments simlar to those under (a) were carned out, except that currents of two frequencies were used alternately, two measurements with a given current density thus being made before going on to a higher current density. The results of these numerous experiments lead us to conclude that an increase in current density osuses a alight increase in the effect, and that the influence of frequenoy within the limits of $50-2,000$ is neghgible Table I, which contains the amounts in millivolts by which an electrode becomes more negative than its (intermediate) static potential after current has been flowing for five minutes, supports these conclusions. With the exception of the figures with currents of 05 amp , the valueg given are the average of two to four readings.

Table I

| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency |

In most nases the electrodes were hardly ohanged in appearance during these experiments, merely becomung somewhat duller. If, however, a sufficiently large number of coulombe at a sufficiently low frequency were passed through the eleotrode, the surface of the latter becsme more or less covered with a loose grey powder. The static potentials inmediately after catting off the ourrent
veried between - 0.789 and -0.791 volt, these figures usually slowly becoming more positive with tume, snd spprosching the original statue value.

Cathadio Oompound Current Polarization.-Keepung the durect current constant at 0.05 ampere,* the slternating current was increased in steps, with intervening periods during which only direot current was flowng. In some cases, the frequenoy was kept constant during such a series of measurementa, in other cases, two frequencies were used alternately (procedures (a) and (c) as desaribed for the altarnating-current experiments). Complications were present owing to the esthodic direot-current polarization deoreasing with time, and the static potential beooming more negative. With the 11,000 frequency, practioally no change in potential could be deteoted on awitohing in and out the alternating current With frequensies between 50 and 1950 (measurements were also made with $n=100,240$ and 450) and alternating currents of 0.1 0.9 ampere, a depolarising effect was notnced in every case-that is, the potential became more positive when the alternating current was superposed The changes observed ranged between 4-23 m.v Owing to the complications referred to, the measurements were not very reproducible The figures in Table II give the average differences observed between the intermeduate durectourrent oathodro potentrals and the compound-current potentials (one set of readings only for $n=100$)

Table II

Frequency.	Current in Ampuras				
	0.1	03	05	07	09
50	13	14	10	0	11
110	13	10	15	12	12
240	10	20	1 H	18	15
450	18	80	19	10	14
1050	4	9	12	10	-

Frequency would seem to have no influence up to $n=450$, but the change to $n=1950$ resulte in a smaller effect, particularly with lower current densitiea There would aeem to be, from the table, an optimum current density between $0.3-0.5 \mathrm{smp}$. This, however, is only apparent, in the sense that, during the electrolysis, the direct-current osthodio polsrizations were becoming less (by

[^64]10--20 m v. in the course of a run) and the static potentisls more negative (they were -0.794 to -0.795 volt at the conclasion of a series of measurements, a clange of $19 \mathrm{~m} \nabla$. in the extreme case) It is therefore probable that, referred to the intermeduate static potentials, which were not measured, the polarization produced by the compound current may contunue to decrease still further as the alternating-ourrent component increases If the mean values of the sotual measured potentiala be considered, thus eliminating ohanges in durect-current polarization, the maxima already disappesr in the case of the three higher frequencies and are made fiatter for the lower frequencies

After the electrolyala, the electrode was found to be covered with a dark acmscrystalline deposit when working with low frequencles, and with a dark grey film when using the high frequency

Anodra Compound Curvent Polarization--The expenimenta were carrieal out similarly to those just described The complications encountered when the polanzed zinc electrodea were more negative than the statac value were here much less important, and the reavlt consequently more reproducible and easier to interpret. Measurements were made with currents of frequency $50,100,240$, $450,530,1050,1950$ and 11,000 The superposition of an alternating current on u polarized zinc anode causes depolarization, which is greater the larger the alternating current and the lower the frequency Currents of $n=1950$ and 11,000, even of the maximum strength used in these measurements, gave no definite perceptible effect With $n=1050$, an effect was first noted at 03 smp ., and with $n=530$ at 0.1 amp As frequency was still furthar lowered, so the effect increased, till, with $n=50$, a current of 01 empere capsed a depolarization of $5 \mathrm{~m}, \mathrm{v}$ or more

Just as in the measurements with drect current, on cutting off the compound current, the electrodes ussume for a short time a potential more negative than the initial static value, changing in the course of an hour or so t.0 a figure more positive than the initial value.

4. Amalgamated Electrodes 27 Neulral Normal Zino Sulphate Solution.

In all experiments with amsigsmated electrodes, these ware freshly re-amalgamated before use, unless otherwise ststed

Static Potential -Some twenty measurements were made on freshly amalgamated electrodes, and a large number after a polarizng currant of some description had been cut off The extreme figures noted were - 0.794 and -0.797 volt. The average of -0.796 volt is the accepted figure for the potential of the syatem $\mathrm{Zn} / \mathrm{N}, \mathrm{ZnSO}_{\mathbf{n}}$.

Cathodic Direct Cutrent Polarization -Thas was measured for currents between 10 and 100 ma ., and found to be small (u p to 10 mv). In one case, the polarizations observed decreased with time, being several millivolts less after 10 munutes passage of current than after 5 minutes Thus, with 50 mm , the initial value of 13 in v. ohanged to $10 \mathrm{mo} v$ The bright aurfuce of the electrode was afterwards found to be dulled In another instance, where the polariautions were constant over 10 munutes, they were distinctly lower, and the electrode at the end of the experment was crystalline in appearance The polamzation for a current of 50 m a was $7 \mathrm{~m} . \mathrm{v}$ in this case. The same figure wan obtamed in another experiment, and remained constant ovar an hour In still another case (see below), the polarization for the same current was only 1 mv , and remamed constant durng the experiment (15 minutes)

Anodic Durect-Current Polarization.-This was still smaller, and increased linearly with the gurrent, density, in one case amounting to $9 \mathrm{~m} \nabla$ at a current of 0 lampere. Aftar the experiment, the electrode aufface wns somewhat dulled
Alternaling Current Polarization --Measurements were rade with rurrents of frequency 50,1950 and 11,000 No appreciable time effect was noticcable The olserved polarizations were negative and very amall with the two lower frequenciea. Thus, with a current of $0 \cdot 5$ ampere and frequency 50 , values of 2 and 4 mv were noted in two different experiments The figures with $n=$ 1950 were practically the same, of anythong, rather less With $n=11,000$, the effect was greater, e.g., 16 mv for 0.5 ampere The electrodes became a dull white in appesrance during the low-frequency experiments-with 11,000 cycles, no change was noticed

Cothodic and Anodic Compound Current Iolarization-..We used rurrents of 50,480 and 11,000 cyclea With the lower frequencies, the effects of nuperposing an alternating current were small at both anode and cathode in the former case, within the experimental error of 1 millivolt, whilst, in the cathodic experimenta, on one occasion a slight ancrease in polarization apparently took place (not exceeding 2 millivolts with an slternating current of 0.9 ampere) the remaing experiments giving no indication of any effect on the directcurrent polarization figures The intermedsate direct-current cathodic polarizations fell throughout the experiments, and were only about $5-\mathbf{- 6 m v}$ at the and of a run, whilst the suriace of the eleatrodes became roughened and crystalline in appearance. In one experiment, where the mitial figure was abnormally high, a decresse also took place in the anodic direct-current polarization

With 11,000 -cycle currents, no change whatever was noticed when they
were superposed on a cathode, the direct-ourrent polarization of which, however, was only $1 \mathrm{~m} . \mathrm{v}$ (less than the usual figare). In the anodic experimente, the direct-current polarization was 10 mv (greater than unaal) and remaned unahanged during the measurements. A definte depolarizing effect was produced in this case, amounting to 10 mv . when the alternating current was 0.9 ampere.

5. Amalgamated Zinc Electrodes in Acrdified Zino Sulphate Solutions.

Static Potentuals.-About fifteen resdings of the potential of an amalgamated electrode in $\mathrm{N} \mathrm{ZnSO}_{4}+\mathrm{N}_{2} \mathrm{SO}_{4}$ gave values varying between ertremes of -0791 and -0.799 volt, the maan of just over - 0.795 volt being practically the same figure as was given by unacidified $\mathrm{N} \mathrm{ZnSO}_{4}$. No gas film wad visible on the electrodes. On the other hand, in solutions of composition $\mathrm{N} . \mathrm{ZnSO}_{4}+7 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$, where the mac electrode became covered with bubbles shortly after immersion, potentals of -0.811 to -0.818 volt were observed

Cathodic Direct-Current Polarization -This was considerable, and depended on the concentration of the free acid and the time of electrolysis. With an acid ooncentration of 1 N , and a current of $50 \mathrm{~m} . \mathrm{s}$, the polarization, read five minutes after starting the carrent, was about $70 \mathrm{~m} v$ In ove case, in which no visible change in the surface of the cathode wes caused by the passage of the current, this figure decreased slowly with time, being $61 \mathrm{~m}, \mathrm{y}$. at the end of an hour In another case, in which the cathode became coated with minute gino crystals during the experiment, the fall in potential was far more rapid, the polarization nfter an hour being only $17 \mathrm{~m} . \mathrm{v}$. With the more strongly acid solution (7 N) and the same current density, an mitial polarization of $0 \cdot 197$ volt was observed in one case, falling to 0187 volt in 18 minutes, on another occasion, the intial figure was 0220 volt, dropping to $0 \cdot 193$ volt after 34 minutes. There was a tendency towards slow eathodic evolution of hydrogen from this strongly acul solution, the gas bubblea which coated the electrode in the stanc condition becoming larger and, in some cases, detaching themselves Nothing of the sort was observed with the less acid eleotrolyte. On cuttang off the current, the polarization immediately disappesred, potentials of -0.796 volt and -- 0.817 to -0820 volt being reached withina minute in the weak and strong acid solutions respectivaly

Anodic Durect-Current Polarvzation -High initial figures were obtained with the electrolyte $\mathrm{N}_{\mathrm{ZnSO}}^{4}$ + $+\mathrm{N} . \mathrm{H}_{8} \mathrm{SO}_{4}$, less, undeed, than the corresponding cathodic polarizstion, but increasing to very high values as eleotrolysia proceeded. There was no vasible ulteration of any kind in the electrode. The
nsture of these changes in two different freahly smalgamated eleotiodes is illustrated graphically in fig. 2

Fiu 2
At points $\mathbf{A}_{1} \mathbf{A}_{1} \ldots$, a current of 50 ma . was switcherd in, and at points $\mathbf{B}_{\mathbf{2}} \mathbf{B}_{\mathbf{2}}$. . switched out. Between $\mathrm{B}_{\mathbf{a}}$ and \mathbf{A}_{4}, the electrolyte was changed, the ourrent being interrupted for 30 seconds The polarizations observed are far greater than those given in neutral ZnSO_{4} solutions, whether with amalgamated or unamalgamsted electrodes Attention is drawn to the fact that hugh polarization figures are reached far more rapidly ufter an electrode has been once polarized and allowed an interval for rerovery than when a freahly amalgemated eleotrode is polarized for the first time Further, the recovery of the intial atatio figure after outting off the current is much slower than is the case after cathodic polarization

With the solution of oumposition $\mathrm{N} \mathrm{ZnSO}_{4}+\mathbf{7 H}_{2} \mathrm{SO}_{4}$, still greater intial effects were obtained Thus, with the seine current, a polarization of 80 mv . was observed after two minutes and 90 m v efter 10 minutes. With continued polarization, the layer of hydrogen bubbles slowly disappeared.

Allernaling-Current Polarization -Uning the olectmolyte $\mathrm{N} . \mathrm{ZnSO}_{\mathbf{a}}+\mathrm{N} \mathrm{H}_{4} \mathrm{SO}_{4}$, experments were done with currents of 50,460 and 1900 cycles. The polensations observed were negative in all cases, and quokly became constant The figure obtaned incresael with morease in current density, at first rapidly and then more slowly, but appeared almost independent of frequency within the
limits used On the other hand, it seemed to depend on the initial potential of the electrode, being the greater, the more ponitive the letter. Thus io made clear by the dats in Table III for $n=1950$. The polarizations are given in volts. The initial static value of -0.782 volt was found for an electrode which hall not been frevily re-amalgamated before use

After cutting off the current, the electrode potentials reverterl to their original static values when these were of the nornal figure of -0.795 to -0.796 volt With electrodes which were at the atart more positive, the final static value lay between the origmal figure and -0.795 volt. In all cases, currents of 0.5 ump and over caused the appearance of bubbles of gas on the electrodes.

Sitular experiments were done with the more atrongly urid nolution, uang a frequency of 11,000 Negative polarizations were observed, less at low currant densities than those recorded above for the lower frequencles and less acid electrolyte, but increasing very rapidly with the current atrangth. With a current of 1 ampere, there was a slow evolution of gas, immediately ceasing when the current was cut off. The intermedrate and final atatic potentisls were within a mullivolt of the initial figure
Cathodic Compound Current Polarization.-We used currente of 50 and 470 cycles in the weaker, and 11,000 cycles in the stronger, acid, kolution. The experimental data were agam somewhat difficult to interpret, owing to the decrense of cathodic ilrect-current polarization with tume. Malang allowance for thes, and for the less important changes in statir potential which also took place during the electrolynis if the intial values differed from the average or normal value characteristic of the electrode syatem, the result is that alternating currenta of all frequenciea bring about a partial depolarization, ve., that the electrode potential becomes more poestive This effeot increases rapidly with current density to begn with, but soon seems to approach a limit A ohange from 50 -cycle to 470 -cycle ourrent han no effect. The visuble result of superponing the alternating current in the $\mathrm{N} . \mathrm{ZnSO}_{4}+\mathrm{N} . \mathrm{H}_{2} \mathrm{SO}_{4}$ solution was to lemd
to the appearance of bubblea of gas on the cathode In the case of the more strongly acid solution, the superposition of a higher frequency current of aufficient strength caused an increased rate of disengagement of the hydrogen with which the electrode was covered. This lasted for some minutea sfter the slternating current had been cut off
Anodic Compound Current Polarization-Simular experimonts were done to thoee just described, and the same difficulties (though less important) were encountered in the interpretation of the reaults, owing to gradual changes in the direct-current polarization (a alow increase) and in the static potential (a tendenoy to become more negative) In all cases, a very marked depolarization resulted, and, with the higheat currenta used, the zine was diwsolved at measured potentials more negative than ita static potential, i.e, it behaved like a baser metal than anc. The biggest effecta were noted with currents of 11,000 cycles in the solution of composition $\mathrm{N}^{2} \mathrm{Z}_{\mathrm{n}} \mathrm{BO}_{\mathbf{a}}+7 \mathrm{~N} . \mathrm{H}_{\mathbf{8}} \mathrm{SO}_{4}$ Our experiments do not yet ensble us to say whether the increased acdity or the increased frequency is the essental factor The experiments with the lower frequancies and less acidified solutions indicate, however, a definite, though small, increase of the effect with rising frequency.

6. Drecusston.

Fig 3 contains the salient numerical data which must be accounted for in any explanation of the phenomena described alove. Along the ordinates are plotted the alternating current intensities in amperes. Potential differences expressed in millivolts are plotted vertically In dagrams a, b, d, e, g, h_{1} in order to avoid complications due to changes in durect-current polarization wilh time during the expenmente, the intermediate potental at any moment of the electrode polarized with a direct current of 50 ma . 1 s taken as the zero of the soale, s.e, the direct-current polarization potential determined either immedrately before awitching in the alternating current or unmodately after cutting it out The differences between this zero line and the various curves then give directly the effect on the potential of superposing for $5-10$ munutes on the direct corrent an alternating current of a certain frequency and intensity. The distance between the zero hne and the hosvy horizontal line represents the average value of dureat-ourrent polarization measured after the current has been passing for 5-10 minutes, and referred to the average intral statio potential value of the electrode concerned [-0784 volt for Zn (unamalgamated)/ $\mathrm{N} . \mathrm{ZnSO}_{4}$; -0.796 volt for Zn (amalgamated)/ $\mathrm{N}, \mathrm{ZnSO}_{4}$ and Zn (amalgamated)/

7N. $\mathrm{H}_{\mathbf{s}} \mathrm{SO}_{\mathbf{4}}$]. In this sense only, the heavy line correrponds to the etatio potential of the electrode Owing to changes in statio potentigl and polarization

Fia 3
potential difference with time doring electrolyen, the differences between this static potential hes and the varnous ourves in most cases have only a qualitative significance.

In diagrams c, f, k, the thin horizontal zero line denotes the intermedesto static electrode potential, and the differences betwean this line and the various ourves represent the immediste effect casused by switching in and out the alternsting curront.

(a) Unamalgamated Electrodes

In the cage of the well-lmown anodio and cathodic retardation phenomena exhibited by the ferroun metals, it is generally agreed (although the details of the explanations proposed very considerably) that the presence of oxygen or absence of hydrogen in the metal when sctung as anode favoure a high polarization figure, whulat the presence of hydrogen has the same effect in the oathodio process. The solution and deposition of most other metala from their simple salt solutions, on the other hand, have usually been regarded as taling plase estantally reversibly, and the observed polarizations (less than whth the farrous metals) as being of the nature of concentration polariation.

A closer examination of the avalable data, however, shows that the matter is less simple. The cathodio and anodio current density-potential curves given by meroury and lead in their nitrate solutions-are indeed so steep as to be explicable in this wey. But other syatems- $0 . g, \mathrm{Zn} / \mathrm{ZnSO}_{4}$ and $\mathrm{Cu} / \mathrm{CuSO}_{4}$ behsve differently. Thas, for the anodio solution of Hg (in acid HgNO_{3}), Cn (in acid CuSO_{4}), and N_{1} (in neatral NaCl_{2}) at room temperature and at a corrent density of 5 ma ./cm ${ }^{1}$, the respective polarizations are of the order of 5,20 and $400 \mathrm{~m} . \mathrm{v}$. ; whilat for the cathodic deposition at the same current density of Hg (from acid HgNO_{3}), Zn (from neutral ZnSO), and Ni (from nearly neutral NiCl_{3}), polarizations of about 6, 70 and $180 \mathrm{~m} . \mathrm{v}$ are requred.* The obvious suggestion that, with metala like copper and zino, electrode retardation phenomena occur of the same type as with the ferrous metals, but of amaller magutude, is supported by the oscillographic work of Le Blano, \dagger who showed the axistence, during both anodic and cathodec processes, of polarization effects too great to be accounted for by concentration polarization. We assume then that the observed polarization phenomens are due to retardations in the actual deotrode process, and that thees retardations are closely connected with charges of atomio orygen and hydrogen in the electrode surface layers.

Stectio Potentials.-The presence of auch charges being postulated, it follows that, at eleotrodes showing static equilibnum potentasls, the following equlibria must exist-

$$
\begin{aligned}
& \mathrm{Zn}+2 \mathrm{H}^{\prime} \approx 2 \mathrm{H}+\mathrm{Zn}^{\prime \prime} \\
& \mathrm{Zn}^{\prime}+2 \mathrm{OH}^{\prime} \doteq 0+\mathrm{Zn}+\mathrm{H}_{\mathbf{\prime}} \mathrm{O}
\end{aligned}
$$

and that the observed electrode potental differemce must agree, not only whth the figure calculated from the osmotic pressure of the enne ions and the electrolytio solution pressure of ano (to use the conventional terminology), but must equally be reconculable with values denived frem the electrolytic solution pressures of \mathbf{H} and of \mathbf{O} and the \mathbf{H}^{*} and $\mathbf{O H}^{\prime}$ osmotic pressures. The presence of O atoms in a cino crystal lattice will result in a lowering of the electrolytic solution pressure of zinc, and the electrode will exhabit an alloy potantial, the value of which will be more postive the higher the orygen concentration. On the other hand, the presence of H stoms in the surface layer will make the potential more negative-atomic hydrogen is the baser constituent of the

[^65]$\mathrm{Zn}-\mathrm{H}$ alloy. A zine electrode in equlibrium with an aqueous solution of a ciac salt will contain then both H and O atoms in its surface layer--in minute amosnts -and will bave n potential which will be more negative the greater [H] and the less [0] The potentuls of unamalgamated electrodes in N. ZnSO, noted by ue averaged -0.784 volt, and varied between -0.793 and -0.777 . The true potential of $\mathrm{Zn} / \mathrm{N}_{\mathrm{ZnSO}}^{4}$, unafiected by other factora, is probably - 0.796 volt. We suggest that these electrodes, owing to contact with air, were carrying an 0 charge rather in exces of what would correspond to equulibrium between electrodes, originally oxygen-free, and an ar-free electrolyte

Cathoduc Polarization.- $\mathrm{Zn}^{\prime \prime}$ and \mathbf{H}^{\prime} ions, the latter in very smalifiamennt, are discharged, and the electrode becomea coverad with a freahly deposited surface containing Zn and H atoms Hydrogen over-voltage at a anc electrode 19 high, and this is explamed by a slow rate of union of H atoms, deposited in the zinc lattice, to form molecular hydrogen. Consequently, the concentration of H atoms in the surface layer increases in excess of the amount which would correspond to the equilibmum potential of -0796 volt, and the discharge potential of both $\mathrm{Zn}^{\prime \prime}$ and H^{+}ions becomes more negative than this equilibnum figure. The polarization noted by us was about 80 mv at the start, but gradually decreased with time A change in appearance of the electrode took place simultaneously-it became covered with a loose grepish deposit It as known that hydrogen over-voltage is less in such a case than at a amooth electrode, owng to the decreased rate at which H atoms are deposited per unit of aurface, and possibly owng to the fact that, in a metal lattice at the moment of its formation, the H atoms are lesa firmly held The same explanation would account for the decrease in cinc deposition polanzation noted by us. The mapid fall in potantial to the equilibrium figure of -0.795 volt when the current was cut off is, of courae, sumply due to the rapid disappearance of the excess of H in the surface layers-ather by the reaction $2 \mathrm{H} \rightarrow \mathrm{H}_{\mathbf{2}}$ or by $2 \mathrm{H}+\mathrm{Zn}^{-}=2 \mathrm{H}^{-}+\mathrm{Zn}$
Anoduc Polarzation. --We assume provisionslly simultaneous formation of Zn^{\prime}. ions and deposition of 0 atoms, the latter in small amount, and by the discharge of OH^{\prime} or $\mathrm{SO}_{\mathbf{a}}{ }^{\prime \prime}$ ions. The presence of the orygen in the surface layers not only makes the reverable solution potentisl of the zinc more positive, but also retards the process $\mathrm{Zn}+2 \oplus \rightarrow \mathrm{Zn}^{\prime \prime}$ - it would seem natural that the presence of electronegative atoma in a metal lattice ahould restrain the mobllty of the metallic atoms-and there is, consequently, an initisl polarization of some 20 mv . A freeh metallic surface is being continually uncovered, and if one assumes that 0 deposition u occurring at a rate too
alow to keep up the \mathbf{O} content to the value corresponding to the onginal air potential, the slow fall in polarization is exphcable The slight roughening of the surface may also play a part. After cutting off the current, the potential at once drope to and passes its orignal value, en effect due to the low O denaty in the freahly erposed tono surface But, in course of time, the electrode charges itself up with oxygen until in equilibrium with the atinosphere, and the onginal potential is reproducted.

Alternating Current Polaruation (igig (c)) --The potential road is an average figure, which is a complicated function of a large number of varrables. Assuming, as here, that the electrodes exhibit polanzation with direct currenta, the simplest case conceivable is one in which the changes in the electrodes responsible for the retting in and dissppearance of such polarization take place rapidly in comparison with the duration of a single unidirectional current pulse In these circumstances, the observed potential should be near the arithmetio mean of the dreet-current potentals for this current density. If, on the other hand, some one or more of these processea take place slowly, then a divergence from this mean value may be anticipated. In our case the assumed relationa are the formation and disappearance of H and O charges in the electrodes, and a polarization potential rather more negative than this mean value is found For an alternating-current of 005 ampere, the observed polarization for frequencies of 50 and 1950 , after five minutes' flow of current were - 31 to $-32 \mathrm{~m} . \mathbf{v}$,, whilst the mean value of the direct-currepheolarizstions after the same lapse of tume (anodic +20 mv ., cathodic -70 mv .) is $-25 \mathrm{mi}, \mathrm{v}$ Thus mught be taken to signify that the rate of lons of deposited Hatoms is no alow that an appreciable fraction atdl exists in the metal at the end of the cathodic pulse-or perhaps that the discharged OH^{\prime} or $\mathrm{SO}_{4}{ }^{\prime \prime}$ ions had insufficient time to furnsh oxygen, or this oxygen to enter the anc surface This last supposition sounds plausible, for whereas only two stepa are involval in the transition from H^{*} ions to a $\mathrm{Zn}-\mathrm{H}^{+}$alloy, three would appear to be necersary for OH^{\prime} (or $\mathrm{SO}_{4}{ }^{\prime \prime}$) ions producing a Zn - O alloy

Facts which need explanation are that, whereas, below 2000 cycles the effiect reaches a high value with a small current density, only increasing slowly us the current is increasel, and is also independent of frequency, with a frequency of 11,000 , the effect 18 far smaller, and us not disproportionately great for small currents. The smaller result produced by high-frequency currents may, of course, simply be due to insuficient time being given in the duration of a aingle pulse for even the (presumably) more mobile \mathbf{H} atoms all to enter the einc Another aspect of the phenomenon is that which coneiders to what
extent a single pulse of a certain frequency can aftect the metal sarface es a whole. A simple calculation will show that whereas one square am. of anc surface containa about 18.8×10^{14} atoms of zinc, a sungle eathodic or anodio pulse of 11,000 -cycle current of $90 \mathrm{~m} . \mathrm{s} . / \mathrm{om} .^{2}$ will only deal with about 0.13×10^{14} atoms, $2 e$, will change less than one per cent of the surface. With 50 -cyole current, on the other hand, more than a complete layer of atoms is dissolved or deposited, and a larger effect of low-frequency current would thus be antiolpated

Another view is that the H and 0 atoms deposited in succeeding pulses do not duappear as their respective gases, but mutually deatroy one another on the reversal of current. In this case a starchionetric enceas of \mathbf{H} over \mathbf{O} atoms would be responsible for the residual negative polariastion There are clearly othor passibuties of explanation, some of them of interest in connection with those theories of anodic solution which ascribe a necessary role to intermodiate oxygen formation. Nothing is to be gained by discusaing them further at this stage.

Compoised Curront Polarizatuon (fig $3(a),(b)$). -As the ratio of the alternstingourrent to the drect current increases, so the resultant current, from being a steady direct current, will first become a pulsating direct current, and, when the critical ratio AC D D $\cdot 1 \cdot \sqrt{2}$ has been passed, will change into an asymmetrical alternating current. The greater the alternating-current component, the more nearly will this asymmetrioal current approach a symmetrical one-as far as the ratwo of the coulombs in the two pulses is ooncerned. But there will always be a constant duference in coulomb figures between the pulses. corresponding to the value of the direct-current component Over the pulsating durect-current range, the effect of the alternating-current superposition will be to lower the direct-current polarization by amounts which will be greater the higher the AC. D C. ratio, and the lower the frequency. The treatinent given by Allmand and Puri for gold anodes in HCl la applicable in such casea, and, slthough our actual measurementa in this paper have been carried out at higher alternating-current densities, the trend of the curvea ayrees with their deductions.

When considering the effects of larger suporposed currente, the residual direct-current component, and the fact that the net result of the electrolyas is the continusl formation of a fresh zuc surface by deposition or solution, must be borne in mind. This aspect of the phenomena is particularly important when companing the anodic compound current polarizations with * 'Trane. Firaday Soc,', vol. 81, p. 1 (1025).
the alternating-current polarizations. With an alternating-current component of 0.7 amp . (implying a coulomb rato for the anodic, compared with the oathodlc, pulse of $0 \cdot 75 \cdot 0 \cdot 6 \mathrm{~b}$), the average potential, even with 50 -cycle current, a aingle pulse of which practically changes the whole of the surface layer, is atill very far removed from the potential of an electmode polarized with 0.7 amp . of alternatiug current. On the other hand, the potential of an electrode polarized with a cathodic compound current of the ame strength and of not too high a frequency, is whthina few miv of the alternating-current electrode potential This difference in behaviour corresponds to the differences in nature of the electrode surface-with the excess anodic polarization, a surface hardly distinguahable from that resulting when uaing an anodic direct current but, with the excess cathodic polarization, a loose deposit, resembling the surface obtained after polarization for a sufficient tume with pure alternating current of sufficiontly high intensity and low frequency.

The influence of frequency is interesting, and ancludes points which cannot at present be satisfactorily explained, but which are clearly of importance in connection with the actual mechamsm of the electrode processes. The effects of 1900 -cyole current are of this nature Wheress with alternating currents they cannot be distinguished from those of 50 -cycle current, in the osthodic compound current expenments, they are distinctly less, particularly at amall current densities, and, in the anodic experiments, are indistinguishable from those of 11,000 frequency Tho small effect of high-frequenoy surrents is readily explicable by the [act that, whereas the net result of the compound current is to deposit or dissolve some ten layers of zinc atoms per second (reckoned on the orignal dumensions of the zunc and assuming 10 cm a to be the effective araa), a angle pulse, even of the largest altervating current of 11,000 frequency ured, does not affect as much as 1 por cent of a angle layer.

(b) A malgamated Electrodes in Neulral Solution

The atatio polenturl of -0796 volt we regard as the true equilibrium potential of $\mathrm{Zn} / \mathrm{N}, \mathrm{ZnSO} \mathrm{a}_{\text {, }}$, unaffected by the oxygen changes which are rade possible in the unamalgamated electrode owng to the constraining effect of the metallic lattice on the mobility of the oxygen atoms In the present case, the electrode will simply contain minute amounts of dissolved O and H atoms in electrolytio equulibrium with the H^{\prime} and OH^{\prime} concentrations in the electrolyte. The small polarization effects noted on making the electrode the anode, we attribute to concentration polarization in the amalgamlayer, the actual process $\mathrm{Zn}+2$ (+
$\rightarrow \mathrm{Zn}^{\prime \prime}$ tathing place reversbly at the amadgam surface. The oathodro process appears to be alightly retarded, this retardation becoming less as electrolyas proceeds, and the amalgam surface becomes covered with oryatals of rino. As already noted, in one case it was only 1 mv . with e current of $B 0 \mathrm{~m} . \mathrm{s}$. We suggest that, simultaneously with the Zn° 10ns, H^{\prime} iona are disaharged in small number, the H stoms formed dissolving in the meroury. Their rate of combination to form molecular hydrogen lags behind their rate of deposition, with the result that the alloy potential becomes more negative As the electrode becomes covered to an ever greater extent with loose zinc crystals, which replace the amalgam as the actual surface of ionic dwcharge, so the true current denaity falls, whlst an increasing fraction of the discharge takes place at the surface of the finely dividel zunc. It is considered that both these facta will tend to a lower H concentration in the eleotrode and hence to a lower polarization.

For the results obtanned with alternating and compound currents, we adopt the same news as an experimental workng hypothesis In the alternat-ing-current experiments (fig. $3(f)$) there is no polarization during the anodic pulse. With the smaller frequencles, enough zinc is thrown out on the amalgamated surface during the cathodic pulse to form the crystal layer referred to (the electrodes berame a dead white in appearance), and there as consequently only a very amall cathodic polanzation With the frequency of 11,000 , on the other hand, no change in the electrode surface was noted, and the conclusion drawn is that, during the very ahort cathodic pulse, the small amount of ainc deposited does not crystallize, and is amply redissolved during the succeeding anodic pulse. The H atoms deposited therefore dissolve in the mercury, and are responsible for the net negative polarization observed. With anodically compounded currents (fig 3 (d)) the conditions are practically the same as far as the cathodic pulse is concerned, and we consequently have, with 11,000 -cycle carrent, but not with low-frequency currents, a negative polarization ouperposed on the concentration polarization in the amalgan due to the remidual anodic current. With cathodically compoinded currents (fig. 3(e)) the amalgam surface is being continually covered with crystala, and consequently the srnall and decreaning polarization due to the cathodic drect-current component is unaffected by alternating currents of any frequency

This view of the phenomena, which is consistent with the experimental facta so far brought to light, will be teated further in heveral waya,

(c) Amalgamaled Eleatrodes in Acd Solution.

Slatic Polontials --In accordance with the assumption of the existence of the equilibrium $\mathrm{Zn}+2 \mathrm{H}^{\cdot} \leadsto 2 \mathrm{H}+\mathrm{Zn}^{-}$at the electrode-electrolyte interface, it is clear that the addition of free acid to the neutral ance sulphate will heve as effect an increase of the H concentration at the amalgam surface. According to our measurements, the potential remains unsffected if $\left[\mathrm{H}_{3} \mathrm{SO}_{4}\right]$ becomes 1 N This can only mean that the nocresses in [H] and [H] run parallel up to this acidity. If, however, $\left[\mathrm{H}_{3} \mathrm{SO}_{4}\right]$ is made 7 N , then the elentrode becomes more negative, a change which can be interpreted by assuming that the increase of $[\mathrm{H}]$ in the electrode outstrips that of $\left[\mathrm{H}^{\prime}\right]$ in the electrolyte, and that these concentrations determine the amalgam potential (H , not Zn , will be the raost base constituent of the amalgam) The fact that the electrode is coated with a visible gas film indicates that the value of $[\mathrm{H}]$ is now so high that the tendency for the reaction $\mathbf{2 H} \rightarrow \mathbf{H}_{\mathbf{9}}$ to take place freely is only held in check by surface tenaion forces.

This curious rise of the negative value of the potential following the addition of aond obviously needs further elucidation, and experiments will be undertaken to this end. After our measurements had been made, we found that Ruchards and Dunham* had noticed the same phenornenon, recording even greater potential changes.

Cathodna Direct-Current Polarzation -The cause of this polarization is the same as that observed with neutral $\mathrm{ZnSO}_{a}, ~ \imath e$, the simultaneous deposition of H' ions, resulting in an increase in the value of [H] in the electrode surface, and in the potential becoming more negative. The part taken by H^{-}lons in the cathodic ducharge is here, however, more important, and the effect correspondingly greater. The slow evolution of hydrogen is to be expected. So is the sudden drop in polarization on cutting off the current, as the H " amalgam " here postulated will be unstable and rapidly decompose in accordance with the equation $2 \mathrm{H} \rightarrow \mathrm{H}_{2} \quad$ It may be mentioned that observations of Lewis and Jackson \dagger and Dunnill \ddagger, on hylrogen over-voltage phenomena at a mercury electrode, make probable the existence of such transitory amalgaras. Further, Mellory cites a number of older papers which support this new, and, amongst later workers, Heyrovaky|| has been led to the same conclusion, as

[^66]opposed to the ides of any kind of hydrogen film on the mercury aurfece, Finally, the fact that the polarization falls with tume, and rapidly when sinc crystals appear on the aurface, is explained by us in the same way as the corresponding drop in polarization in neutral solutions
Anoduc Drect-Current Polarkation.-The observations made in this connection (fig 2) are unexpected and remarkable, as the absence of polarization effects would have been anticipated The electrode is assumed to be charged with atomic hydrogen and, according to generally accepted views, the anodic solution of cinc should then take place reversibly. In any case, in the more strongly acd solution, the cinc se on the point of dissolving spontaneously. Further, although anodic solution of the unamalgamated metal in neatral ZnSO_{4} exhibits considerable irreversiblity, with amalgamated zac there is only amall polarization

A tentative series of assumptions is necessary to account for the observed facts We suggent that direct ionization of hydrogen diasolved in the mercury occura with difficulty or not at all-in fact, that the H is pasave The anodio passivity of hydrogen under other circumstances is well known, though usually ascribed to a different cause. It is further neoessary to explann why the ano does not ionize readily. This we auggest may be due to mere mechanical bindrance, or a displacement of Zn stoms from the aurface layer by H atoms. As then neither Zn nor H atoms can ionize reversibly, amonic discharge will take place to a certann extent, followed by oxygen deposition. It is assumed that the oxygen formed dissolves in the mercury and reacts with the \mathbf{H} atoms present, but comparatively nowly, subsequently accumulates, and that this is the cause of the remarkable rise in potental observed. The romoval of the dissolved hydrogen facilitates the drect ionization of zinc and, in addition, the reaction $\mathrm{Zn}+2 \mathbf{H}^{+} \rightarrow 2 \mathrm{H}+\mathrm{Zn}^{-}$will then take place, tending to reatore the H concentration in the surface layer. The comparatively slow rate of return of the auodically polarized electrode to the static potential ia nacribed to slow disappearance of the dissolved oxygen--it would seem that a solution of 0 atoms in mercury (or in zinc amslgam) is more stable than a sohution of H atoma.

Experiments involving Alkernating Currents - The above ansumptions being made, a plausible mechanism for the remaning phenomena is not difficult to imagine. With allernating currents (fig. $3(k)$) the anodic pulse involves apprectable polarization and the deposition of a little orygen. Dumng the cathodio pulse, this oxygen is destroyed owing to the momentary high concentration of deposited H atome, the excess of which canses, in its turn, considerable cathodic polarization The net reault is a residual negative
polarization of the electrodes, accompanied, at high current densities, by incipient evolution of hydrogen and solution of zunc, whilst the 0 atoms are not aforded an opportunty of accumulating in the electrode.

With cathodic compound currents (fig 3 (h)) the phenomens differ only in degree. The polarizations observed are more negative, corresponding to the oxcess of the cathodic component and, at high current densities, obviously approach those given by pure slternating currents The result reported by Allmand and Purı-viz, that superposition of an alternating current on an amalgamated anc cathorle in acid sinc rulphate solution causees an vucrease in polarization and in the electrolysing voltage-now falls into line They were using electrodes of the same dimensions as we were, but a cathodic direct current of only 10 ma -one-fifth of our figure-whlst their alternating currenta varied between 0.5 and 2.0 amps The polarizations they were measurng would then be practically alteruating-current polarizationa, and of the order of $30-10 \mathrm{in} \mathrm{v}$, judging from our figures Thar results were rather irregular, and were not quoted by them They are available to us, and shnw that, for frequenclea between 60 and 400 , the averame amount by which the cathodic potential difference became more negative for 05 amp of superposed alternating current was $16 \mathrm{~m} . \mathrm{v}$, and for $20 \mathrm{amp}, 22 \mathrm{mlv}$ This would lead to a direct-current oathodic polarization of about $15-20 \mathrm{~m} . \mathrm{v}$ in their experments, which appaars a reasonable figure (We got 00 mv with Give times the current density.)

With anoducully nompounded currents (fig. 3(g)), the same general view accounta for the facts. The H atoms deposited in guantity (comparatively apeaking) during the catholic pulse react with the oxygen (or a proportion of it) liberated during the anodic pulse, the result being that the polarization dunng this pulse becomes less The cathudic pulse giving a negative polarization in any case, the resultant offect is that the average potentiul actually mensured repuldy becomes more negative with increase in current density Fventually, the alternating-current polurization value is approached This appears more slowly with anodically than with cathorlically compounded currents, at the slow increase observed in the intermediate direct-current polarization values shows that some of the deposited oxygen escapes reaction with the H atome during the cathodic pulse
The work lescribed above was carriod out between Decermber, 1924, and December, 1925. It will be extended further, not only in respect of those pointe mentioned in the coarse of the paper, but also by means of oncillographuc measurements.

A Method of Studying the Behaviour of X-Ray Tubes.

By R C. Richards, M Sc., Carey Foster Laborstory, Univensity College, London

(Communicated by Prof A. W. Porter, F R.S-Received May 1, 1920.)

Iniroduction.

A quantitative atudy of the radiation output from an X-ray tube, in relation to the voltage applied and current lowing, would appear to be important both from the theoretical point of view and that of designing tubes of greater steadiness and efficiency In this sense, of course, the tube itself 18 not the only determining factor, the operation of the break and coll must be taken into account as well, and in what follows the term " aystem" will be used to denote conl, break and tube collectively

There are two methods to spproach this problem, the three vanables, current (C), voltage (V), and radintion output (I), might be measured over the period of a angle break of the coll by, for example, an oscillographic method, as in the work of Taylor Jonea, although a serious difficulty arises in the measurement of the very small quantity of radiation avbulable for examination. Alternatively, one maght find the average for a large number of breaks of instantaneous values of these variables; thas is the method to be described here

The former of these two methods, ignoring for a moment the dufficulty of measuring the radiation-is obviously the only one which could be reasonably appliel in the oase of gas tubes, in which the internal conditions are continually varying, but even then the information gamed would not be very relable in extrapolation to lengthy periods of operstion. The method has yielded elegant resulta in the hands of Taylor Jones* as far as the measurement of C and V are concerned, but for the measurement of I a photographic method has to be employed with the attendant diffioulty of interpreting the " densaty" of a photographic image.

For a Cooludge tabe, on the other hand, an average of instantaneous values is applicable, ance, after it has been running for a short period, the hardneas rembins constant, provided suitable safeguards are introduced to ensure the constancy of the filamont hesting current. As will be seen, too, in this method, the difficulty of measuring amall quentities of radiation is a vorded.

[^67]
2. General Description of Method

The system in the following description consists of a 10 -rach induction coil, a rotary jet meroury interrupter, and an ordinary Coolidge tube In easencue, all that happens is that the interrupter "makes" and "breuke," producing voltages in the secondary of the coil, the latter of which causes a current to flow in the tube, producing an output of radiation This cycle is repeated over and over with reasonable constancy if the break 19 clean and amoothly operated.
Suppose we describe the process of the make and break by some such expression as ut, by which is meant that at the instant $t=0$, the interruption is on the point of "making," and at some later instant, $\ell=t$ ' say, the process of " break" is first completed. Then for every value of t between 0 and t ', there will be a corresponding instantaneous value of the following quantities, some of which, of course, may be zeno owing to the rectifying power of the tube '-

$$
\begin{array}{lll}
\text { primary current, } & & \text { tube current } \\
\text { secondary voltage } & (\mathrm{V}), & \text { X-ray output }
\end{array}
$$

The method consiats in aelecting a particular value of t (i.e of a certain instant in the interruption) and for a large number of successive cycles, examining the corresponding instantaneous values of V, C and I. At once it will be seen that the method avoids measuring small quuntitics of radiation, ance as much radiation as one wants may be had by observing over a sufficiently large number of cycles.

Now by altering the selected value of t, the variables may be measured again, and so on over the whole series of values of l comprised in a complete discharge Thus we shall obtain what perhaps may le called an average instantaneous value of the variables in relation to the " phase" of the break, againat which they may be plotted.

3 The Apparatus

The experimental method is essentially stroboscopie A heavy Gywheel, θ unches in dameter, is geared to the driving shaft of the mercury break, and rotates twice during one revolution of the latter. The dyubsel is provided with a amall radial slit near its circumfereuce Behind the wheel is a lead box containing the Coolidge tube, the ralistion from which escapes through a slit in the bor and impinges normally on the rotating wheol. This radiation $1 s$ completely atopped by the wheel at all times, except when the radual slit passes in front of the slit in the X -ray box.

Thua, only radation escapes wheh is charecteristic of a particular phase of the break, and it is recesved in a long ionisation chamber containing methyl odide vapour, where it is measured by the umal method with a quadrant electrometer, by finding the rate at whioh the instrument oharges up.

The measurement of the instantaneous value of the voltage across the tube calls for special arrangements In theory it could be arranged that the rotating wheel carned contacts which connected the ends of the secondary of the induction coil to a messuring instrument for an instant at the identical time at which the X -ray beam is escaping through the radal shit into the onmeation chamber. Owng to the high value of the voltage, this as impracticable, and a means of stepping down this voltage must be employed.

This is accomphshed by a system of condensers in series. The total voltage drop will be distributed in the condensers in inverse ratio to their capacities, and the voltage across one of these condensers can be measured by the method suggeated above, that is, by ingtantancous contact on the flywheel and a quadrant electrometer.

In order to simplify this procedure, the tnbe iy operated with one ond earthed ; the final condenser in the senes is merely the quadrant-system of the electrometer, one parr of quadrants being earthed. The first condenser in the series, across which the greater part of the voltage is taken up, consists of an earthed metallic box (shown in section fig 1) through the opposite ends of which are well-msulated supports carrying carefully polished spherical balla, one of which is relatively close to the carthed wall of the box.
The direct technical difficulty in this voltago mexsurement is the tendency of the high potentusl leads to "splutter" This was overcome by heavy unsulation, and where this was not practicable, by careful polishing and the elimination of points In a elimular way the current flowing through the tube can be mcasured A non-inductive conl of 10,000 ohms resistance was placed in series with the tube, and lesds from the ends of the resistance were led to a quadrant electrometer, by way of a contact on the revolving wheel, so arrangal that contact was moule at the ame instant as the \mathbf{X}-ray beam escaped through the radial shit. The electrometer measured the instantaneous value of the potential across this col, and provided a measure of the current flowing, since the coll was constructed of wire with neghgible temperature-resistance coefficient. The coll was placed at the "earthed "end of the tube for obvous reasons.

It remains to show how we mey obtam values for V, C and I, corresponding to the several values of the break phase. The interrapter was mounted bodily
on a turn-table which could be turned about a vertical axis eorreaponding with the axis of rotation of the break spandle. The turn-table was graduated in degrees, and the body of the interrupter could be clamperl at any position on the scale If we imagine the breals spindle and, consequently, the fywheel to be stationary in the position in which the radsation escapes through the radial slit, the instantaneously measured quantities V, C and I will be charactersstic of the angle ϕ, denoting the break phase Now, if the body of the break, and in consequence ite contacts, be rotated through a small aingle \boldsymbol{x}, and clamped, the varisbles in a suoceeding experiment will be charscteristic of a break phase $\phi \mp a$, according to which way the rotation took place Thus we can find values of \mathbf{V}, C and I correaponding to various setting of the interrupter on the turn-table.

Fia. 1 -Diagram of Connectiona

4. Measurny Instruntents.

For the ronisation and current measurements, Dolezalec eleotrometers were uned, the poteutial was measured by an ordinary quadrant electrometer, of relatively large capacity, acting as it does as the last member in the chain of
series condensers used to atep down the potentral acroses the tube. Three main difficulties arise in the measurements :-
(i) due to induction effects from the high-teasion aystem,
(i) due to frnctionsl eleotrnication arising from the revolving flywheel,
(iii) due to msulation lesbs.

The first is overcome by very thorough shielding of all insulated leads, etc., by earthed shields.
Frictional effecta are inherent in the aystem, but oan be mumised by reduoing slding contacts and earthing the flywheel. Imperfeotion in insulation was eliminated by tnal and error, till the electrometers, connected up to their leads and the contacts on the flywheel, showed no appreciable leak.
The greatest difficulty in the experiment was to find suitable contacte, which "made" on the projecting points on the rotating wheel at the instant when the variablea were exammed With the flywheel rotating about 1500-2000 times a minute, a considerable blow was given to these contacts, and they soon broke off After a great deal of trouble it was found that a fexible wire, made of cotton thread wound over with a very thin spiral of copper, stood up to the wear very well, and at the same time made a rehable contact

5. Method of Operation

The interrupter, which was driven by an electric motor, was set in rotation, and with it the flywheel Aiter a time the speed became constant. This constancy was determined by a stroboscopic method origiasily, the control being a reed vibrating laterully, but it was found that constancy of speed was very well indicated by the constancy of the current flowing in the driving motor, or by the pitch of the note emitted by the gearing between the break spindle and flywheel The observer became very sensitive to any spead variation, as indoated by a change in pitch of this note. The instruments were then examined to see if any charges were aocumulating due to friction, and if this was satisfactory, the primary coll current was switched on. So far only small primary currents have been used, in the region of 3 amperes. The Coolidge tube was thus set in operation, and the eleotrometers messuring V and C at once show deflection The whole system was then allowed to run for fifteen or twenty minutes unitl the V and C deflections remained steady The ionusstion chamber and its corresponding electrometer were then thrown into the oircuit, and provided that the particular phase at which the interrupter is set is suitable, the instrument will start to charge up, the rate of chargang being determined by the rate at which the spot of light raflected from the murror on
the needle passed over s transparant scale. When a satisfactory series of values of this rate had been obtained, the deflections of the instrumente measuring C and V were read, thus giving the values of C, V and I for their particular sptting of the bresk.

Without disturbing the apparatue, the break was moved forward a degree on the turn-table, and the above process repeated again and again till the period of the break had been passed When this happens, the ionisation and current values drop to zero, but the voltage generally indicates considersbly higher values then durng the conducting part of the cyole, owing to the inverse voltage on make, and the lack of any conduction in the tube.

6 Tube Conirol

In order to keep sufficient control over the heating current in the filament of the tube, two rheostata, one a bigh resistance one, werc used in parallel, and a sensitive ammeter was placeal in the carcunt The filament end of the tube was earthed, und the 12 -volt battery supplying the beating current carefully insulated, so that no tube current got to earth via the batteries, instead of flowing through the measuring coil.

During the operation of the apparatus strict watch wes kept on the ammeter mentioned above, and if necessary the rheostat was touched from time to time to restore the filament current to the chosen value. The whole system is very sensitive to any vanation in this heating current

7. C'ontact Adjustiment

Extrene importance must be attacheal to the adjustment of the contacts made once per revolution of the flywheel, connecting the current and voltage electromoters into the syatem These contecta must be adjusted so as to operate at the exact moment at which the radial slit transmits radation into the ionsation chamber

In order to test a particular setting of the contacts, the wheel wes turned untal its projecting points were just touching both pairs of the external contacts, and a piece of bromude paper was placed behmal the radial slit, on the axde of the flywheel remote from the X-ray tube. The filament of the tube was then heated to whiteness by a current, and the light was reflected from the anode through the slit in the lead box on to the surface of the wheel If now the contacts are correctly set, the light will pass through the radial shit and produce a latent image on the bromrde paper. Adjustment was carried on until a olear mmage was produced on the paper, with the flywheel set so as to give contact with the current and potential measuring instruments,

8 Experimental Resulto

Following the method of section 5 above, tests were carned out to determing the manner in which I, C and ∇ varied dunng a complete braak.
In the first experiment here recorded, only two of the variables, namely, ronisation output and potential difference, are recorded (ig. 2).
The frat point which is noticed in this graph is that the brealic of the ionination curve does not correspond with that of the voltage curvo. It is this important point which led to the careful photographic method of adjuating the contacts. So far as oan be examined, the phase difference indicsted here is purely instrumental, and, as is seen in subsequent graphs ${ }_{2}$ it disappears with rigorous adjustment by the method indicated. This graph also shows the inverse potential, produced at make This rises to a high value owing to the fact that the tube is non-conducting for this particular part of the cycle

This carve, which was one of the first to be obtained when the initial difficulties of the method were overcome, is included chiefly to show the inverse potential Conditions inside a rotary mercury break must necessarly depart very
considerably from the ample make-and-break conception, which leads to the conclusion that the "make" potental will be amall compared with that at break An arc at "break" may have n relatively low reastance, such as would render the rate of fall of primary current not greatly different from its rate of rise on completing the circuit This now seems to derive support from this curve

Fig 3 represents the type of curve which is obtained by the method describet, when rigid phase adjustment is carried out. It is plotted only over that part of the cycle during which the tube is conductive.

9 General Obsenvations

Stress must be laid on the point that these resulta are of a preluminary nature, and are quoted in order to show that the method described above as
an effective one. With this reservation, however, we can make a few general observations The curvea in fig. 3, which are typical, show that there is little, If any, duflerence of phase betwcen the variables C, V and I . It is possible, however, that inductance and oapacity effecte bslance one another, with the aystem arranged as at present. It is the subject of future work to teas this question of phase in greater detal.
Another noticeable fenture is that the ionisation output is concentrated in a narrow region coincideng with the current and potentual maximum Seven or eight degreea of a break cycle are alone fruitful in producing radastion, in a break provided with four contacts, therefore, only sbout one-tenth of the time of operation is apent in producing reasonsble quantities of \mathbf{X} radiation Thus observation is in agreement wnth one of Taylor Jones, as shown by the photographic method, in which he showed a darkening of the photographic plate just undernenth the secondary potential break, not extending to any great distance on either side of the central line.* Thas radation, it must be remembered, is the actual radiation detected in the ionisation chamber, and as auch is subject to various influences, so that its relanon to the observed values of (' and V may be obscure, or, at least, very compheated. Mention may be made of absorption at the wall of the tube and the aluminum window of the ronisation chamber as two of these disturbing efficts What the curves do show in the extent of useful radiation, in relation to C and V, in a qualitative fashion.
The X-ray tube was operated on an alternative spark gap of $\mathbf{1 2}$ cmis. between points in such a way that the secondary potential is in the neighbourhood of 80 kalovolts. The anti-cathode of the tube is of tangsten, which requires bombardment by cathode raya which have fallen through a potential drop of 13 kilovolts to produce the characteristic L radiation and 95 kilovolta to prodace its K radaation \dagger It follows, therefore, that our particular system will, in addition to producing white radation throughout the cycle, give tungsten L radiation for parts of the cycle in which the voltage is greater than 13 kalovolts This will have the effect of concentrating the observed, or useful, radiation into a peak, as shown by the graphe.
The writer deares to express his indebtedness to Prof. A W Porter, F.R B., for auggesting this line of work and for his continued help and advice; to the Royal Society for a grant to enable the purchase of apparatus; and to Mr Stephen Northeast, B Sc, formerly of thas Laboratory, who designed the step-down condenser used in the potential measurement, and was closely associated with the preimmary stages of the work.

> - Taylor Jones, wid, p. 158
> \dagger Kaye, ' X-Raye,' p 127

Tensile Tests of Large Gold, Silver and Copper Crystals

By C. F. Elam, D.Sc. (Armonrer's and Brasier's Research Fellow).

(Communiested by Prof H. C H Carjenter, FRS-Received July 6, 1826)
Large cryatala of a number of metals have been made by Brigman* by alowly lowering a tube contaning the metal through a furnace no that it cools from one end. By using a graphite tube Daveyt succeeded in makng copper cryatals by this method. IIe obtamod crystals over aix mehes long and up to nearly one inch in diameter.

The present paper deacribes some tensile testa on gold, sulver and copper crystals which have been made by thes method Rods of the metal werre melted in graphite tubes 025 inch dameter and 10 inches loug, tapered at our end Thase were alowly lowered by clockwork through a platinum-wonul elertric tube furnace, the middle portion of which was mantamed at $100^{\circ} \mathrm{C}$. above the melting-point of the metal Nitrogen was passed slowly through the tube to prevent oxidation. In some cuses tho whole rod (about eight unches long) consisted of one crystal. It does not seem to be psential that the graphite tube should be tapered, as it was sometimes found that a crystal growing from the point stopped a ahort distance up the rod, and that a new crystal beginmang bere ocoupied the whole cross-section of the rod for the leugth that remanned

The crystals were free from blow-holes if prepared in thus way, but if roda of the metal were melted in the tubes and allowed to cool down with the furnace they were frequently very unsound This rccurred even when the metal was melted in uaowo, and, in fuct, a copper rod melted three tumea in varuo atill contanned large blow-holes Apart from thas, cooling alarted from both ends, with the result that the rod consmsted of two or nore crystale, with unwoundness in the middle.
Great care 18 required in removing the crystals from the tubes to avord bending The bore of the tubes was not always uniform, aul sight irregularitipa in the surface were filled by the molten metnl, which, when soludifled, prevented the rod from alpping out easily. On one occusion, in pulling a tube off a gold crystal, the whole crystal was twisted into a spiral ahowing three cumplete turns. The spural only made its appearance on etching, the rod appearing

[^68]quite normal when entracted from the tabe. The crystals of all three metala required great care in handling.
The gold was hindly furnished by the Goldsmith's Company, through the courtesy of Mr Prideaux. The silver wns the purest avalable assay alver The copper, in the form of rod made from electrolytic coppor, wne kindly given by the Broughton Copper Company, and after remelting in nitrogen was almost entirely free from oxide
The orientations of the crystals were determined by means of X-rays. Davey* has stated that a rubic axis was always parallel to the axis of the cylinder in ropper cryatals, and Bridgman \dagger aleo noticed that certain directiona were favoured, and concluded that the growth of the cryatal was easier in some directiona than whers A diagram illuatrating the position of the axos of the rod, relative to the pimeipal cryatal axes of eight coppere cryatala, is given in fig 1 This represents part of a stereographic daagram of a cubio crystal, the dots in the triangle being the posations of the axes of the rods of the various crystals. A full description of this dagram and the means of using it has been described alreudy \ddagger According to Davey the points should be near the pole of the (010) plane No crystals of copper, allver or gold have so far bsen obtaned in thas postion Actually the orieniations vary consmderably, as thes and subsequent diagrams show

Tengile.tents were carned out with these crystals and the crystal axes determined at cach stage. As it was impossible to machine them there werp amall variations in the crose-section, and often the rad was sughtly tapered. Sometimes these irregulurities increased as the test proceeded; sometimes the rods became more uniform Eirrors due to this cause ahow in the \mathbf{X}-ray muasurements, as the extension, measured over two inches, included regions which were sometimes more and sometumes less than the average, with corresponding vanations in the poantions of the oryatal axes.
The rods became elliptical on stretching, showng the lens-shaped figure found in alummium and breaking with a double-wedge fracture. Blip-banda were observed on all the crystals They were more noticeable during the early stages of extension, and tended to become almost obliterated later One set of planes was usually observed until near the end of the test, when two sets were nsible No attempt was made to measure the posation of the planes,

[^69]owing to the roughness of the suriace and to the fact that they were not clearly marked all round the speormens
Copper, alver and gold resemble aluminum in that their cryathls have a facecentred cubce lattice It is therefore to bo expected that they should show the seme type of distortion in tension The process of distorion of alumumum cryatals is now well knowa, and it has been shown that it is due to ship on an octahedral (111) plane in the direction of the pole of one of the three (110) planes " \dagger It was also ahown* how the slip-planc and direction of slip could be predioted from the position of the axis of the test-piece relative to the cryantal axes. If, therefore, it can be shown that the axis of the test-prece changes in reapect to the cryatal axes in the gold, sulver and copper crystuls, in the same way as was found for alumimum, the couolusion can be drawn that the distortion is all of the same type, although no distortion measurements are made. This can beat be shown by means of dagrams. By une method previously dres ribed the poartions of the axis of the test-prece in reference to the crystal axes is plotted for each extenaion on the stereographe diagrarn. Part of this daagrain showing the pointe is shown in figs $2,3,4,5$ and 6 , which refre to one gold crystal, two alver crystals, and two copper crystals respectively The figures refer to the elongation per cent. on two inches of the original crystal Tho diagrams show that, as in the case of aluminum. the points he very ncarly on a great circle (drawn in dotted lines), through the ongmal pomat, ie the surs with 0 extension, and the pole of the (110) plane, until this line cuts the great curcle through the poles of the (010) and (111) planes At this point two octahedral planes make equal angles with the axis, and it was shown previously that slip then occurs on both planes, the axis now moving along this line towards the pole of the (121) plane The diagrame all show a tendency for the axis to move in thes direction Irregularities in the rods have already been mentioned as probable sources of error which may cause the points to be off the line. Other errors occur in the meusurements of the extonsions, in the X-ray rueusurements, and also in the possibility that the loading of the teaking preces was nut axial The mam direction of the movement of the axes resembles that found for alumminn so closely that there is every reason to suppose that the distortion of these metal crystals is actually of the same character Fig. 6 is particulurly interestug. The crystal axes of this copper crystal were in such a position that doubleslipping should oocur from the begioming of the test, and as it was very close

[^70]

Fig 1-Posilion Diaginm.

Fig. 3 -Silver $1 I$

Fic. 5.-Copper XI.

Fic. 4-Nulver III

Fro. 6.-Coppar X.
to the pole of the (121) plane, very little movement of the test-piece axis was to be expected. The diagram shows that the pontion of the axis remaned practioally unaltered throughout the extension A similar crystal of aluminum showed the same result.*

In Table I the inolinatious of the slip-planes are given, and it will tre seen that these all tend to reach the sumo value as in aluminium The limiting value should be $61^{\circ} 52^{\prime}$.

Table I.

	-	Load	Areb	θ	7	S
Gold		lbs	mehes	n,	0 ,	Ibes 8q ins
	100	-	$0(0601$	$40 \quad 50$	840	$\underline{-}$
	1-10	248	00454	530	040	2,575
	120	379	00418	b5 60	50	4,195
	130	433	00485	5640	640	6,125
	140	478	00300	(6) 0	310	5,7t0
	160	400	00342	0130	310	6,000
	160	500	00329	10050	420	13,40]
gliver II	100	-	0 0504	48 30	$15 \quad 20$	-
	110	105	00455	5240	1840	1,099
	120	108	00418	$65 \quad 30$	1240	2,150
	130	338	00380	580	120	J,851)
	140	488	00383	H0 3010	110	ก,485
	150	657	00340	6120	100	0,646
	1 H0	008	00310	$62 \quad 30$	1240	7,64)
Sliver III	1 (10)	-	00482	$40 \quad 13$		--
	110	05	00452	4413	40	1,051
	120	144	00414	60 36	320	1,702
	130	248	00383	64 5\%	180	3,450
	140	353	0) 0355	64 40	40	4,406
	1.50	344	00346	5030	40	6,845
Copper XI	100	-	0) 0482	4203	180	-
	110	287	00447	470	$12 \quad 10$	3,230
	1.20	183	0.0373	[5] 30	100	8,4,70
	1301	764	00341	55	10	10,250
	1 41	810	00317	58411	1040	11,200
] 52	857	00278	01310	840	12,220
Copper XX	100	-	00490	U2 0	00	--
	1.10	512	0 (150	-	--	4,6R5
	120	810	00300	\cdots	-	8,325
	130	934	00370	-	-	10,380
	140	978	00327	-	--	12,270
	150	087	00288	-	-	13,680

The load requred to stretch the crystale at each stage, and the cross-sections were massured. The slip-plane and direction of slip were deduced and tho

[^71]tangential component of shear stress calculated for each extansion. Thes is given by the formula-
$$
S=T / A(\cos \theta, \sin \theta, \cos \eta)
$$
where $T=$ total load,
$A=$ cross-sectional area,
$\theta=$ angle between the normal of the slip-plane and the axis of the test-plece,
η 二angle between direction of slip and tho direction of maximum slope of the slip-plane.
Table I gives the menasurements and values calculated for 8 in lbs. per square noches In fig 7 these are ploted aganat the ratio of the estended to tho

initial length of the specumeus, c. All of the cryatals were extended until they began to neck, so that the final figure representa approximataly the shear atress at fracture. A curve obtaned from an aluminum orygtal is
included for comparison. This is taken from the previous paper, where other ourves and figures for aluminum are given *

It is unteresting to note that, although the aluminum hardens more rapidly at first then gold or aiver, it finally becomes the weakeat and is passed by both gold and silver. Sumularly the gold begins by being stronger than the sulver, but in the final stages of the tests this order is reversed. It will be seen on reference to figa, 5 and 6 that copper cryatal No X began straght away to slip on two planes, while No. XI only began double-slipping between 30 and 40 per cent. The curve of the former is smooth, whereas that of the latter shows a sharp change of direction at about this point Similar breaks in the curves for the other metals have not been observed.

The shapes of the curves for the four metals are entirely different, although the distortion is of the same type If the hardening were due solely to bending and breaking up of the crystal during the process of slipping, it would be expected that the curves would have a simular shape Those of the two copper orystals and the two alver crystals are nearly parallel, and it was found that all the crystals of alominiom showed approximately the same values for the same axtensions. Therefore the difierences observed must be considered as being due to spearic proparties of the several metals.

It might be suggested that this effeot is due to the influence of impurities. That such is not the cass, however, is endent from the fact that the gold, silver and copper are of a high degree of purity, while the aluminuum is relatively umpure. (The aluminium contains 0.2 per cent iron and 0.2 per cent, slioon.)

A few of the properties of these metala most likely to influence the meohanical properties are compared in Table II. The dimensions of the apace-lattices of

Table II.

--	Gold.	Sulver	Copper.	Aluminiam.
Melung-point	1,001 ${ }^{\circ} \mathrm{C}$	$860^{\circ} \mathrm{C}$	1,084 ${ }^{\circ} \mathrm{C}$.	$680^{\circ} \mathrm{C}$
Alomia welght	1972	10788	6357	271
Denalty	1031	10.61	8862	2 183
Eldo of elementary oube in " Angatormm " unitat	408	400	360	401
* Loc.in. \dagger Landolte and Borrateing \% Brege, ' X-ruye and Crgital Btrwoture.'				

VOL. CXI.--A.
gold, silver and aluminium are almost identical, while the value for copper is consuderably lower The other properties do not appear to bear any relation to the mechauical properties. It is imposable to draw any conclusiona from these observations in the present atate of our knowledge, but it is significant that the metal whose atoms are nearest together ahowa a greater proportional increase in hardness on deformstion.

My thanks are due to Prof. H C H Carpenter, F.R.S, and to Prof. G. I. Taylor, F.R S, for advice durng the course of this work, and to Prof W. E. Delby, F.R S., for his kindness in allowing me the use of a testing machine in the City and Guilds Engineening College.

The Absorption of Gases by Charcoal-I.

By R Angus Smith, Ph.D, F R.S.
(Recelved December 27, 1862 -Read January 29, 1869)
[In June, 1920, the Council of the Royal Society considared an application from Mr S Lenher for permission to print certain parta of Dr. R A. Smith's paper on "The Absorption of Gasea by Charcosl" on account of their historical interest. The paper had been formally read before the Society in January, 1863, but, acting on the advice of a referee, Council had publushed only a summary of the paper ('Proceedinga,' vol 12, p 424 (1863)), consigning the main manuscript to the Archives Mr. Lenher wrote that " Dr Smith's paper is of such historical importance for adsorption work that the printing of a considerable part of the original is now warranted," and suggested publishing the material from Dr Smith's papar in the form of an historical note. Council felt that if the paper were to be published at all, it ahould appear in their uwn ' Proceedings,' for which it had been onginally submitted in 1862 . Prof. Donnan and Mr Lenber accordingly selected such parts as seemed to them most sutable for publication, and these appear herewith, followed by a short note by Mr. Lenher

An examination of the original manuscript of the paper makes it clear that it was hardly suted for publication in the form in which it was subintted No attempt was made to tabulate or aummarue the results of the different groups of experimenta, and the manuscript looks rather like a laboratory note-book. One of the experts to whom the paper had been referred spoke of the experiinents as being " presented in a crude form which is far from attractive," and continued "The theoretical deduotions at the end of the paper possess more interest, although rather vague and general ; but they are borne down by the heavy matter with which they are associsted" Doubtless it was this report which led Councl orignally to print only the summary whth which tho ongmal paper ended.- J H J.]
" . . . I had several reasons for beginning these experiments. Bome years ago I had gaven general opinions on the oxidızing powers of porous bodiea, and had made some experimenta obtaining interesting results I wha therefore desirous of knowing the detalls more fully. I had reason also to consider the subjeot of the purfication of liquids, and I believed that the study could only be prosecuted by beginning with the rudumentary actions of the substances employed. Thirdly, I have had atill more occasion to consider the purfication of air and the pecular action of charcosl on some gases and vapours which are found to be noxious or disagreesble
"I have paid little attention to the absolute quantity of gas aboorbed, believing that enough had been done on this part of the subject; for the same reason I have neglected the nature of the wood, beech and oak were used undifferently, and the hardest were found to be the most active . .'

Charooal and Atmospherve Avr.
"The mode of experdmenting was that adopted by others and actually suggested by the circumstances of the case The charcoal was heated to redneas to the very centre, and when in this state was plunged instantly under mercury. It must not be allowed to reappear on the aurface, but must be transferred at once to the eudiometar. The charooal becomes very heavy, heing thoroughly penetrated with mercury . . Tubee for absorption were from ono-half to three-quarters of an inoh in diameter. The pieces of charcosl were one and one-half inches in length and about one-half inch in dameter. I give only a few reaulta among many dozen. . . " [Four experiments are chosen from a considerable number recorded in the orrginal MS]

Volume of mir uned.	Volume efter absorption	Volume of gas a lewarbed
No 1. $4830\left\{\begin{array}{l}12 \\ 18 \\ 48 \\ 18\end{array} 8\right.$	$37090 \begin{cases}0 & 060 \\ 87 \\ 93 & \mathrm{~N}\end{cases}$	1212 0
	$64.50\left\{\begin{array}{r}074 \\ 68.76 \\ 0.0\end{array}\right.$	$\left.\begin{array}{rr} 18 & 00 \\ 0 & 00 \end{array}\right)$
No $71180\left\{\begin{array}{lll}28 & 92 & 0 \\ 01 & 08 & N\end{array}\right.$	$7802\left\{\begin{array}{l}3 \\ 6850 \\ 880\end{array}\right.$	$\begin{array}{ll} 19 & 38 \\ 22 & 88 \end{array}$
No. $0 . \quad 80.67\left\{\begin{array}{l}16760 \\ 68.91 \mathrm{~N}\end{array}\right.$	$4238\left\{\begin{array}{c}0 \\ 42.36) 0 \\ 46\end{array}\right.$	$\begin{aligned} & 1076 \\ & 8155 \end{aligned}$

[^72]I erpected to obtain a constant stream of the former by alternate heating and coolng. I found that I could obtain little else than carbonic aond The rapidity with whoh some charcoal absorbs oxygen la marvellous In this we see readily the cause of its apontanoous combustion The rapid condensation of the gas itself produces heat which, if retaned as has been shewn to be the case in great aggregations of charcoal, increases until combination takes place. This combination, however, seems to take place without the and of this accumulated heat and certainly as low as the boiling point of water.
"The sbsorption of oxygen is not merely the filling up of the poref craving by therr emptaness a supply of partucles but it is caused by a power capable of makang a selection, removing all the oxygen from the air, even ejecting the nitrogen from the pores of the charcosl to make room for the gas more readily condensible, and most readily absorbed. The absorption seems not to be in relation to the apocific gravity of the gas, as I always find that hydrogen expels nitrogen. We know nothing of the condensibility by mere pressure of oxygen, nitrogen and hydrogen ao as to make a comparison. . "

Orygen on Charcoal.

[Tables given for the absorption of hydrogen, carbonic acid, and oxygen on charcoal over a period of a month.] "In these experiments we find that hydrogen is not abeorbed by charcoal except for a very short tume . The numbers shew an amount of gas almost constant duning the whole period, and leading us to conolude that so little is hydrogen inclined to condense in the pores of the charcoal that even with some increase of pressure there was no tendency. On the other hand, a diminution of temperature has a certain marked effect in causing condensation

Drsplacement of Nuroyen in Charmal

"The displarement of nitrogen in charcoal by other gasea was very conapicuous; nearly all the charcoal even after being heated and plunged into mercury still contained this gas, but when surrounded with an atmosphere of oxygen the nitrogen was removed and the oxygen took its place
"When the oharcoal containing nitrogen was introduced into any gas, the nitrogen mught reasonably be expected to mix with the external gas, either until a homogeneous mixture was made or untila mixture took place depending on the amount and apecific gravity of each gas as is the case over liquids The first does not take place, as I have ahewn by proving the elective action of oharooal when oxygen is present, nor does the second occur as a main result, although

I think it probsble that it will occur as a secondary action after the counterbelancing part of the attraction has been satisfied The amount of attraction for the gas diminishing outwards from the surface of the charcoal, a time will come when it will be no greater than the amount of its solubility in water or its diffusibility in air or other gas Still, the first apparent result is very diferent from anything here imagined Whan the charooal containing nitrogen is put into rany other gas the nitrogen flows out If the gas in the tube be rapidly absorbed, the flow of nitrogen is not observed, but if the gas be hydrogen and the charcoal not very absorbent, there will be a flow of nitrogen out of the charcoal so ins gradually to lower the mercury below the external level The same ocoura with other gaseas and nutrogen according to the qualities of the charcoal When this action is finished the absorbing action is again obeerved on the remaining gas by the rise of mercury and at last even on the ejected nitrogen Itself
" If the charcoal be previously asturated with a gas such as nitrogen or hydrogon, the amount which escapes on passing it into another gas is very great. It requres no diminution of preasure to remove it but the pressure only of another gas which will cause it to flow out against pressure and with so much force that the mercury in the tube han been depressed about three-quarters of an inch below the outade level. After suffering this depression the absorption begins to be apparent.
"We may suppose elther that the gas in the charcoal in given out before the absorption of the external gas begins or that it sa given out more rapidly than the rate of aboorption. With e greater pressure and without a membrane we have one gas flowing into another with such a force as to depress the mercury more than the atmosphere, recalling to mund the saying of Dalton to explain diffision, that one gas acta as a vacuum to another. And this is practically true to some extent
" This asme gas will not entirely leave the charcoal even in a vacuum, in thone cascs, however, where there is a depression of the inside mercury, the gas in the charcoal was so great that much of it would havo left readuly on a diminution of the pressure. We see then that the pressure of another gns acted exactly like a diminution of pressure.

Table.-[A Summary of the Data given by the Author.]

Gen with which the charonal was originally anturated	Gas into which the charooal was introduced.
Nitrogen	Oxygen
.'	Hydrogen
Hydirogen.	Carbonio eosd.
Hydrogen.	Ozygen
"	Nitrogon.
Carbumic acid.	Oxygam
",	Hydrogen
	Nitrogen
Oxygen	Hydrogen,
".	Nilrogon

Theoretical Considerations.

" We are obliged to view chemical union as the most complete case of contact known to us And as yet the subject is not without its difficulties, and experiments occasionally suggest doubts. Dr. Andrews found that 1500 atmospheres did not render oxygen a liqud, and Vatterer apeaks of 3600 , and yet at less specific gravity it comes before us in many compounds in a condensed state. We may view the atoms or molecules of a gas as separate or independent, refusing oontact with each other untal afflinity begins to act The first result will be a close contact ; this we have been accustomod to call physical only and to look on as cohesion, but there are grades of this contact; one substance holds and is held more powerfully than another Platinum finely divided retains oxygen powerfully. Sulice finaly divided retains oxygen less powerfully and iron selzes it with such force that if the divion be fine enough the physioal boundary is rapidly passed and chomical affinity reaulta in chemical union. But in what way can we separate the action of affinty resulting in manifeat combination from the action which tends to retain the orygen in the pores of the powdered metsl? The tendency to unite is begun by the tendency to remain in firm phywical contact.
" If the distance of atome be at the amallest when they are in a state of chemical union, then chemical affinuty acts at distances greater than those between the atoms chemically united. This then leads us to conclude that a force acts beyond the boundary of the stom itsalf If the atoms are nearer sfter combination, force must pass between them causing them to combine. And at what distance does this force act " (This phrase will be objected to,
but the objections must come from other grounds than any known to me before I can pay much attention to them I do not know what a force is and can find no teacher, and by changing its name I feel no wiser.)
" The dustance at which chemical affinity first manifests itself is not a smaller one than ordinary physical contact. Bodies to unte chemically are brought into ordanary physical contact. Is this always the same or are there variations in the closeness of contact? When charcoal is put in a tube of arr over mercury the air is absorbed; more is absorbed when the pressure is great. If by removing the pressure of the atmosphere, the whole anr were extracted, we might be inclined to give little heed to the force exerted, but this extraction does not take place.
" Let us suppose that on the entrance of the oxygen into the pores of the charcosl the surface 18 covered with a coating of gen disposed in thin layars of atoms or molecules When this attraction is satisfied and force is still exerted beyond this thin layer, there will be a second layer formed, but it will be beld with less power, being farther distant from the charcoal than the first layer Afterwards a third layer will be formed, and so on In this way there will be a aucceshion of layers of oxygen each held by a different amount of affinty. Now this appears to me to agree thus far with the facts of tho case.
" There would alao bea tendency to unite the first layer of oxygen with the carbon. It is extromely probable that the affinty of every layer would contribute towards compalling the carbon to unte with the nearest perticles of oxygen, beoauso the affinty appears to atretch through a certan number of layery of orygen This will give a reason why pure oxygen should act more rapidly than when mused with another gas, besides the fact of a larger surface being exposed.
" If there were only one layer there would be an equal attraction over all the surface and there would be no reason why one portion of the gas should be removed by removal of pressure more than another A auccession of layers is undispensable and as a consequence a continuation of affinty or rather attraction through them, or, in other words, at diatances grester than those which form chemical combination and also at various stager of watances It is extremely probable that these stages are eractly in proportion to the size of the molecule, that there is not a stage at any pressure we choose to assume but a series of steps as dastinct as atomic weights and depending on the same cause If we could measure these ateps by fine measurements of pressure we could measure the ase of atoma The atom I speak of may more properly be called a molecule,
but it is an atom to us, unt in the sense of a thing that cannot be divided but of one that us not divided by any of our operations The chemintry of bodies smaller than Dalton's atoms is yet to come
" If there be an attraction at the surface of hodles or in pomus bodies closely resembling the affinty called chemical on the one onde and that called physical on the other, we may expect that it will be elective as chemical aftinity is and have the faculty of choosing from various substances in preference to nthery Accordingly, when we introduce active charcosl into common mir the oxygen us taken up hrat and aiterwarils if the charcosl is eapable of taking up more gns it absorbs the nitrogen Thas choife is very strikingly shew n when the charroal contains mitrogen. as it almost alwaya does, not only is the oxygen taken up but the nitrogen is expelled The same taker place when hydrogen is used, tho hydrogen is absorbed, although to a smaller extent, and the nitiogen 14 expelled. Пere we may have chomical affinity acting in a inanner which we are accustomed to call phymial it us chemical aftonty at distances greater than we have been accustomed to, it is also chemical affinity active as an agent between bodies which do not combine, shewing a wider mifercelation and dependence of substances than we have hitherto rerogmesed
"But may we not view the chemeal and the physieal as at thas point one I call it physical berause combination is not prorluced, I call it chemical becauke election 18 made. Thus elective nature may however entirely depend on the compressibulty of the gases as we find that carbonc acid is very much compressed and condensed . When charcosl iss saturated with meroury and is then moisteneel with water or dipt into it, the merc ury is instantly driven out, water taking its place How far combined oxygen may be inchned to exercine its affinities we do not know, all we know as that its capacity for combining farther is bounded we have only to believe that the capacity for uniting and the inclinatuon to unite are different and the matter becomes clearer
"In this view of the chae when there is a condensation of volume or an attraction shewn by compression or otherwise, we cannot separate the terms chemical and physiral The term chemical commences when a true union is formed The two attractions are one, however. in quality To illustrate this, charcoal may have an attraction for oxygen when the oxygen is in a state of combination with carbon, but it cannot combine aimply because combination has already taken place on the part of the oxygen We have nomewhit confounded attraction, affinity, and combination. I see only one attraction which is both chemical and physical, resulting in chemical rombination when opportunities are fitting The action of mass is readily explained by this mode of
representation, but this is scarcely a place for giving more than a brief account of ideas which [hope more fully to elaborate "

Note -An editor's footnote in a paper by John Hunter (' Jour ('hem Sor ,' vol 18, p 285 (1865)) calls attention to the work of R. Angus Smuth on the ubsorption of gases by charcoul (' Roy Soc Proc ,' vol 12, p 424 (1863)) Ther paper in the Proceedinge of the Royal Society is merely a short abstract of a paper whth Dr Smith read before the Hoyal Noctety on January 29, 1863, but brief as it is the arcount seemed of such historical importance that a perisal of the original manuacript wan warranted. A study of Dr Smith's original paper in the Archives of the Royal Soclety (a document of nome 38 pages of experiments, tables, and theoretical considerations) confirmed the belief that attention should be drawn to thas excellent and murh neglected work No mention of the early work of Dr Nimith is made in the hiterature of adsorption and absorption after the footnote in Hunter's paper of 1865

Bancroft ('Apphed Collod Chemintry ' (1921)) remarks on some of the later work of Smith (' Report of the Brit Ass for the Adv. Sclence,' Norwich, 1868, Abstracts, p 44 , 'Chem News,' vol $18, \mathrm{p} 21$ (188B), ' Roy Soc Pror ' vol 28, p 22 (1879)) which is of little value at present, aud until this time Dr Smith's pluneer work in adsorption has been forgotten and neglected Dr Smith's experiments and conclusions are of such excellence, showing as they do how far ahead of his contemporaries he was in the field of adeorption, that a fuller rendering of the material in lus paper seems justified -s Lenher

A Comparison of the Records from British Magnetic Stations Underground and Surface.

By (' Chree, Sc D, LLD, FRS, and R. E Watson, B Sc.

(Heceived June 16, 1926)
§1 Durng nearly aix years a weekly rtatement of 2 -hourly dechnation values was ıssued from Keu Observatory for the henefit of maning engineers This helped to bring to the front the question of how far data from an observatory in the SE of England apply to the Britiah coalfieldy So far as we know, the only previous investigation in which continuous records were obtained from neighbourng underground and surface magnetographa was carried out in 1906 near Dortmund, in Germany In a short prelimunary account, Prof. Ad. Schmult," of Potedam stated that only trifling differences had heen observed between the surface and underground atations, and that doubta pxisted as to whether their canse was natural or artuficinl No further dascussion seerme to have been publalied
In 1920 the question of apecial observations in a mine was raised hy Mr. T G Bocking, MIMin E, of Birmingham, and this led eventually to the present invertigation The scheme having been approved by the Dirertor of the Meteorological Office Mr Bocking secured the co-operation of Mr H W Hughes, General Manager of the Diamond Jubler Pit at the Sandwell Park Collhery, West Bromwich (52° b N lat), and accommodation was provided for magnetographs Two old e'ye-reading decimometers in atock at Krw' Observatory were transformed into magnetographa by Mr R E Watson, and mone changes were made to a Krogness \mathbf{H} (horzontal forer) inagnetograph to render it more senbitive Mesers Baley, of Birmungham, a firm of minng engineers in which Mr Hocking in a partner, kondly arranged that the momedate charge of the matruments should be undertaken by $\mathrm{Mr} \mathrm{S} \mathbf{W}$ Howarth, one of their assintant surveyors, and they afforded facilities at their office for the development of the photographe traeres The mstruments were net up by Mr Wataon near the end of Marc h, 1923, the H magnetograph and one of the I) (declination) ingnetographe being underground and the second D instrument at the surface. Hecords were tahen until the muddle of the following November, but opergtions were aunpended during July and August and part of September The

- 'Terreatral Magnetiam,' vol 11 (1906), and 'Met, Znit ,' p. 130 (1007)
underground and surface D instruments were interchanged in Septembei as a precaution against instrumental uncertainties

82. Magnetographa housed in a mine are erposed to special dungera, und from one cause or another there was a consuderable loss of trace It was rlearly resirable to limit the comparison of D resulte in general to daye in which complete records were obtained from both the D mstruments at Sunduell Park It was finally decided to select for each month two groups of days not exceeding five in each group, one group representative of quiet, the other of "disturbed" conditions The international quiet and disturbed daps were used when records were avalable Diuraal inequalities were derived from these two groups of days, non-cychic corrections being applifed in the usual way. It was clearly desirable to include in the comparison a more northern as well as a more southern observatory The elements regularly recorded at Eskdalemuir of late yeara have been N and W (north and west components), not D and H. Diurnal inequalities can be calculated for \mathbf{D} and \mathbf{H} from N and W rurves, but irregular changes can be satiafactorily measured only for the elements actually recorded. A third declinometer was accordingly transformed by Mr Watson into a declination maguetograph, and installed at Dakdalemuir

While the reduction of the observations was in progress, the maguetic curves obtaned during 1923 at the new observatory at Lerwick in the Shetlands were sent to Kew for examination, and it was decided to utilize them as well Hourly tabulations had already been made in Socotand, so the extra labour entailed was not very serious
$\$ 3$ In addition to the inter-comparison of the regular diurnal inequalities at the different stations, a comparison was made of the amplatude of irregular short period changes What was measured was the difference of ordinate at successive turning points (crests and hollows). In general there is no difticulty in identifying corresponding movements in the same element at British atations, even when so far apart as Kew and Eskdalenum The selection of suitable movements was based manly on a study of the Krw curves Durng the busy houra of the local electric ralways artificial disturbance was too large at Kew to permit of the satisfactory mensurement of minor movements This considerstion alone would have restricted the choice manoly to the nigit hours, but this was deairable in any case, because the instrumenta at Sandwell Park also suffered sensibly from artificial disturbances during the day These seemed to he due, not to the electrical power used in the mine, but to electric tramways at some distance

Only Dirregular movements were available at Fiskdelemuir This was one
of the reasons for the use of the Lerwitk rurves, hernuse the magnetographs in use there recorded () and H
The direct comparison of underground and surface pheromena at Sandwell Park was necesaarily himited to D Such comparisons are not mo smple as may appear at firat sight Assumung the regular durnal variation to be due to the varying action of aome electric current, the changes in dechnation depend not only on the direction, distance and intensity of the current, but also on tho local value of H In the preant casp complete observations of H were not taken, but the time of swing of a magnet was measured at both stations, as well as at Kew Observatory The value of H thus deduced for the surface station from the knoun value at Kew was intermedate between the values obtained by Rucker and Thorpe and by Mr G W Walker at atations a few mules away, duc allowance being made for secular change. The valuc obtained at the underground station was the larger hy about 100γ, or 0π per cent This is not much in excess of the probuble crror of observation, but several observations were taken and all agreed as to the sign of the difference Supponng the reault exact, it would imply a reduction of 0.5 per cent in the amplitude of the \mathbf{U} changre underground, as compared with those at the surface, provided the dapth of the underground station 1,800 feet or 055 km roughly, is ueglighble compared with the distance of the currents to which the durnal inequality is due
§4 In considering the amplitude of the durnal inequality, attention was given to the A D (numencal mean of the 24 hourly depurtures from the mean value of thr day) as well an to the range
ln the case of the quiet day D inequalitses, in four months out of five, both the range and the A 1 were larger for the aurfaco than for the underground station, the arerage differonce in the case of the range represonting about 3 per cent of the surfare value Hut in the disturbed day inequalities the excess in the range at the surface averaged only 1 per cent, and in the case of the A.D the excess vamashed In the care of the quiet day inequalities the difference between the amphitudes is in the direction we should expect from the enhanced values of \mathbf{H} underground, but is greatir than the enhancement in the value of H would account for In the case of the disturbed day inequalities the difference might be accounted for by the difference in the underground and surface values of \mathbf{H}
The irregular D movements used for the comparison of the underground and surface stations were taken from seven months, the number varying from 13 in March to 106 in October Every month gave an excess for the amplitude of the surface movement. In three months the excess repremented
only l per cent, but on the aggregate of the J48 movements measured it represented \& per cent Additional condence in the raility of the txese may be derived from the fact that it appears both prior and subsequrnt to tho interchange of instruments

The facte that the irregular movements showed a dear racrem at the surface, und that the A D) of the regular durual mequality on disturbed day did not, may appear contradictory But the results obtamed at the varous surface stations showed that there is no recognisable relation betucen the regular and irregular changes
In the case of H no certan concluaion ian be drawn as to a difference betwern inequalities underground and at the aurface all that can be aand is that on an average of hive monthe the ratio borne by the range or Al) from the disturbed day inequality to the range or AD from the quert day inequality was very nearly the same for the underground station as for Kew Observatory As regards the irregular changes in H , the phenomena observed were at least consistent, as in the case of I), with a sinall reduction in the amplitude of the movements underground, but no certan conclusion can be drawn
The results are consistent with the view that in a coal mine, where local disturbance is absent or very smull, dechnation changes may for practical purposes be treated ay identicul with those at the surface. During the time of the observations at Sandwell Park there was no matance where the difference between an irregular movement recorded underground and the corresponimg surface movement was sufficent to catch the eye There were small differencen in amplitude, according to the measurements made, but no differener was noticed in the type of any irregular movement We should not, however, be justified in assuming that differences visible to the eye never occur 1923 was a vory quirt year, and contaned few disturbances of any aize, and there were no conspicuously large rapid oscillations. Such oscillations constitute the conditions under which a difference between surface and underground phenomena would seem moat likely to arise This lumitation is practically unimportant, becsuse no observations taken during a magnetic storm should be employed for enginecring purpoнeн.
It is, perhapa, only proper to add that the conditions were not favourable for the detection of minute differences The curves did not in general possess the sharpness of outline which can be secured with first-class magnetographe at a first-clase observatory, and the artuficial disturbances at the underground and surface stations were not identical
§ 5 The second main question, how far resulta from a station in S E England are apphicable elacwhere in the British Isles. has an even wider intereat It is not a new question, but deserves more attention than it has received - The first important occrasion whan it arose in modern times was in connection with Ruicker and Thorpe's survey* In their reduction of field observations Rücker and Thorpe acted on two assumptions, the hypothetiral character of which they expliritly recognised -- (1) That the regular diurnal inequality is independent of disturbance, and may be treated as identical over the British Isles, provided allowance be made for the difference in looal time, (2) that irregular movements may be treated as identical over the samr aren Accepting the truth of these hypotheses, they were justified in applyng everywhore a correction for the diurnal inequality based on quiet day inequalities from Kew Observatory, and in making an allowanoe for irregular disturbanres based on the curves of the same station

Even in Racker and Thorpe's time it would have been posable to check the truth of these assumptions by comparing corresponding records from Kew and Stonyhurst This, however, does not seem to have been done A possible explanation is that Rucker and Thorpe may have been aware of a comparison inatituted by Dr Balfour Stewart \dagger and the Rev W Sidgreaves, S J , which owing, apparently, to a confusion over scale values \ddagger-led to the erroneous conclusion that the leas rapid irregular movementa at Kew and Stonyhurst were practically equal in amphtude The next comparison between British stations was more exhaustive, but it was between Kew and Falmouth, 8 observatoriea both in the south of Eingland, and was confined to quiet day inequalities In that case the results were, on the whole, not unfavourable to Rucker and Thorue's first hypothessa.

The question arose again in connection with Mr G W. Walker's re-survey for the ppoch 1915 Eskdalemuir had then been recording for several years, and sufficient intercomparison had been made of Kew and Eiskdalemur to show that disturbance teaded to be larger at the more northern station. Mr. Walker\| was aware, as he explicitly atates, that neither of Rucker and Thorpe's hypotheses was true, but he thought it beat to follow their procedure, relying thia tume on Greenwich as a bese station.

[^73]It is obviously mpossible even now to reduce firld observations taken in differcut parts of the Britigh Iules aq satisfactorily an if there were in existence additional maguetuc observatories in South-Western Englund or Welpa, Western Ireland and Nortb-Western Scotland But this dops not mean that no bettrer course is ${ }^{\text {pessible }}$ than that followed by Racker and Thorpe and by Walker The rest of this paper may be regarded as helping to elucidate this point 1 he Sandwell Park I) data it utilizes are those from the aurface station
§ 6 Taking first the \mathbf{D} regular diurnal inequality on quet duys, it wan found that the differences between the ranges or A D's at Kipw Sandurll Park and Eskdalemur were rmall in all months Therr was a slight tendency in the range, and still more in the A D, to increase as we go north, but even in the case of the A D the excress at Eakdalemuir over Kew, on an average from the five months May, June, September, Ortober and November, was only 8 per cent of the Kew valur.

Results for Lerwick wrere more complicated Even in the south of England the amplitude of the regular diurnal mequality on quet days has a large annual variation, with a pronounced minimum at imidwinter But at Lerwick this annual variation is further developed In June the range at Jerwick was 11 per cent and the A D was 35 per cent larger than at Kew, but in October the range and A D were actually amaller at Lerwick than at Kew

The results obtained for quiet days for \mathbf{H} differ considerably from those obtained for D If we take an average from April, May and June, the ratio borne by the range of the regular drurnal mequality to that at Kew was 1.15 for Sandwell Park, 137 for Eakdalemur, and 148 for Lerwick, whele, if we take a mean from October and November, the ratio was 1-10 for Sandwell Park, 091 for Eskdalemuir and 080 for Lerwick Thr tendency to ancreased amplitude as we go north in summer, and the tendency to a reduced amplitude at the more northery stations in winter, are thus shared with declination, but to an enhanced degree.
57. When conyulering disturbed day inequalities, it is important to rempmber that the five most disturbed days may represent a much higher absolute standard of disturbance in one month than in another 1923, a year of sunspot inimmum, was a quiet year Also, owing to breakdowns, the dasturbed days selected were not always the most disturbed of the month Thus the differences found here between quet and dasturbed day inequalitics are not unlikely to be less than the differences to be encountered in an average year
In the case of D the ratio borne by the range of the diurnal inequality from the selected disturbed days to the range of the mequality from the selected quiet
days varied at Kew from $1: 38$ in June to 242 in November at Sandwell Park it varied from $1 \mathbf{3 4} \mathrm{in}$ June to $\mathbf{2 . 4 7} \mathrm{in}$ November, at Eikdalemur it varied from 143 in May to 307 in November, and at Jerwick it varied from 125 in May to 463 in November These ratios, if Rucker and Thorpe's hypothescs had been true, should all have been 100 .

On an avrrage from five months, the ratio borne by the disturbed day D inequality range to the quiet day range was 182 for Kew, 187 for Sandwell Park, $\mathbf{2} \cdot 06$ for Fskdalemuir, and 261 for Lerwick The tendency in the ratio to increase with increase of latitude was not shown in May and June, and it, became less prominent when the A D. was substututed for the range.

In the case of H , if we omit Lerwick, we find lebs difference between the Infferent stations and the different months The ratio borne by the range of the disturbed day inequality to the quet day inequality, on an average of five months, was 144 at Kcw, 1.42 at Sandwell Park and 141 at Eskdalemur The catreme values of the ratio in individual months if we include the three stations werc 109 and 168 There was no decided tendency in the ratio to increase with latitude When, however, we pass to Lerwick, we encounter a totally different state of matters The ratio borne by the disturbed day inequality range to the quiot day range varied from 146 in Junc to 649 m October, and on an average of five months it was no leas than 333 It was found, moreover, that the diurnalinnequality on disturbed days at Lerwick in the later months was quite different in type from that at the other stations To make sure that the phenomenon was not an accident of the special days selected, the Eskdalemuir und Lerwick tables for the international quiet and disturbed days of all months of 1923 were consulted These put the matter beyond a doubt. On quiet days at Lerwick 11 h . or 10 h appears to be the normal time of the minumum the whole year round, as at Eskdalemur or Kew At the more southern stations thare seems no difference in this respect between disturbed and quiet days But at Lerwick on disturbed days, at least in 1923, the principal minimum in the equnoctial and winter seasons appeared near midnight This happened even in one summer month June, and the influence of the equnoctial and winter months was so great that even in the mean djurnal inequality for the year the minnmum fell at 2 b . Analysis in Fourfer serles showed that for September and October on disturbed days there was a difference approaching 180° in the phase angles of the 24 -hour waves for Lerwack and for the three more southern atations.

In new of its high latitude, $60^{\circ} \mathrm{N}$., Lerwick may appear a somewhat eatreme station for the British Isles. But Eakdalemur, on the other hand, is in the
south of Scotland, and there may be a large part of Scotland where the conditions approach as closely to those of Lerwick as to those of Eskdalemurr.
§ 8 Irregular D movements were mensured on about 90 nighte at Kcw , a few highly disturbed, a few quiet, and the majority moderately disturbed The practice adopted way to take the sum of the amplitudea of all the movements measured on a single night st each station, and compare it with the correspondug aggregate for Kew. The measurements were made in mullhmetres, the curves from the different atations being aimilarly dealt with, but independently, and the resulta should be quite unprejudiced Readung were taken to 0.1 mm ., but accuracy cannot be secured to 0.1 mm except under very favourable conditions.

On a few of the more highly disturbed nights, some of the D movements selected at Kow could not be identified with movemente at Lerwick, and this was even true in a few cases at Eskdalemur In such cases only the movementa, the identification of which was undoubted, were taken into account when companing the two stations

On every angle night when comparisons were made the aggregate of the \mathbf{D} movements was greater for Eskdalemur than for Sandwell Park or Kew, and greater for Lerwiok than for Eskdalemur. Out of a total of 66 nights used, there were only 5 when the aggregate movement was larger for Kew than for Sandwell Parly, and on each of the 5 occasions the aggregate was small, and the apparent excess tnfling From the grand aggregates of all the irregular movements measured, the ratios borne to the Kew movement by the correaponding movements at Sandwell Park, Esikdalemuir and Lerwick were respectively $1 \cdot 12,1-48$ and $2 \cdot 09$. The values obtained for the ratio Lerwick. Kew in seven separate monthe varied only batween 1.92 and $\mathbf{2 . 2 6}$.

The ratio borne by the representative irregular D movement at Lerwok to the corresponding movement at Kew is much larger, eepecially in the summer months, than the ratio borne by the range of the regular D diurnal inequality on disturbed daye at Lerwiok to the correaponding range at Kew
89. An analogous comparison was made of irregular H movernents at Kew, Sandwell Park and Lerwick Here, again, D and H do not bebave alike In every month the aggregate of the \mathbf{H} movements was substantially greatest at Lerwick, but there was quite a conaderable number of individual nights when the aggregate for Lerwick was similar to or even less than the correaponding aggregste for Kew. On some of thene occasions there was a fall in the ampltude in pasang from Kew to Sandwell Park, and a further fall in passing from Sandwell Park to Lerwick There wes not any decided tendency, such as vol. oxil.-A
appeared in the case of D, for the amphtude of the irregular movement to be larger at Sandwell Park than at Kew In fact, takang the aggregate of 514 movernents measured, there was a deficiency of 1 per cent in the amplitude at Sandwell Park This may, of course, be due to the station being undergmond. As the H inequabty range from disturbed days at Sandwell Park was, on an average, from five months, 19 per cent in excess of the Kcw range, it is clear that the phenomenon can hardly be duc to any error in seale values

As already stated, there were nughts when the equivalents of some of the irregular \mathbf{D} movements mensured at Kew could not be slentilied at Lerwick, but auch occasions were few In the rase of H, however, there were a good many auch occasions, whole ulghts, in fact. when aatisfactory identifirations could not be inade. On one of these nights the \mathbf{H} range at Lerwirk evceeded $\mathbf{D O O}^{0} \gamma$, while the corresponding range at Kew was only about 140γ On another occasion, when identification did seem possible for 12 movernents, the aggregate of the H movements at Lerwick was 48 times thr cortesponding aggregite at Kew. This oecasion and one or two othery of a like kind were trented as exceptional Omitting them the ratio of the representative irregular movement at Lerwick to that at Kew, based on an aggregate from 344 movements, was only 135 This is much less than the corresponding result obtaned from the \mathbf{D} irregular movemente, even wheu the latter are converted into their force equivalenta so as to allow for the lower value of H at Lerwick
§ 10 The rases where it was difficult or impossible to identify correrponding irregular movements in H at Kew aud Larwick wore examined individually, and a comparison was made which was based on mean hourly values of \mathbf{D} and \mathbf{H} The changes from hour to hour measured in this way are not as accurate as the amplitudes of udividual irrogular movements, but the stations differed so widely that the accuracy sufficed to bring out the salient fentures

In the casc of D, even on highly disturbed days, the sign of the chango from hour to hour was in general the same at the different atations, and the amplitude of the change, whether casterly or westerly, increased pretty regularly with the latitude For example, on the nught of September 26-27, one of the most disturbed, the change in D shown by the menn hourly values was continuously easterly from 19 h to 23 h on the 26 th, and the aggregate movement was $20^{\prime} \cdot 9$ at Kew, $23^{\prime}-7$ at Sandwell Park, $28^{\prime} \cdot 5$ at liskdalcmuir and $36^{\prime}-3$ at Lerwick, while on the morning of the 27 th from $\mathrm{J} h$ to 3 h . the movement was westerly, the aggregato change being $13^{\prime} 7$ at Kew, $16^{\prime} \cdot 1$ at Sandwell Park, $20^{\prime} 9$ at Eskdalemur and $44^{\prime} 2$ at Lerwick

In the case of H the changes were sometumes of the same sign at all the
stations, but the morease with latutude was often extraordnurily pronounced Taking again the nught September 20-27, the aggregate change from 19 h of the 26 th to 1 h . of the 27 th was a fall at all the stations, but it amounted to 43 Y at Krw, 37γ at Sandwell Park, 114γ at Eakdalemur and 340γ at Lerwick, while from I h. to Ith on the 27 th there was a fise amounting to 30γ at Kew, 11γ al Sandwell Park, $10{ }^{2} \gamma$ at Eskdalemmer, and 247% at Lerwick On thpse occassons it was only at Eiskelalemur and Lerwick that the fall or rise in the successive bourly means appeared absolutely unbroken

On other occasions changes in \mathbf{H} from oue hour to the next were such as the followng .-

Krw	Sandwell Park	Jiskdalemur	Lerwick
${ }^{\text {f-2 }}$ - Hr_{r}	$\mathrm{l}^{1} \mathrm{I}^{\prime} \mathrm{r}^{\prime}$	$1{ }^{4} \gamma$	-269%
$1-{ }^{\text {dr }}$	$\stackrel{7}{7}$	22_{γ}	--130\%
$-\mathrm{I} Y$	$+4 \%$	$1-17 \%$	$+228 \gamma$
-22Y	- 20 \%	-13%	+ 39\%

With the Letwick data before us, we call recogniae an orderly progression in the changes at the three more southers stations An influence dominant at Lerwack was apparently in opposition to an influence which prevaled in the south of Enyland

It is sufficiently obvous that in any of the above cases any coriections based, like Rackor and 'Thorpe's, on Kew data alone would be absolutely futile, so far at least as northern Scotland is concerned In auch cases the lest course may be to disregard any feld observation taken at a dastance from a magnetic observatory

The results of the present paper are based on n very large amount of data which it is hoped to present adequately in a Geophyyical Memor to bo publighed by the Meteorological Office

We have pleanure in acknowledging the great assistance given us by Mr Bookng, Messra Balley and Mr Howarth, und by the manager and staff of the Sundwell Park ('ollhery. Without the active assistance of these gentlemen the wark would have beeu impossible

On the Gyration of Light by Multiplet Lnnes.
 ByC. G Darwin, FRS

(Received Junc 28, 1926)

1. In the last few years there has been a great development of the theory of the intensities of spectral hnes, and in its turn this theory has reacted on the general theory of spectra, so that any experimental method which throwa new light on the subject has a great importance It has not apparently been explicitly noticed that a study of the duspersive effect of the rotation of polarized light by a vapour can be made to yield information on the second approximations to the intensities of the \perp Zeernan components Since the difteulties of direct intensity measurement and of obtainng atrong magnetic fields must always be very great, there would arem to be an advantage in having a method of attack which 18 , it is true, difficult, but only with the diffioulty of a very well-known technique, the study of polarized light
The present work is a theoretical investigation of some of the properties that may be expected to be found. In a rocent paper" the present writer worked out some results on the subject using the purely mechanical models of the type discussed by Voigt, and obtanned the result that any atom which exhibits the Panchen back offect ahould show a sumusr offect in a weak magnetio field in regard to the gyration of light, pronded that the frequency of this light is not too olose to the lines of the mullisplet (Of course light in the immeduate neighbourhood will not beaffeoted inthis way, but will exhibit the actual Zeeman efiect inversely.) In other words, the equation of Becquerelt relating the gyratory constant V with the refractive inder n

$$
\mathbf{V}=\frac{e}{2 m \omega^{2}} \lambda \frac{d n}{d \lambda}
$$

will give the normal value of e / m, and all trace of the anomalous Zeeman effect will disappear. If this result is true for a single multiplet, it will reman true in regions where more than one oontribute senably to the refraction, and will only fail for light of frequency very close to that of one of the multuplets of the speotrum.

The purely mechancal model for which this result was found has, of oourse,

$$
\begin{aligned}
& \text { † ' Pbil. Mag.-' vol. 1, p. } 161 \text { (1828). } \\
& \text { † ' O. R.,' vol. 125, p. } 679 \text { (I897). }
\end{aligned}
$$

many weaknesses, but it does have some of the features of the "electron and core" model, for it can be thrown into a form where one electron is solely responaible for emiserion and exhubits the normal Larmor rotation, while the electron is loosely linked with others which are "blind " and have anomalous rotation It therefore seemed very probable that the reault could be proved as a result of the electron and core model, and it was the man object of the present work to see if this were so, by attacking the problem by the use of Kramers'and Hersenberg'м dıнpersion theory * The expected result in verified, and some progress is made in evaluating the second order terms in the intematies.

There cun be no doubt that the proper approach to the problem is through the New Mechamos of Heisenbrrg applied to the rotating electron of Uhlenberg and Goudamit, but little has yet been published about the rotating electron, and the New Mechanics has many more fundamental problems to dispose of first, so that it is perhaps still not out of place to make what proves to be an exceedingly unambiguous application of the Correspondence Principle The present work in carried out only with the model which is used for the ampler types of spectra, indeed the theory of intensities of more complex lines as still two imperfect to carry the result farther

What is practically the same subject as the present work was discussed in a recent paper by Frenkel. \dagger He was engaged in an examination into the " paramagnetic gyration" which Ladenberg \ddagger sugganted should arise from the unequal numbers of atoms orientated in the various directions He appears to the present writer to have made an oversight so that he did not calculate the changes in intensities of the Zreman lines, and in consequence his results are largely nituated

2 The gyration of hght hy a mass of gas is reachly expreseed as an atome effect by methods which are practically those of lorentz An atom is in a magnetic field along z and is exposed to light goung along z and polarized along x. Then it acquires clectric moment of components $\sigma \mathrm{K}_{x}, \imath_{\rho} \mathrm{E}_{x}$ along x and y We shall call σ and ρ, respectively, the refraction and the gyration of the atom. The result is a scattering of waves which causes unequal refraction for right- or left-handed circularly polarized light, according to the equation $\frac{3\left(n^{9}-1\right)}{n^{2}+2}=4 \pi N(\sigma \pm \rho)$, where N is the number of atoms in unt volume If

[^74]$\boldsymbol{n}^{\prime}, \boldsymbol{n}^{\prime \prime}$ are the two aolutions, the plane of polarization rotates an angle $\pi\left(n^{\prime}-n^{\prime \prime}\right) / \lambda$ per unit length. As long as we are atudyng light not very close to a spectral lue ρ is much smaller than a and we write $n^{\prime}-n^{\prime \prime}=2 \rho /\left(\frac{d r}{d n}\right)$ where n is the mean refractive iudex If the atom exhbits the normal Larmor rotation 0_{L}, it is not hard to show that
\[

$$
\begin{equation*}
\rho=0_{L} \frac{d \sigma}{d v}=\frac{0_{L}}{c} \frac{\lambda^{2}}{2 \pi} \frac{d \sigma}{d \lambda}, \tag{2l}
\end{equation*}
$$

\]

and bence in this case we get a rotation per unt leugth

$$
\frac{0_{L}}{c} \lambda \frac{d n}{d \lambda}
$$

which is Becquerel's result
Thus for our purposes all that is necessary is to calculate σ und ρ lor the uodels adopted, and these are determined by the methods of Kramers and Heasenberg We quote thoir result, excluding the emossive terms which are nocessary for the complete correspondenice, but which will not practically roncern us A, is a vertor associated with frequency* $\omega_{\text {a }}$ of which the classical analogue is the coefficient of $e^{\text {du. }}$ in the Fourter expansion of the electric moment Then under rlectrof force which in a vector Efert the ntum acquires an excited moment proportional to

$$
\begin{equation*}
M=\Sigma_{1}\left\{\frac{\bar{A}_{f}\left(E A_{z}\right)}{\omega_{s}-v}+\frac{A_{1}\left(E \bar{A}_{s}\right)}{\omega_{s}+v}\right\} \tag{2.2}
\end{equation*}
$$

Here $\tilde{A}, 19$ the complex quantity conjugate to A, We are only concerned with the \perp Zeeman components and the ω 's fall into two classes r and l, where $\omega_{r} \omega_{l}$ correspond to the emission of light which is polarized respectively in right- and left-handed carcles For the right-handed we have $A_{r}{ }^{2}=-\imath A_{r}{ }^{2}$, and for the left, $A_{y^{\prime}}=2 \mathrm{~A}_{\mathrm{i}}{ }^{\text {x }}$
Then under the stimulus of an clectric force $\mathrm{E}_{\boldsymbol{r}}$ the moment is

$$
\begin{align*}
& \mathbf{M}_{\mathbf{z}}=\sigma \mathrm{E}_{2} e^{\mathbf{l n \prime}!} \\
& \mathbf{M}_{v}=\imath \rho \mathrm{E}_{2} e^{\prime \prime \prime}, \tag{2.3}
\end{align*}
$$

where

$$
\begin{align*}
& \sigma=\Sigma_{r}\left|A_{r}^{x}\right|^{2}\left(\frac{1}{\omega_{r}-\nu}+\frac{1}{\omega_{r}+v}\right)+\Sigma_{l}\left|A_{1}^{x}\right|^{2}\left(\frac{1}{\omega_{1}-v}+\frac{1}{\omega_{1}+\nu}\right), \\
& \rho=\Sigma_{r}\left|A_{A_{r}^{x}}\right|^{2}\left(\frac{1}{\omega_{r}-v}-\frac{1}{\omega_{r}+v}\right)-\Sigma_{l}\left|\Lambda_{1}^{x}\right|^{2}\left(\frac{1}{\omega_{1}-v}-\frac{1}{\omega_{1}+v}\right), \tag{24}
\end{align*}
$$

and our problem as solved when we have evaluated these quantitiea

[^75]We shall refer to $\left|A^{x}\right|^{2}$ as the intensity of the line at ω Strictly speaking. this as ambiguous because the relative intensities of lines of different frequencies will differ according to whether wo conaider absorption or emission, in other words, whether we are discussing the Emstein A or B Fowler* ahows good reason to regard H as the proper one to take, and shows that with the simple Larmor rotation it will be invariant-that is, $\left|A_{r}\right|^{2}=\left|A_{1}\right|^{2}=\left|A_{0}\right|^{2}$, he also conjectures that this should be true for the anomalons Zeeman effect, but we shall see reason to differ from thas view In any case, our $|\Lambda|^{2}$ is the quantity which will be called intenaty in the New Mechanice, and it is therefore unnecessary to go further into the question

3 We shall now assume a result oblaned later by the Correspondence Principle Wheu a line is broken into its Zeeman components, the correspondug members r and l on the opposite aides of the zero are not exactly equal in intensity, but one is slightly mereased and the other is dimmushed to exactly the same extent If 0_{L} is the Larmor rotation and if β_{18} a parameter measuring the separation of the merubers of the multiplet, then the intensities of the r and l members are, respectively, changed in the ratio $1+a 0_{L} / \beta, 1-a 0_{L} / \beta$, wherc a is a numerical constant of order unity depending on the quantum numbers of the switch and also on the ratio of the separations of the two sets of terms concerned in the multiplet

We require to add together a large number of rather complicated expressions, and the handlug of the processis very materially smplhied by using the following notation In the hirst place, the symbol ϕ means ± 1 The introduction of this symbol enables us to take together the r and l components without writing out separately the expressions for them Lot ω br the centre of gravity of the roultaplet, then the zero position of onc of its members is $\omega+b \beta$, where b is of the order unity A Zeeman component has frequency $\omega+b \beta+\phi 00_{\mathrm{L}}$, where c is the factor giving the magnetic anomaly for the component-of the order unity This line has intensity $I\left(I+\phi 0_{\mathrm{L}} / \beta\right)$ The refraction of the parr of lines 18

$$
\begin{equation*}
\Sigma_{\phi} \mathrm{I}\left(1+\phi a 0_{L} / \beta\right)\left[\frac{1}{\omega-v+b \beta+\phi 0_{L}}+\frac{1}{\omega+\nu+b \beta+\phi c 0_{\mathbf{L}}}\right] \tag{3.1}
\end{equation*}
$$

We are only considering values of v far from the multiplet, so that thas may be writteu

$$
\begin{equation*}
\Sigma_{\phi} I\left(1+\phi a 0_{k} / \beta\right)\left[\left(\frac{1}{\omega-v}+\frac{1}{\omega+v}\right)-\left(b \beta+\phi c 0_{k}\right)\left(\frac{1}{(\omega-v)^{2}}+\frac{1}{(\omega+v)^{2}}\right)\right] . \tag{32}
\end{equation*}
$$

To evaluate the gyration we must write $\frac{1}{\omega-\nu}-\frac{1}{\omega+\nu}$ and $\frac{1}{(\omega-v)^{2}}-$ $\frac{1}{(\omega+\nu)^{2}}$, and must subtract the r and l members instead of addang. This subtraction can be done by multiplying each of the terms by ϕ and then addung Both the required resultes can be found together by setting down the expression

$$
\begin{equation*}
I\left(1+\phi a 0_{L} / \beta\right)\left[\mathbf{P}-\mathbf{Q}\left(b \beta+\phi c 0_{L}\right)\right] . \tag{33}
\end{equation*}
$$

Then the term undependent of ϕ gives the value of the refraction,* if P is taken to mean $\frac{1}{\omega-v}+\frac{l}{\omega+v}$ and $Q \frac{l}{(\omega-v)^{2}}+\frac{1}{(\omega+v)^{2}}$, and the gyration is given by takng the coefficient of ϕ, with P meaning $\frac{1}{\omega-v}-\frac{1}{\omega+v}$ and $Q \frac{1}{(\omega-v)^{4}}$ $-\frac{1}{(\omega+v)^{2}}$ In all our work the summainon for ϕ can be left to the very end, so thet no confusion arises on account of this dual meaning of P and Q, but when we require to distingush them we shall write $P_{\sigma}, Q_{a}, P_{\rho}, Q_{p} W_{e}$ observe that

$$
Q_{p}=\frac{\partial P_{g}}{\partial y} .
$$

If we multiply out (3), we obtan

$$
\begin{equation*}
\mathrm{I}\left[\mathrm{P}\left(1+\phi a 0_{L} / \beta\right)-Q\left(b \beta+\phi()_{L}+\phi a b 0_{L}\right)\right], \tag{3.4}
\end{equation*}
$$

and this is to be summed over the multuplet
Experimenta will always consial in a comparison of gyration with refraction. Since ω has been chosen as the centre of gravity of the multiplet, $\Sigma \mathbf{\Sigma} b=\mathbf{0}$ and we shall have $\sigma=P_{\sigma} \Sigma I$ Thas is the natural nay in which it would be expressed, correaponding to a pure Lorentz formula for the refractive index, without a correction term in $\mathrm{Q}_{\boldsymbol{\sigma}}$. The gyration will be

$$
\begin{equation*}
\rho=0_{L} \Sigma I\left[-P_{\rho} a / \beta+Q_{\rho}(c+a b)\right], \tag{3.5}
\end{equation*}
$$

and it is clear why the second order terme in the intenailies must be known, for a comes in twice over in terms which are certandy not neghgible The result we are to prove consists in showing that if taken over the whole multiplet the sum (3.4) will contain no term in $P \phi$, and that the sum of all the terms in $Q \phi$ will add up to an amount exactly correaponding to the Larmor ratation. In other words, the sum of all the term of (94) reduces to

$$
\begin{equation*}
\left(\mathrm{P}-\mathrm{Q} \phi 0_{\mathbf{L}}\right) \Sigma \mathrm{I} . \tag{3.6}
\end{equation*}
$$

[^76]4. As a consequence of temperature certain other cases arise which deserve discussion A multiplet is constructed out of the differences of two sets of levels, the term-multiplets, and in evaluating frequencies and intensitics these play entirely similar roles But here we are not concerned with emisaion or absorption, but only with refraction, and the atoms are all present in only one set of levels-- the other set having a purely potential existence We shall call the atates of the atom which are really present the " actual states," the-others the "potential" Any temperature efficct will only be concerned with these actual states, and to this extent the refractive effect of the multiplet may be quite unsymmetrical in the two sets of levels that concern ita formation

Ladenburg* has called attention to a phenomenon which he calls " paramagnetic gyration," as opposed to the ordinary diamagnctic gyration The magnetic energy of some initial states as greater than that of others, and consequently there are unequal probabilities of the atoms being found in these states Hence, he predicts a type of gyrstion which will depend on the temperature We may usefully review this question from a rather more general standpoint, as several cases arise. In the first place the magnetic energy ΔW_{n} is always amall, no that at any reasonable temperature we can expand the expreasion exp. - $\Delta W_{m} / \kappa T$ as $1-\Delta W_{m} / \kappa T \quad$ But $1 t$ will also be necessary to allow for the fact that the different states of the actual term-multiplet have different energies and therefore different prohabilities of occurrence, and here we must discriminate between the cases of high and low temperature Low temperature will mean that practically only one actual state of the atome wall be present (of course, split into ats magnetic levels), and high that all are present with probability factor $1-\Delta W_{j} / \kappa T$

In the case of low temperature there canaot be nore than three lines active $(\jmath \rightarrow j \pm 1$ and $\jmath \rightarrow j$, starting from one initial \jmath) It will be proper to expand the effect in terms of a P und Q correspondug to the centre of gravity of the lines present, in order that there should be no Q-term in the refraction. The temperature effect will be represented by a factor $1-m g 0_{L} h / 2 \pi \kappa T$ (in Lande's notation) attached to cach line issuing from the state of quantum number m, and the result 18 that (34) rust be multipled by a quantity of the form, $1-\frac{h}{2 \pi \kappa T} d \phi 0_{h}$, and then summed over the three or less lines present The complete formula will be

$$
\begin{gathered}
\Sigma I\left[P-Q \phi 0_{\mathrm{L}}(c+a b)-\mathrm{P} \phi 0_{\mathrm{L}}\left(\frac{h}{2 \pi \kappa T} d-\frac{a}{\beta}\right)\right] . \\
\text { Loc. di. }
\end{gathered}
$$

Of the three torms in the gyration, thatin \mathbf{Q} will predominate at points near the multiplet. Ae v gets farther away, this term will bear to the P-torm a ratio of the order $\beta Q / P$ or $\beta /|\omega-v|$, so that the P-term will become the more important at distances greater thun the separation of the multuplet Of the two P-terms the paramagnetic is much the more important-unless $\kappa \mathrm{T}>\beta h$, and this would contradict our assumption of low temperature. We also obsorve that the paramagnetic term can be calculated without knowing the second ordera in the intensities, but that these must be knowu for both the other torms.

In the case of high temperature we have to suin the effect of the complete multiplet, and $\Delta W / k T$ will contan β us a factor, so that we shall have to allow for the influence of the second order torms on the paramagnetic effect. We shall work out this problem for the clasaical case, and shall hind that the paramagnetir gyratou, like the diamagnetic, is entirely independent of the magnetic anomaly and the multiplet separation The result brings out in an interesting manner the dustinction between the actual and the potential states

We may here remark that the interest in the case of high temperature, including thepurely diamagnetic gyration which corresponds to onfinte tempurature, is mainly theoretical, in that it enables us to obtain information by the Corrospondence Principle as to the values of the secoud orders m the intenaitirs. These are required in order to know the gyration of an artual substance, but excrptin very closo multupletsouly one actual state will be presentat manageable, temperatures In § 11 examples will be given, showing how it is possible to give the exprensions for low temperatures from a knowledge of those at high.

5 In general terms the result that we have to provecan be putin the following form The atom as composed of two loosely linked aystemi A and B, and β is a small parameter measuring the oloseness of the linkage A as acted on by an external force which is without direct effect on \mathbf{B} Then the reaction of A to thus force will only be effected by \mathbf{B} to the order β^{3}-puttingit loosely, one β arises because the effect has to pass in to \mathbf{B}, and the second because it cones back to A before appearing in the outer world This renult is easy to prove quite generally provided that there is no degeneracy present, but in the actual syeteme for which we requre it B causes becular perturbations in A, and the theorem becomes mach more complicated As we want to know not merely the behaviour of the whole multiplet but also of itsseparate members, we shall take a apecific model and work with that, merely noting that the rather elsborate way in which the terms cut out suggests that the theorem would probably be true for a far more general class of model

The model we shall use is that whioh explanas the ordinary classes of multiplet
where the multiplicity is the same for both of the terms out of which the spectrum is constructed.* We shall summarize its properties A single electron, which alone is affected by external forces, has principal quantum nuinber n and angular momentum h_{0} directed in the direction K a core which is blind (unaffected by the radiation) has angular momentum r_{0} in the direction IR , and the resultant angular momentum ia j_{0} in the direction J (which lies in the plane through KR) \boldsymbol{m}_{0} is the component of j_{0} along Z the dircction of the magnetic force These constitute a canomical syatem of co-ordinates provided their conjugates are taken BS
$w_{k}{ }^{n}=$ the angle between JK and the apse of the motion of the electron
$w_{r}{ }^{0}=$ similarly for the core
$w_{j}{ }^{0}=$ the ungle ZJK
$v_{m}{ }^{0}=$ the angle XZJ.
$w_{n}{ }^{0}=$ the " mean anomaly $"$ in the orbital motion
The energy of the systrmis composed of
(1) $\mathrm{H}_{k}\left(n, k_{0}\right)$ the energy of the electron
(ii) $\mathrm{H}_{\mathrm{r}}\left(r_{0}\right)$ the energy of the coce, involving other degrees of frecdom which play no part in the process
(iin) the mutual energy To agree with the ordinary acparation of multiplets this must be proportional to cos KR . We shall take it as $k_{0} \beta$ cos KR , where β itaelf will depend on \boldsymbol{k}_{0} (being in fact, fur many lines, proportional to $1 / h_{0}^{2}$) Also $\cos K K=\frac{J_{0}^{2}-{h_{0}}^{2}-r_{0}{ }^{2}}{2 h_{0} r_{0}}$
(iv) the magnetic energy of the electron. As the electron exhibits the normal Larmor rotation this is $0_{L} k_{0} \cos K Z$.
(v) the magnetic onergy of the core. The core has anomalous rotation of amount which we shall call $\mathbf{O}_{\mathbf{L}}+\boldsymbol{e}$ though as a fact E itself is equal to $\mathbf{O}_{\mathbf{L}}$ This contributes an amount $\left(0_{L}+\varepsilon\right) r_{0} \cos \mathrm{HZ}$

Adding these together we have as energy

$$
\begin{align*}
& \mathrm{H}=\mathrm{H}_{k}\left(n, k_{0}\right)+\mathrm{H}_{r}\left(r_{0}\right)+\beta \frac{j_{0}^{\mathrm{g}}-k_{0}^{2}-r_{0}^{2}}{2 r_{0}} \\
& +m\left(0_{L}+-\varepsilon \frac{j 0^{2}-k_{0}{ }^{2}+\tau_{0}{ }^{2}}{2 \jmath_{0}{ }^{\text {g }}}\right)-c k_{0} \sin K J \sin Z J \cos \omega_{j}{ }^{0} \tag{5.1}
\end{align*}
$$

The actual energy is given by omiting the last term, since it fluctuales. But the preance of this term means that the co-ordinates are not true angle variables, suitable for the dispersion theory, and wo must mako a small

[^77]transformation to remove it
We shall submit the system to the canonical transformation generated by
\[

$$
\begin{equation*}
S=k w_{k}^{0}+r w_{r}^{0}+j w_{j}^{0}+m w_{m}^{0}+\frac{c}{\beta} \frac{k r}{J} \sin \bar{K} \bar{J} \operatorname{win} \overline{Z J} \sin w_{j}^{0} \tag{52}
\end{equation*}
$$

\]

 Here an $\overline{\mathbf{Z J}}$, sin $\overline{\mathrm{KJ}}$, are the same functions of k, r, j, m as an $Z J$, sin KJ of $k_{0}, \tau_{0}, J_{0}, m_{0}$ A great dent of our work is concerned with these angles $\overline{\mathrm{ZJ}}$ and $\overline{\mathbf{K J}}$, which we ahall write ag \mathbf{Z} and K Thus

$$
\begin{align*}
& \cos \mathrm{Z}=m / \jmath \tag{b3}\\
& \cos \mathrm{K}=\left(j^{2}+k^{2}-r^{2}\right) / 2 \jmath \lambda \tag{54}
\end{align*}
$$

The tranaformation hus the effect of not altering h, m, r, but

$$
\begin{equation*}
\jmath_{0}=\jmath+\frac{\varepsilon}{\beta} \frac{k r}{\jmath} \sin K \sin Z \cos w_{2} . \tag{5b}
\end{equation*}
$$

The result 18 that to the order ε, the energy 19

$$
\begin{equation*}
\mathrm{H}=\mathrm{II}_{\iota}+\mathrm{H}_{r}+\beta \frac{r^{2}-h^{2}-r^{2}}{2 r} 1-m\left(\mathrm{O}_{\mathrm{L}}+\mathrm{c} \frac{\rho^{2}-k^{2}+r^{2}}{2 \jmath^{2}}\right) \tag{56}
\end{equation*}
$$

6 Let us suppose that a parr of axes $\bar{\xi}, \eta$ are drawn through the apge and at right angles in the plane of the orbit Then with regard to these ames the electric moment is
a_{T}, b_{1} are functions of n, h_{G} only and $a_{-T}=a_{1}, b_{-T}=-b_{T}$.
If we tranaform succeselvely to (1) a set of axes with pole at K and wath one of the othere in the plane of KJ (2) axes with pole at J and one in the plane of JK (3) to x, y, z, we get for the moment along x an expression which may be written

$$
\begin{align*}
& \text { - a almilar expresion involving }\left(a_{T}-b_{\mathrm{T}}\right) e^{- \text {iever }} \text {. } \tag{62}
\end{align*}
$$

As the second expression involves a defferent change of k it belongs to a different multhplet, and so here falls out of consideration. The coefficients that have been written down are those from which the intensities of the Zeeman components are ordinarily determined, but to obtain the second order ternas they must be aubmitted to the transformation (5.2).

In what follows the work is much shortened by an extension of the notation of $\{3$. θ and ϕ both represent ± 1 Then

$$
\begin{equation*}
\left.+\sum_{6} 2 \sin K J \sin Z J c^{14 v_{n}{ }^{n}}\right\} . \tag{63}
\end{equation*}
$$

M_{ν} is derived from M_{x} hy uriting $w_{m}{ }^{0}-\pi / 2$ for $w_{m}{ }^{0}$, which can be convenently done by multuplying ench term by -ı ϕ before summing.
It is next necessary to apply the transformation (5.2), which modifies not only j_{0} and through it KJ and ZJ , but also $w_{\mathbf{k}}{ }^{0}, w_{j}{ }^{0}, w_{m}{ }^{0}$ We must also remember that β_{18} a function of λ_{0}, so that the modified terms will involve $d \beta / d k$ whoh we shall write as β^{\prime} The presence of the term in all $w_{9}{ }^{0}$ in the generating function means that, so to speak, intensity is transferred from the components of the $\jmath \rightarrow \jmath$ lines to the $\jmath \rightarrow \jmath \pm 1$ and vice versu, while there appear now hnea $\jmath \rightarrow j \pm 2$ We need not give the work nor even set down ita results, since it is the squarcs of the coefficients in M_{r} that are required These are given in the next section
7 The intenaitios (Einstein H^{\prime}) are obtained by applying (5 2) to (6 3) and squaring the coofficients We writs $\left|a_{\mathrm{T}}+b_{\mathrm{T}}\right|^{2} / 16=\mathrm{Ma}$ function of n_{1}, k only, and for convenience we give tho frequency of each line also

$$
\begin{align*}
& I_{20, \phi}=\frac{1}{10} M \sin ^{4} K \sin ^{2} Z(1+\theta \cos K)^{2}(\phi+\theta \cos Z)^{2} \frac{e^{2}}{\beta^{2} k^{2} r^{2}} j^{4}\left(1+\theta \frac{\beta^{\prime}}{\beta}\right)^{1} \\
& \omega_{x_{1} \phi}=\omega+\beta^{\prime} \frac{j^{2}-k^{2}-r^{2}}{2 r}-\beta \frac{k}{r}+2 \theta\left(\beta \frac{\partial}{r}+m \varepsilon \frac{k^{2}-r^{2}}{j^{3}}\right) \\
& +\phi\left(0_{L}+c \frac{z^{2}-k^{2}+r^{2}}{2 j^{2}}\right) \\
& \mathrm{I}_{0,4}=t \mathrm{M}(1+\theta \cos \mathrm{K})^{\boldsymbol{q}}(\phi+\theta \cos \mathrm{Z})^{)^{2}}\left[1+2 \frac{\mathrm{c}}{\beta} \frac{\tau}{j^{2}} \theta\left\{\frac{\beta^{\prime}}{\beta} k g(1-\theta \cos \mathrm{K})\right.\right. \\
& (\phi-\theta \cos \mathrm{Z})-(\phi-\theta \cos \mathrm{Z})(\jmath-k \cos \mathrm{~K})+k \cos \mathrm{Z}(1-\theta \cos \mathrm{K})\}] \\
& \omega_{0, \phi}=\omega+\beta^{\prime} \frac{\gamma^{2}-k^{2}-\boldsymbol{r}^{2}}{2 r}+\beta \frac{j \theta-k}{r}+\phi 0_{L} \\
& +\frac{\varepsilon}{f}[(\phi-\theta \cos \mathrm{Z})(g-k \cos \mathrm{~K})-k \cos \mathrm{Z}(1-\theta \cos \mathrm{K})] \\
& I_{0, \phi}=M_{\sin }{ }^{2} \sin ^{2} Z\left[1+\frac{c}{\beta} \frac{\tau}{j^{2}}\left\{-\frac{\beta^{\prime}}{\beta} \operatorname{kg}(\phi \cos K+\cos Z)\right.\right. \\
& +(2 j-5 k \cos \mathrm{~K}) \cos \mathrm{Z}-k \phi\}] \\
& \omega_{0, \phi}=\omega+\beta^{\prime} \frac{j^{2}-k^{2}-r^{2}}{2 r}-\beta \frac{k}{r}+\phi 0_{2}+\frac{\mathrm{c}}{j}[\phi(\jmath-k \cos \mathrm{~K})-k \cos \mathrm{Z}] \tag{7.1}
\end{align*}
$$

An exaotly ammlar process gives the z component of electric moment and thus the intenaities of the \|lines We omit their frequencies, suace these are obtained by putting $\phi=0$ in the corresponding expressious for the \perp lines

$$
\begin{align*}
& I_{2 g, 0}=1 M \sin ^{2} K \sin ^{4} Z(1 \mid \theta \cos K)^{2} \frac{\frac{\mathrm{~g}}{}_{\underline{2}}^{\beta^{2}}}{\frac{k}{}^{2} r^{2}} j^{4}\left(1+\theta \frac{\beta^{\prime}}{\beta} j\right)^{2} \\
& I_{\theta, 0}=M(1-0 \cos K)^{2} \sin ^{2} Z \left\lvert\, 1+2 \frac{\varepsilon}{\beta} \frac{r}{J^{2}} \cos Z\left\{\begin{array}{l}
-\frac{\beta^{\prime}}{\beta} k g(1-\theta \cos K)
\end{array}\right.\right. \\
& +(\jmath-k \cos K) \mid-k \theta(1-\theta \cos K)\} \mid \\
& \mathrm{I}_{0,0}=4 \mathrm{M} \sin ^{2} \mathrm{~K} \left\lvert\, \cos ^{2} Z+{ }_{\beta}^{\varepsilon} j^{2} \cos Z\left(\frac{\beta^{\prime}}{\beta} k j \sin ^{2} Z\right.\right. \\
& \left.\left.-2 \sin ^{2} \mathrm{Z}(\jmath-h \cos K)+h \cos \mathrm{~K}\left(1-3 \cos ^{\mathrm{B}} \mathrm{Z}\right)\right\}\right] \tag{7.2}
\end{align*}
$$

We may now mute a purtial unterpretation into the terms of the quantum theory A simultaneous change of ϕ into - ϕ and cos Z into -- cos Z ineane a comparisun of the, and l lines at "qual distaners from the zero position of a nember of the multiplet This chunge leaves the main terms in the intensities naltered, but ehanges the aign of the serond order terms Thus what one gains in mitensity the other loses The same is true for the \| components. It follows that the whole hae remann unpolurized to the second approximation
The ordmary summation rule fuls For this requires that $\mathrm{l}_{\boldsymbol{f}, 1}+\underline{\mathrm{I}_{\mathrm{f}}}$ a + $\mathrm{I}_{\boldsymbol{d},-1}$ should be independent of m, bat it is actually for $\boldsymbol{J} \rightarrow \boldsymbol{J} \boldsymbol{- \theta}$

$$
\mathrm{M}(1+\theta \cos \mathrm{K})^{2}\left\{1+2 \frac{\mathrm{c}}{\beta} \frac{r}{\gamma_{1}^{2}} 0 k(1-0 \cos \mathrm{~K}) \cos Z\right\},
$$

and for $y \rightarrow y$

$$
2 M \sin ^{2} K\left\{1-\nu \frac{\varepsilon}{\beta-\frac{r}{j}} k \cos K \cos Z\right\},
$$

both of whit h depend on on through cos Z On the other hand, if ne add these sums together for the three switches of f we have sumply 4M, но that we have another summation rule

If we add tryether the unternaties of all wwith hes from guren 3 and m, the result will be independent of J and in Thas rule is pointed out hy Krumg* and by Fowler. \dagger We shall examme some of its consequences later

The new haes $j \rightarrow j \neq 2$ have intenaty of the order $(\varepsilon / \beta)^{2}$, and so will play no partin our work We may, however, note that each of them is unpolanzed and that its intensity contains as chief factors the intensities of the lines

$$
\begin{aligned}
& \text { * ' Z. f. Ph.,' vol. 31, p } 885 \text { (1025). } \\
& \text { + Loc cil }
\end{aligned}
$$

generating it, that is, the line $J \rightarrow J \mid \perp, m \rightarrow m+1$ will have as factora the product of the intensities $J \rightarrow \jmath+1, m \rightarrow m+1$ and $\jmath \rightarrow \jmath, m \rightarrow m+1$, But, of course, when the quantum numbers are put in, it mav be necessary to alter the factors by a unt or so
We must also observe the ofcurrence of J in the denominntor Wr do not expert this to lead to any inhnity in the case j - 0 because the sume factor dors not do so for the frequencies, but we should conjecture that the difference of intensities of the r and l components would be most marked with the lines of small quantum number,
8. In arcordance with the principles described in $\$ 2$ 2, 3 , we now apply the Kramers-Heisenberg formula for refraction and gyration For the hine $\boldsymbol{j} \rightarrow \boldsymbol{\jmath} \boldsymbol{- 0}$ the term $1_{0 \phi}$ contributes

$$
\begin{equation*}
\left(T \frac{\partial}{\partial n}+\frac{\partial}{\partial h}+0 \frac{\partial}{r_{j}}+\phi \frac{\partial}{\partial{ }_{i n \prime}}\right) \mathbf{l}_{\theta \phi}\left(\frac{1}{\omega_{\omega_{n \phi}}} \pm \frac{1}{\omega_{\theta \phi \psi}+v}\right) \tag{8}
\end{equation*}
$$

We have to sum the influene es of all the lines of the multiplet, but shall do it in two stages so as to determine in passing the gyration of at single lane $W e$ therefore write

$$
\begin{equation*}
\omega_{0}^{\prime}-\omega 1-\beta^{\prime} \frac{J^{2}-h^{2}-r^{2}}{2 r}+\beta^{J^{\theta}}{ }_{r}^{h}, \tag{8.2}
\end{equation*}
$$

and take

$$
\begin{equation*}
P_{\theta}^{J}=\frac{1}{\omega_{\theta}^{J}-v} \pm \frac{1}{\omega_{\theta}^{J}+v}, \quad Q_{\theta}^{\prime}=\frac{1}{\left(\omega_{\theta}^{J}-v\right)^{2}} \pm \frac{1}{\left(\omega_{\theta}^{J}+v\right)^{2}}, \tag{83}
\end{equation*}
$$

where the ambiguous ulgn is positive for refraction and negative for gyration Then

$$
\begin{align*}
\frac{1}{\omega_{\theta \phi}--v} \pm \frac{1}{\omega_{\theta \phi}+v}=P_{\theta}^{j}-Q_{\theta}{ }^{j}\left(\phi 0_{L}+\frac{\varepsilon}{\jmath}\right. & {[(\phi-\theta \cos Z)(\jmath-h \cos K)} \\
& -h \cos Z(1-0 \cos K)]
\end{align*}
$$

The contribution of all the Zeeman componente will be given by summing over m between $\pm J$-in the clasaical problem, thas, of course, meana an integration *

[^78]We thus require

$$
\begin{align*}
& \int_{-j}^{j} d m\left(T \frac{\partial}{\partial n}+\frac{\partial}{\partial k}+\theta \frac{\partial}{\partial j}+\phi \frac{\partial}{\partial m}\right) d M(1+\theta \cos K)^{2}(\phi+\theta \cos Z)^{1} \\
& \times\left[1+2 \frac{\varepsilon}{\beta} \frac{r}{j^{2}} \theta\left\{\begin{array}{l}
\frac{\beta^{\prime}}{\beta} k j(1-\theta \cos K)(\phi-\theta \cos Z) \\
\\
\\
\quad-(\phi-\theta \cos Z)(j-k \cos K)+k \cos Z(1-\theta \cos K)\}] \\
\times\left[P_{g}^{\prime}-Q_{g}^{\prime}\left\{\phi 0_{L}\right.\right.
\end{array}\right] \frac{\varepsilon}{j}[(\phi-\theta \cos Z)(j-k \cos K)\right. \\
&-k \cos Z(1-\theta \cos K)]\}]
\end{align*}
$$

The evaluation is very much simphied by the fact that

$$
\begin{align*}
\int_{-j}^{\jmath} d m\left(\mathrm{~T} \frac{\partial}{\partial n}\right. & \left.+\frac{\partial}{\partial k}+\theta \frac{\partial}{\partial \jmath}+\phi \frac{\partial}{\partial m}\right)(\phi+\theta \cos \mathrm{Z}) \mathrm{F}(n, k, \jmath, m) \\
& =\left(\mathrm{T} \frac{\partial}{\partial n}+\frac{\partial}{\partial k}+\theta \frac{\partial}{\partial \jmath}\right) \int_{-\jmath}^{\jmath} d m(\phi+\theta \cos \mathrm{Z}) \mathrm{F}(n, k, \jmath, m), \tag{86}
\end{align*}
$$

since the difierentiation of the limits of integration by ρ exactly gives the term in $\phi \frac{\partial}{\partial m}$ We thus obtained as the sum

$$
\begin{align*}
& \left(\mathrm{T} \frac{\partial}{\partial \pi}+\frac{\partial}{\partial k}+\theta \frac{\partial}{\partial \jmath}\right) t M(1+\theta \cos \mathrm{K})^{2} \text { 捐 }\left\{2\left(\mathrm{P}_{\boldsymbol{\prime}}^{\prime}-\mathrm{Q}_{0}^{\prime} \phi 0_{\mathrm{L}}\right)\right. \\
& \left.\quad+\mathrm{P}_{\mathbf{\prime}}^{\prime} \phi 2 \frac{\varepsilon}{\beta} \frac{r}{j^{2}} 0\left[\frac{\beta^{\prime}}{\beta} k J(1-\theta \cos \mathrm{K})+k \theta-\jmath\right]+Q_{0}^{\prime} \phi \frac{\varepsilon}{\jmath}(k \theta-\jmath)\right\} \tag{B7}
\end{align*}
$$

In the sumilar calculation for $\boldsymbol{g} \rightarrow \boldsymbol{\jmath}$ we use $\mathrm{P}_{\mathrm{o}}{ }^{\boldsymbol{j}}, \mathrm{Q}_{0}{ }^{j}$ formed with

$$
\omega_{0}^{j}=\omega+\beta^{\prime} \frac{j^{\beta}-k^{\beta}-r^{9}}{2 r}-\beta \frac{k}{r}
$$

The same simplufication oomes in, for on account of the factor sin Z the term involving $\phi \frac{\partial}{\partial m}$ falls right out and we get

$$
\begin{align*}
\left(T \frac{\partial}{\partial n}+\right. & \left.\frac{\partial}{\partial \bar{k}}\right) M \sin ^{2} \mathrm{~K} \\
& +\mathrm{P}_{0}{ }^{j} \phi \frac{c}{\beta} \frac{r}{j^{2}}\left[-\frac{\beta_{0}^{\prime}}{\beta} \mathrm{k}_{j}-\mathrm{Q}_{0}{ }^{j} \phi O_{L}\right) \tag{8.8}\\
& \left.\cos -k]-Q_{0}{ }^{j} \phi \frac{c}{j}(j-k \cos \mathrm{~K})\right\}
\end{align*}
$$

Since the differentisl operstor lies in front of the whole expression, the interpretation goes exactly as in Kramora' and Heisenberg's paper. We can asy that, for both $j \rightarrow j \pm 1$ and $j \rightarrow j$, there will be a P-term in the gyration, so that

It will fall off according to $\frac{2 v}{\omega^{2}-v^{2}}$, not $\frac{4 \omega v}{\left(\omega^{2}-v^{2}\right)^{2}}$ for frequencies far from tho line

9 We next sum the effecte of all the lines v must now be right outaide the multiplet We can agein smphify the procedure by putting the differental operator oulside For

$$
\begin{align*}
&\left.\int_{|k-r|}^{t+r} d\right)\left(T \frac{\partial}{\partial n}+\hat{\partial}_{k}^{\lambda}+\theta \frac{\lambda}{\partial j}\right)(1+0 \cos \mathrm{~K}) \mathrm{F}(n, k, j) \\
&-\left(\mathrm{T} \frac{\partial}{\lambda_{n}}+\frac{\hat{\partial}}{\partial \bar{h}}\right) \int_{|\alpha-r|}^{\text {t+r }} d_{j}(1+\theta \cos \mathrm{K}) \mathrm{F}(n, h, j) \tag{9}
\end{align*}
$$

Thes result, is true whether h in preater than r or less, for in rither cuse the differediation of the limits of integration liy k exactly yielils the term in $\theta \frac{\partial}{\partial J}$ Similarly

$$
\begin{align*}
& \int_{\mid k=1}^{k+r} d j\left(\mathrm{~T} \frac{\partial}{\partial n}-1 \frac{\partial}{\partial k}\right) \text { ann K F }(n, k, j) \\
& =\left(T \frac{\partial}{\lambda_{n}}+\frac{\partial}{\partial h}\right) \int_{|L-r|}^{k+r} d j \sin \mathrm{KF}(n, k, j) \tag{92}
\end{align*}
$$

So we ald together the teime under the integral sign Thisis best done in two stagea, firt taking together the three teime assuing from one j We have
 lines together givi

$$
\begin{align*}
& \frac{4}{3} \jmath \mathrm{M}\left\{2\left(P_{0}^{\prime} \mathrm{Q}_{0}^{\prime} \phi 0_{\mathrm{L}}\right)-2 \mathrm{Q}_{0}^{\prime} \beta L_{r} \cos \mathrm{~K}-P_{0}^{\prime} \phi \frac{\varepsilon}{\beta} \frac{r}{\jmath^{2}} 2 \cos \mathrm{~K}(\jmath-k \cos \mathrm{~K})\right. \\
& \left.\quad+\mathrm{Q}_{0}{ }^{\prime} \phi \frac{\varepsilon}{2 \jmath}\left[-2 \frac{\beta^{\prime}}{\beta} h_{\jmath} \sin ^{2} \mathrm{~K}-\jmath+3 \cos ^{2} \mathrm{~K}-2 h \cos ^{\mathrm{s}} \mathrm{~K}\right]\right\} \tag{93}
\end{align*}
$$

In seting this downit has, of course, been nec essary to include terme which reault from multiplying $Q \beta$ by ε / β

Next we change the point of refcrence from ω_{0}^{j} to ω Thus involves writing

$$
\mathbf{P}_{0}^{J}=\mathbf{P}--\mathbf{Q}\left[\begin{array}{c}
\beta^{\prime} J^{2}-h^{2}-r^{2}-\beta \frac{k}{2 r} \\
2 r
\end{array}\right], \quad Q_{0}^{3}=\mathbf{Q}
$$

where

$$
\begin{equation*}
\mathbf{P}=\frac{1}{\omega-v} \pm \frac{1}{\omega+v}, \quad \mathbf{Q}=\frac{1}{(\omega-v)^{2}} \pm \frac{1}{(\omega+v)^{2}} \tag{94}
\end{equation*}
$$

VOL. OXII.-A.

The result is

$$
\begin{align*}
\frac{4}{3} \jmath \mathrm{M} & \left\{2\left(\mathrm{P}-\mathrm{Q} \phi 0_{\mathrm{L}}\right)-2 \mathrm{Q} \beta \cdot \frac{j^{2}-k^{2}-\tau^{2}}{2 r}\right. \\
& -2 \mathrm{Q} \beta \frac{\partial \cos \mathrm{~K}--k}{r}-\mathrm{P} \phi \frac{\varepsilon}{\beta} \frac{r}{j^{2}} 2 \cos \mathrm{~K}(\jmath-k \cos \mathrm{~K}) \\
& +Q \phi \frac{\varepsilon}{2 \jmath}\left[2 \frac{\beta^{\prime}}{\beta}\left\{\frac{\left(\jmath^{2}-h^{2}-r^{2}\right) \cos \mathrm{K}(\jmath-\lambda \cos \mathrm{K})}{\jmath}-\jmath k \sin ^{2} \mathrm{~K}\right\}\right. \\
& \left.\left.-\frac{4 h \cos \mathrm{~K}(\jmath-k \cos \mathrm{~K})}{\jmath}-\jmath+3 \jmath \cos ^{2} \mathrm{~K}-2 h \cos ^{\mathrm{s}} \mathrm{~K}\right]\right\} . \tag{9б}
\end{align*}
$$

This is to be integrated over all values of \jmath from $|k-r|$ to $k+r$, and we shall show that all the terma except the first will vanish.

First

$$
\int_{|k-r|}^{k+r} j d j\left(j^{2}-k^{2}-r^{2}\right)=\left.\downarrow\left(j^{2}-k^{2}-r^{2}\right)^{2}\right|_{|k-r|} ^{t+r}=0
$$

Also

$$
\jmath \cos \mathrm{K}-h=\left(\jmath^{2}-k^{2}-r^{2}\right) / 2 k
$$

The vanahing of these two terms prover that we have taken the centre of gravity of the multuplet rughtly The remander of the terms are best reduced without expressing them directly in terms of J by using the relation $\jmath-k \cos K=\jmath k \frac{\partial}{\partial 1} \cos K \quad$ At the upper limit $\cos K-1$, and also at the lower if $k>r$, but if $k<r, \cos \mathrm{~K}=-1$ at the lower limit. In either case $\jmath \cos \mathrm{K}=h-r$ at the lower lumit We thus have

$$
\begin{gathered}
\int_{|k-r|}^{k+r} \jmath d j \frac{2 \cos \mathbf{K}}{j^{2}}(\jmath-h \cos \mathbf{K})=\left.k \cos ^{2} \mathbf{K}\right|_{|L-r|} ^{k+r}=0 \\
\int_{|k-r|}^{k+r} d \jmath\left\{\frac{\left(j^{2}-k^{2}-r^{2}\right) \cos \mathbf{K}(\jmath-k \cos \mathbf{K})}{\jmath}-j k \sin ^{2} \mathbf{K}\right\} \\
\quad=\frac{1}{2} k\left[\left(j^{2}-k^{2}-r^{2}\right) \cos ^{2} K-j^{2}\right]_{|k-r|}^{k+r}=0 \\
\int_{|k-r|}^{k+r} d j\left\{-j+3 j \cos ^{2} \mathbf{K}-2 k \cos ^{0} \mathbf{K}\right\}=\left[-\frac{1}{2} j^{2}+\jmath h \cos ^{5} \mathbf{K}\right]_{|k-r|}^{k+r}=0 .
\end{gathered}
$$

Thus, finally, we get es the whole refractive effoct

$$
\begin{equation*}
\left(\mathrm{T} \frac{\partial}{\partial n}+\frac{\partial}{\partial k}\right) \frac{16}{3} k \mathrm{rM}\left(\mathrm{P}-\mathrm{Q} \phi 0_{\mathrm{L}}\right), \tag{9.6}
\end{equation*}
$$

which means that

$$
\begin{aligned}
\sigma & =\left(\mathbf{T}_{\partial n}^{\partial}+\frac{\partial}{\partial h}\right) \frac{32}{3} h r \mathbf{M}\left[\frac{1}{\omega-v}+\frac{1}{\omega+v}\right] \\
\cdot \quad \rho & =0_{L}\left(\mathbf{T} \frac{\partial}{\partial n}+\frac{\partial}{\partial k}\right)_{3}^{32} h r M\left[\frac{1}{(\omega-v)^{2}}-\frac{1}{(\omega+v)^{4}}\right]=0_{L} \frac{\lambda \sigma}{\partial v}
\end{aligned}
$$

The maguetic anomaly und the separation of the multiplet have antirely desappeared and we are left with the exact Lorentz expression for the gyration It 18 cvident that this can be Laken over by the Correspondence Priniple, so as to give the same result in the quantum theory Thus for a frequency fur from the multiplet ue have

$$
\rho=O_{L} \frac{\partial_{\sigma}}{\partial v},
$$

which is the chief theorem we set out to prove
10. We now work out the clasical value for the paramagnetic gyration, supposing that the temperature is so high that the whold of the "actual' turnimultiplet is present This meais that before summation the expression for the refractive effect is to be multiphed by

$$
\begin{equation*}
-\frac{1}{\kappa T}\left[\beta \frac{\partial^{2}-h^{2}-r^{2}}{2 r}+m\left(0_{L}+\varepsilon \frac{j^{2}-h^{2}+r^{2}}{2 \jmath^{2}}\right)\right], \tag{101}
\end{equation*}
$$

which represpnts the secund term in exp $-\frac{1}{\kappa T}\left(\Delta W_{j}+\Delta W_{m}\right)$
As pointed out in § 4, there are two effects acting inseparnbly, the first corre sponding to the energy of the zero position of the level, the second to the magnetio energy This second effect by itself can be calculated without knowing the second order terms in the intensities, but the first rannot, because the β will multiply terms in ε / β and make contributions that cannut be disragarded Wo thus musl work out

$$
\begin{array}{r}
-\frac{1}{\kappa T} \int_{|k-r|}^{k+r} d j \int_{-j}^{j} d n\left[\beta \frac{j^{2}-k^{2}-r^{2}}{2 r}+m\left(0_{L}+\varepsilon \frac{j^{2}-k^{2}+-r^{2}}{2 J^{2}}\right)\right] \\
\sum_{\theta= \pm 1,0}\left(\mathrm{~T} \frac{\partial}{\partial n}+\frac{\partial}{k}+\theta \frac{\partial}{\Gamma_{j}}+\phi \frac{\partial}{\partial_{n}}\right) \mathrm{I}_{\theta_{\phi} \mathrm{L}} \mathrm{P} \tag{10c}
\end{array}
$$

It is casy to see that to the requred order there will be no Q-term The work follows much the same course as before and the final result 18 (urluding the ordinary gyration for comparison) :

$$
\begin{equation*}
\left(\mathrm{T} \frac{\partial}{\partial n}+\frac{\partial}{\partial k}\right) \frac{16}{3} k r \mathrm{M}\left(\mathrm{P}-\mathrm{Q} \phi 0_{\mathrm{L}}\right)-\frac{\phi 0_{h}}{\pi \mathrm{~T}} k^{\mathrm{s}}\left(\mathrm{~T} \frac{\partial}{\partial n}+\frac{\partial}{\partial k}\right) \frac{8}{3} r \mathrm{MP} \tag{10.8}
\end{equation*}
$$

We observe that the magnetic anomaly and the multiplet apparation have agan completely disappeared from the expression
The interpretation of this formula in the quautum theory 18 complicated by the presence of h^{2} in front of the differential operator Since this operator in interpreted as giving rise to un expression symmetrical in the two states of the atom, it is rather natural to attribute the presence of the outside term to the asymmetry discussed in § 4 Hy the discussion of a few examples we shall make a conjecture as to its exact form

11 We shall now apply the results obtained to a few special canes The summation rule and our gyrntion rule are quite insufficient to fix the accond order terms in general (the polarization rule gives no help at all), and this gives some interest to the particular cuspes where they do auffice In the $s p$ and $p s$ doublets the sumimation rule detirmines the mutual ratios of all tho second order terme, but in, of course, powerless to fix their relation to the first order. The gyraion rule, however, provides us with exactly the necessary extra information requered
op Doublet - The following acheme gives the rystem of the lines The first column shows the two sets of values of the quantum numbers j, m, normalued as in Sommerfeld's Atombau In the serond column ω is the centre of gravity of the doublet and β the separation In the third column the quantities A E are known by the summation rule and the polarization rulv They are $\mathrm{A}=3, \mathrm{~B}=1, \mathrm{C}=2, \mathrm{D}=\mathrm{D}, \mathrm{E}=1$-the $\|$ components here used are half the values frequently set down

$\boldsymbol{J}, \mathrm{m} \quad$ J, m	Frequency	Intenaty	Polatization	
	$\begin{aligned} \omega+1 \beta & +10_{L} \\ & -10_{L} \\ & -100_{L} \\ & +80_{L} \\ & -0_{L} \end{aligned}$	$\begin{aligned} & A\left(1+a 0_{L} / \beta\right) \\ & \mathrm{D}\left(1-d 0_{L} / \beta\right) \\ & \mathrm{B}\left(1-b 0_{\mathrm{L}} / \beta\right) \\ & \mathrm{B}\left(1+b 0_{h} / \beta\right) \\ & \mathrm{D}\left(1+d 0_{\mathrm{L}} / \beta\right) \\ & \mathrm{A}\left(1-a 0_{\mathrm{L}} / \beta\right) \end{aligned}$		
	$\begin{aligned} \omega-\frac{3}{3} \beta & -30_{L} \\ & -\frac{10}{3} 0_{L} \\ & +30_{L} \\ & +30_{L} \end{aligned}$	$\begin{aligned} & E\left(1-e 0_{L} / \beta\right) \\ & C\left(1-c O_{L} / \beta\right) \\ & C\left(1+c 0_{L} / \beta\right) \\ & E\left(1+e 0_{L} / \beta\right) \end{aligned}$	I, L, U \\|	

The summation rule for the upper levels gives

$$
\begin{aligned}
& \mathrm{A}\left(1+a 0_{\mathrm{L}} / \beta\right)=\mathrm{D}\left(1-d 0_{\mathrm{L}} / \beta\right)+\mathrm{B}\left(1+b 0_{\mathrm{L}} / \beta\right)=\mathrm{B}\left(1-b 0_{\mathrm{L}} / \beta\right)+\mathrm{D}\left(1+d 0_{\mathrm{L}} / \beta\right) \\
& \left.=\mathrm{A}\left(1-a 0_{\mathrm{L}} / \beta\right)=\mathrm{E}\left(1-e 0_{\mathrm{L}} / \beta\right)+\mathrm{C}\left(1+c 0_{\mathrm{L}} / \beta\right)=\mathrm{C}(1-c)_{\mathrm{L}} / \beta\right)+\mathrm{E}\left(1+e 0_{\mathrm{L}} / \beta\right),
\end{aligned}
$$

and for the lower levels

$$
\begin{aligned}
& \left.\mathrm{A}\left(1+a 0_{\mathrm{L}} / \beta\right)+\mathrm{D}\left(1-d 0_{L} / \beta\right)+\mathrm{B}\left(1--b 0_{\mathrm{L}} / \beta\right)+\mathrm{E}(1-\mathrm{e})_{\mathrm{L}} / \beta\right)+\mathrm{C}\left(1-c 0_{\mathrm{L}} / \beta\right) \\
& =B\left(1+b\left(l_{L} / \beta\right)+D\left(1+d\left(_{L} / \beta\right)+A\left(1-a 0_{L} / \beta\right)+C(1+c)_{L} / \beta\right)+E\left(1+e 0_{L}\right) / \beta\right) \text {, }
\end{aligned}
$$

and taking account of the values of A, these give

$$
a=0, \quad b=2 d, \quad \rho-2 r, \quad b+2 c=0
$$

Next we set down the refrachere effect This wall be

$$
\begin{align*}
& \mathbf{A}\left(1+\phi a 0_{\mathbf{L}} / \beta\right)\left[\mathrm{P}-\mathbf{Q}\left(\mathrm{f} \beta+\phi 0_{\mathrm{L}}\right)\right] \\
& +B\left(1+\phi b 0_{L} / \beta\right)\left[P-Q\left(\nmid \beta+\phi_{1}^{R} 0_{L}\right)\right] \\
& +\mathrm{C}\left(1+\phi\left(0_{\mathrm{L}} / \beta\right)\left[\mathrm{P}-\mathrm{Q}\left(-\boldsymbol{Y} \beta+\phi\left\{0_{\mathrm{L}}\right)\right]\right.\right. \tag{111}\\
& =\mathrm{P}\left[6+(3 a+b+2 c) \phi 0_{L} / \beta\right]-Q \phi 0_{L}\left[1_{i}{ }^{2}+\frac{y}{}\left(3 a+b-{ }^{2} c\right)\right]
\end{align*}
$$

As the gyration is to be normal this must redure to $6\left[P-Q \phi O_{L}\right]$ The summation rule mukes the \mathbf{P}-term correct For the \mathbf{Q}-term we require that

$$
3 a+b-4 c=-4
$$

Thus fixes all the coefficients and we have

$$
a=0, b=-\frac{1}{2}, \quad c=\frac{1}{4}, \quad d=-\frac{1}{\pi}, \quad e=\frac{1}{3}
$$

We may remark that both for the \perp and the $\|$ enmponents these resulta imply a decrease in the intensities of the outermost members of the multuplet aud an ancrease in the inner ones These changes in intensity will contribute toward the gradual establishing of the Paschen Back effiet, quite apurt from the modifications of wave length

The valupa $a \quad p$ can also be used to determine the gy ration of a $p s$ line whan the actual state is, say, p_{2} with p_{1} absent lathis cabe we refer P, Q to the one line at $\omega+\ddagger \beta \quad$ Then the refractive effect is

$$
\begin{aligned}
\mathrm{A}\left(1+\phi a 0_{\mathbf{L}} / \beta\right)\left[\mathrm{P}-\mathrm{Q} \phi 0_{\mathbf{L}}\right]+\mathrm{B}\left(1+\phi 10_{\mathbf{L}} / \beta\right) & {\left[\mathrm{P}-\mathrm{Q} \phi 10_{\mathbf{L}}\right] } \\
& =4 \mathrm{P}\left(1-\phi 10_{\mathrm{L}} / \beta\right)-\mathrm{Q} \phi_{3}^{\prime} 0_{\mathbf{L}},
\end{aligned}
$$

so that the rofraction being $\frac{2(\omega)}{\omega^{2}-v^{2}}$ the gyration is

$$
\begin{equation*}
3 \frac{K_{L}}{\beta}-\frac{2 v}{\omega^{2}-v^{2}}+{ }^{5} 0_{L} \frac{4 v \omega}{\left(\omega^{2}-v^{2}\right)^{2}} \tag{112}
\end{equation*}
$$

Evidently at frequencies for which $|\omega-v|>\beta$ the first term will be the
important one We shall sec, however, that if the temperature 18 low enough to suppress p_{1}, there will be present a paramagnetic P term which far outweigh it
Next we examme the paramagnetic gyration, when the " actual" state is s This regures that the three termsin (11.1) shall be multiplied by the respective factors (depending on the m of the actual states)

$$
1-\phi \frac{\theta_{L} h}{2 \pi \kappa T}, \quad 1+\phi \frac{0_{L} h}{2 \pi \kappa T}, \quad 1+\phi \frac{0_{\mathbf{L}} h}{2 \pi \kappa T},
$$

It 18 evident that there is no paramagnetic effect at all
Now take a $p s$ line at surh a high temperature thal both p_{1} and p_{2} are present. Tho energies are composed of two parts, one for the multiplet differeace, the other for the Zeeman effice In the latter we must mulingly the m of ench p level by the appropriate " g-fuctor.": ; for p_{2} and $;$ for p_{1}. Thus the terme of (11.1) are to be multiphed reapectively by

$$
1-\left(\xi \beta+\phi 20_{\mathrm{L}}\right) \frac{h}{2 \pi \kappa T}, \quad 1-\left(j \beta+\phi j 0_{\mathrm{L}}\right) \frac{h}{2 \pi \kappa^{\prime} T}, \quad 1-\left(-i \beta+\phi j 0_{\mathbf{L}}\right) \frac{h}{2 \pi \kappa T} .
$$

Multiplying out we find that the whole result is

$$
6\left[\mathrm{P}-\mathbf{Q} \phi 0_{\mathrm{L}}-\mathbf{P}_{\phi} \frac{0_{\mathrm{L}} h}{2 \pi \kappa \mathrm{~T}}\right]
$$

ao that compared to a refraction $\frac{2 \omega}{\omega^{2}-v^{d}}$ wr get a gyration

$$
\begin{equation*}
0_{L}\left[\frac{4 \omega \nu}{\omega^{2}-\nu^{2}}+\frac{2 \nu}{\omega^{2}-\nu^{2}} \frac{h}{2 \pi \kappa T}\right] . \tag{113}
\end{equation*}
$$

In addition to the above case I have examined the $s p$ and $p s$ hanes in the triplet and quartet systemn, and the $p d$ and $d p$, lines in the doublet system. In all these cases the summation rules give the $\|$ components in terms of the \perp, and also certain relations between the \perp romponents These relations make the P -term in the gyration vanish ; it should not be hard to prove this generally The gyration rule fixes partially the absolute values of the second order terms, but is quite insufficient to determine them completely. The paramagnetic gyration (at high temperatures for the $s p$ triplet vanshes like the doublet and for the $p s$ lines bears to the ordinary gyration cxactly the relation given by (11 3) This result is also evalently general for ps haes

The case of a $p d$ or $d p$ doublet merits fuller discussion, because a not very rash conjecture enables us to discover the gyration of each of ths three lines, and the result could be tested experimentally. The following scheme gives
the frequencies and intensities of the \perp, r components β is the separation of the p-terms, γ of the d-terms, ω as the [requency of the centre of gravity

$p_{\text {d }}{ }^{\text {d }}$	$p_{1} \boldsymbol{d}_{3}$	$p_{1} d_{1}$
$\begin{array}{rrr} \omega+i \gamma-\left\{\theta+0_{L}\right. & 00(1+a\rangle \\ +130_{L} & 54(1+b) \\ +180_{\mathrm{L}} & 27(1+c) \\ +410_{\mathrm{L}} & 0(1+d) \end{array}$	$\begin{array}{rll} -i \gamma-1 \theta+80_{\mathrm{L}} & 0(1+e) \\ +180_{\mathrm{L}} & 8(1+f) \\ +i n 0_{\mathrm{L}} & 0(1+j) \end{array}$	$\begin{array}{rl} w-1 \gamma+1 \beta+H 0_{2} & 75(1+h) \\ +170_{2} & 25(1+\jmath) \end{array}$

The unknowns a, b. . will be of the form $a=\left(\frac{a^{\prime}}{\beta}-1-\frac{a^{\prime \prime}}{\gamma}\right) 0_{L}$, etc., as 18 indrcated by the requirement of symmetry and tho presence of $d \beta / d k$ in (7 l) Applying the summation rule we find

$$
\begin{gathered}
a=0 \\
54 b+9 d+6 e+6 g+75 h=0 \\
27 c+8 f+25 j=0
\end{gathered}
$$

and the gyration rule gives

$$
\gamma(54 b+27 c+9 d)+\beta(75 h+25 J)=-{ }_{J}^{\beta} 0_{L} .
$$

Since β and γ need not bo commensurable this gives

$$
\begin{align*}
& 54 b^{\prime}+27 e^{\prime}+9 d^{\prime}=0, \quad 75 h^{\prime \prime}+25 \jmath^{\prime \prime}=0 \\
& 54 b^{\prime \prime}+27 c^{\prime \prime}+9 d^{\prime \prime}+75 h^{\prime}+2 \cdot 5 \jmath^{\prime}=-y, \tag{114}
\end{align*}
$$

and all the necessary conditions are now fulfilled
We nert evaluate the paramagnetic gyration at high temperature For pd (p the "actual" atate) we find for the total refractive effect

$$
\begin{equation*}
300\left(\mathbf{P}-\mathbf{Q} \phi 0_{L}\right)-\frac{h}{2 \pi \kappa T} \mathbf{P} \phi O_{L}\left(\frac{1 \mathrm{BD}}{\mathrm{G}}-\left(75 h^{\prime}+25 ر^{\prime}\right)\right\} \tag{11.5}
\end{equation*}
$$

and for $d p$

$$
\begin{equation*}
300\left(\mathrm{P}-\mathrm{Q} \phi 0_{\mathrm{L}}\right)-\frac{h}{2 \pi \kappa \mathrm{~T}} \mathrm{P} \phi O_{\mathrm{L}}\left(486+\left(54 b^{\prime \prime}+27 c^{\prime}+9 d^{\prime \prime}\right)\right\} \tag{116}
\end{equation*}
$$

The paramagnetic terms cannot be evaluated, but their difference can, and gives

$$
300 \frac{h}{2 \pi \kappa T} P \phi 0_{h} .
$$

Now our trestment of the classical problem mulicatod that associated with

$$
\left(\mathrm{T} \frac{\partial}{\partial n}+\frac{\partial}{\partial h}\right) \frac{16}{3} k r \mathrm{M}\left(\mathrm{P}-Q \phi 0_{\mathrm{L}}\right)
$$

wo should have

$$
-\frac{k^{\underline{g}}}{n T}\left(\mathbf{T} \frac{\partial}{\partial n}+\frac{\partial}{\partial k}\right) \frac{8}{3} \tau \mathrm{MP} \phi 0_{L},
$$

k, etr , here are dynamical and require multupheation by $h / 2 \pi$ to reduce them to numbers The expression under the differential operator in to the symmetrical in the two terms of the multiplet, but the k^{2} in front presumably represents the asymmetry attached to the "actual" stute Thus we say that to an ordinary effect $A\left(P-Q \phi 0_{\mathbf{L}}\right)$ will correupond a paramagnetic effect

$$
-\frac{h}{2 \pi \kappa T} \mathbf{F}(k) \frac{\mathbf{A P} \phi 0_{\mathbf{L}}}{f\left(k, k^{\prime}\right)},
$$

where k and k^{\prime} refer to the actual and potental states, and $\mathbf{F}(k) \sim k^{\mathbf{a}}$ as $k \rightarrow \infty$, while f is symmetrical in k, k^{\prime} and $\sim 2 k \quad$ We know the exact values for $s p, p s$ and the difference for $p k l$ and $d p$, and these suffice to determine the forms of F and f-at least assuming them to be ample Thry take their aimpleat form with the normalisation in which $k-0,1,2$.fur s, p, d. and we get as the whole refractive effert

$$
\mathrm{A}\left[\mathrm{P}-\mathbf{Q} \phi 0_{\mathbf{L}}-\frac{h}{2 \pi \kappa^{\prime} \mathrm{T}} \frac{k^{2}}{k+k^{\prime}} \mathbf{P} \phi 0_{\mathbf{L}}\right]
$$

If this assumption is correct we have

$$
\begin{aligned}
76 h+25 y & =\frac{250}{3} \frac{0_{L}}{\beta} \\
54 b+27 c+9 d & =-86 \frac{0_{L}}{\gamma}
\end{aligned}
$$

and therefore

$$
6 e+8 f+6 g=86 \frac{0_{L}}{\gamma}-\frac{250}{3} \frac{0}{\beta} .
$$

These results suffice to determine the gyration of the multuplet at low temperatures, and we shall conclude by giving the gyrations at low temperatures for all doublet systems issuing from any p-level They are compared to refraction $2 \omega /\left(\omega^{2}-\nu^{2}\right)$ where ω is the frequency of the centre of gravity of the active hines. As usual

$$
P=\frac{2 v}{v^{2}-\omega^{2}}, \quad Q=\frac{4 v \omega}{\left(v^{2}-\omega^{2}\right)^{2}}
$$

$$
\begin{array}{ll}
p_{1} s & 0_{L}\left[\frac{4}{3} Q-P\left(\frac{2}{3} \frac{1}{\beta}+\frac{1}{3} \frac{h}{2 \pi \kappa T}\right)\right], \\
p_{2}, & 0_{L}\left[\frac{7}{6} Q+P\left(\frac{1}{3} \frac{1}{\beta}-\frac{5}{3} \frac{h}{2 \pi \kappa T}\right)\right], \\
p_{1} d & 0_{L}\left[\frac{5}{6} Q+P\left(-\frac{5}{6} \frac{1}{\beta}+\frac{1}{6} \frac{h}{2 \pi \kappa T}\right)\right], \\
p_{2} d & 0_{L}\left[\left(\frac{2}{3}+\frac{3}{8} \frac{\gamma}{\beta}\right) Q+P\left(\frac{5}{12} \frac{1}{\beta}+\frac{5}{6} \frac{h}{2 \pi \kappa T}\right)\right] .
\end{array}
$$

The first term in P has been set down for the sake of completeness, but if it is not negligible the assumption that there 1 a only one actual level present will be violated A rough cajculation shows that at 5000° abs. for a multiplet in the visible spectrum the P-term will exceed the Q at distances greater than 100 A ${ }^{\top}$ from the lines It nould be very hard to observe the gyration of a metallic vapour at all at auch distances so that uc conclude that rxperiment muat be mannly occupied with an investigntion of the Q-terms

Here we ahall leave the matter, though it would seem probable that a more "refined" npplication of the C'orrespondence Principle might determine the second order terms precisely. In view of the expertations based on the New Mechanics it sepms unneressary to enter on this rather laborious process* What we have already obtained should auffice to show the general features to be anticipated in any experimental attack on the aubject.

Summary

A general diselisnion shows that when light passes through the vapour of a substance posqesaing a multiplet apectrum, its gyration cannot be predscted without a knowledge of the second approximations in the intensition of the lines that the substance would emit

The " electron and core" model is apphed so as to find these approximations They are shown to bear ratios of the order $0_{L} / \mathcal{P}$ to the first order terms (K_{L} Larmor rotation, β multiplet apparation) Of a phir symmetrically placed about the zero position of a line, one is increased and the other diminished to an equal extent, ${ }^{\text {no that the whole line is unpolarized to the second order It is venfied }}$ that the sum of all the intensities issung from given j and m is indeprendent of J and m.
*Jart as this paper was completed there has appenred a work by Hessenberg and Jordan (' Z \& Ph,' vol 37, p. 2A7) which fulfila this expectation. They have obtained the complete formula for the doublet ayatem at all atrengtha of fold, and their reault confirms those hero set duwn.

Using the methods of Krainers and Heseenberg, a clasaical calculation is mado of the gyration due to the whole multiplet, when the incident light has frequency not very close to $1 t$. It $2 s$ shown that there 18 an effect rather like that of Paschen-Back, in that the gyration corresponds to a normal and not an anomalous Zeeman effect, this result is true, however weak the magnetio field

A amilar calculation is carried out allowing for the ofiect of tenperature. Taking the temperature as so high that a first approximation will suffice, it is shown that the gyration is again independent of the magnetic anomaly and the multuplet acparation, but that it now contans a "paramagnetic" term inversely proportional to the temperature

These rules can be miterpreted in the quantum theory, and a few cases can be solved by their means For hnes iasuing from an a-level, there as no paramagnetic effect, and the gyration of light far from the multiplet will be exactly that given by a simple Lorentz di-pole. Formulmare given for the gyration corresponding to any of the lines sssung from either p-level in the doublet systen These would br applicable to a substance where the doublet separation is so large that at practicable temperatures the aubatance is all at one lovel. The gytation is composed of two terms, one "paramagnetio" proportional to $\stackrel{O_{\mathrm{L}}}{\mathrm{T}} \frac{2 v}{\omega^{2}-\nu^{2}}$, the other "diamagnetic" proportional to $0_{h} \frac{4 \omega v}{\left(\omega^{2}-v^{2}\right)^{2}}$ (v frequenc y of iucident lught, w mean frequency of multiplet).

The Distortion of Iron Crystals.

Hy G. I Taylor, FRS, and C. F' Elam, D Sc

(Received July 2R, 1926)
(Plates 10-12)

Experimental Methods

In recent ycars several attempts have been made to determine what happens to iron crystals when they are stramed and various conficting statements have been made as to the connection between the crystnl axes and the nature of the stran No relable resulta have been obtnined, however, partly because the largest cryatals avalable were too small for arcurate experiment, partly because workers have assumed that planes of slip concide with crystal planeq-an assumption which the experiments to be described prove to be crroneousbut ohiefly because the analysis of strain has not been carried out in a syatematic manner so as to obtain all information possible from external measurement of stramed crystals

The work of Prnf Edwards and Mr. Pfell has now enabled us to obtan crystals sufficiently large for the purpose, and, in fact, all the material used in the experiments now to be deseribed was cut from specimens very kindly supphed by them
Two deferent methods were used for producing distortion In the first the material way cut in the form of a umform bar of rectangular cross section, usually about 2 mm , нquare The length was about 10 cm , of which some 4 cm , in the middle was occupied by a single crystal Specimens of this type were marked with fine acratches and pulled in a tenale testing machanc. The dstortion was meaqured in the mannur described in our Bakerian Lecture.*

In the second method circular discs about 6 mm dameter $\times 14 \mathrm{~mm}$ thick were cut from a crystal and compressed between polshed steel plates. The distortion wina neeasured by methods previously described \dagger
Though the methode used were identical with those developed for dealing with alumimuncrystals, the difference in the material necessitated small changes

[^79] Soo. Proc ; A, vol. 111, p. 520 (1926).
in the procedure In the first place great care bad to be taken to ensure that the depth of the surface layer to wheh the crystal lattice us distorted by grindng and polishing was as small as posable The specimens were sawn with a fine saw or milled with a fine cutter They were then ground down on emery paper of successive degrees of hneness till at lesst 02 mm had been removed from each cut surfure Finally all flat fares were poluhed till a mirror surface was obtained The holder used for grinding and polishing the tension apecimens was made, at the suggestion of Mr A Woodward, from stanless ateel kinilly supphed to tia by Dr W II Hatfield

Owng to the small sire of the specimens it was neressary to use special methods for marking them The tension specimens urre mounted on an adjustable table which could slide on a bed simular to a lathe bed A cutter consisting of a safety razor blade broken acroes the middle was mounted so that it pressed, with a weight of 10 grammes, on the specimen asit passed under it. In thas way a fine mark of very unform width could be mare The apecimens were marhed with a longitudmal scratch down the middle of each face and cross serratches on all four faces spaced at atervals of 5 mm
The marks on the compression dises had to be slughtly deeper and a weight of 50 grammes on a sharpened gramophone neetlle was employed, the specimen being mounted on the traversing cone of our measuring macroscope
Measurements -- The most difficult measurement to make with the necessary accuracy was the angle between the faces of the tenamon specimens For thas purpose the lumes down the muddle of each face were usell The angle betwren the planes passing through pars of marks on opposite fares was measured by a method previously described * But the smallneys of the specimen necessatated the use of a very good gomometer, which was kindly lent to us by $\mathrm{Dr}_{\mathrm{r}} \mathrm{A}$. Hutchinson, FRS With thas instrument measurements of the angle between pairs of opposate faces could be relied on to 20 minutes of are

Methods of Calculation -The method adopted for representing the distortion was the same in the tension and the compression specimens. The cone contaming all hines of particles whirh remamed unstreth hed after the cryatal had been distorted was determined. The difference in shape between the two types of apecimen, however, necessitated some difference in the formula used for deducing the equation of the unstretched cone from the extarnal messurement

[^80]In the case of tension specimens rectangular co-ordinates were chosen so that onc edge was the axis $O Z$ and onv face (called face 1) was the plane $y=0$. The scheme is shown in fig 1

The measured quantitues were
λ the angle between the faces 1 and 4
b the width of facey I and d
c the width of facer $\frac{15}{2}$ and t
β the angle betwern ruled scratches arross
face 1 and the dxis $0 Z$
γ the angle between ruled acratches acrose face 4 and axis 0)Z
d the distance between succesaive marks

Fia 1
parallel to the axis of the specimen.
Using suffixes 0 and 1 to denote the couditions before and after stretching, the ratio of the final to the initual length in $\frac{d_{1}}{d_{0}}-\varepsilon$, and let $f=\frac{b_{1}}{b_{0}}$ and $g=\frac{c_{1}}{c_{0}} \quad$ If $\left(x_{1}, y_{1}, z_{1}\right)$ are the co-ordinates in the strained material of a particle whome co-ordmates in the unstraned material were (x_{0}, y_{0}, z_{0}), the formula of transformation are

$$
\left.\begin{array}{l}
s_{1}=f x_{0}+l y_{0} \tag{1}\\
y_{1}=m y_{0} \\
z_{1}=p x_{0}+q y_{0}+c z_{0}
\end{array}\right\}
$$

where

$$
\left.\begin{array}{rl}
l & =g \frac{\cos \lambda_{1}}{\sin \lambda_{0}}-f \cot \lambda_{0} \\
m & =g \frac{\sin \lambda_{1}}{\sin \lambda_{0}} \tag{2}\\
p & =-\varepsilon \cot \beta_{0}+f \cot \beta_{1} \\
q & =\varepsilon \cot \beta_{0} \cot \lambda_{0}-f \cot \beta_{1} \cot \lambda_{0}+g \frac{\cot \gamma_{1}}{\sin \lambda_{0}}-\varepsilon \frac{\cot \gamma_{0}}{\sin \lambda_{0}}
\end{array}\right\}
$$

The unatretched cone 18 given by

$$
\begin{equation*}
x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=x_{1}^{2}+y_{1}^{2}+z_{1}^{4} \tag{3}
\end{equation*}
$$

and eliminating x_{1}, y_{1}, z_{1} from 1 and 3 the equation of the unstretched oone beoomes

$$
\begin{align*}
& x^{2}\left(f^{2}+p^{2}-1\right)+y^{2}\left(l^{2}+m^{2}+q^{2}-1\right)+z^{2}\left(\varepsilon^{2}-1\right) \\
&+2 x y(f l+p q)+2 z x(c p)+2 y z(c q)=0 . \tag{4}
\end{align*}
$$

If apherical polar co-ordinates are used, θ being the angle which the direction concerned makes with the axis of z and ϕ the angle which its projection on the plane $z=0$ makes with the axis of x, then

$$
\left.\begin{array}{l}
x / z=\tan \theta \cos \phi \tag{5}\\
y / z=\tan \theta \sin \phi
\end{array}\right\}
$$

so that the equation of the unstretched cone in its first position befure atretchang the material 18

$$
\begin{align*}
& \left\{\left(f^{2}+p^{2}-1\right) \cos ^{2} \phi+2(f l+I q) \cos \phi \sin \phi\right. \\
& \left.+\left(l^{2}+m m^{2}+q^{2}-1\right) \sin ^{2} \phi\right\} \tan ^{2} \theta \\
& +\{2 \varepsilon p \cos \phi+2 \varepsilon q \sin \phi\} \tan \theta+\varepsilon^{2}-1=0 \tag{6}
\end{align*}
$$

To find the unstrethed cone in its second position, in the stretched material, the simplest methorl is to reverse all the furmula, repla ing measurements made before extrusion by corresponing ones in the stretched materinl and vice versa,
The formulx of tranformation are then .-

$$
\left.\begin{array}{l}
x_{0}=f_{1} s_{1}+l_{1} y_{1} \tag{7}\\
y_{0}=m_{1} y_{1} \\
z_{0}=p_{1} x_{1}+q_{1} y_{1}+\varepsilon_{1-1}
\end{array}\right\} .
$$

where $I_{1}-\frac{1}{g} \frac{\cos \lambda_{0}}{\sin \lambda_{1}}-\frac{1}{f} \cot \lambda_{1}$, etc ,
and the equation to tho unstret hed rone in its second position is identical with (6) except that eath of the symbols inside the brackets has a sufini 1 .

Equation of Unstretched Conc for Compression Spectmens

The scheme of marking specimens and the methods of measurement are deacribed in a previous paper ly one of the authors * A phatograph of one of

Fio. 2.-Iron crystal Fe 8 c before oomprossion. Fio 3.-Fe 70 after compreasion to ≥ 0.897. Fio 4.-Fe 3o atter comprealon to $\quad=0840$.

- Teylor and Farten, bor. end
the specimens before compression in shown in Gig. 2. Figs 3 and 4 are photographs taken after compression of apecimens which were marked originally with six seratches in the square pittern shown in fig 2 A rectangular syutem of co-ordmates was chosen ro that the origin was at the central point of of the nue point 4 where the scratches intersect. The axis OZ was vertirnl and perpeendicular to the face of the apecimen $O X$ was along one of the central acratches and 0 Y was perpendicular to it The direction of the axes are shown in fig b

Fia

Measuremente were made of the amount the material had atretched in the directions of the two sets of seratches. The ratios of the final to the initial length in these two directions are called a and β^{*} respectively If the final and matal thickness of the specimen between its plane faces are t_{1} and t_{0}, the compression is measured by $\gamma=t_{1} / t_{0}$. The angle between the two sets of seratches is χ_{0} before, and χ_{1} after, compression The co-ordmates of the central mark on the under-side of the specimen are ($\mathrm{X}_{0}, \mathrm{Y}_{0},-t_{0}$) before and ($\mathrm{X}_{1}, \mathrm{Y}_{1}-t_{1}$) niter compression The formulas of transformution are

$$
\left.\begin{array}{l}
d_{1}=\alpha x_{0}+l y_{0} \mid \mu z_{0} \tag{8}\\
y_{1}=m y_{0}+v z_{0} \\
z_{1}=\gamma z_{0}
\end{array}\right\}
$$

where

$$
\left.\begin{array}{rl}
I & =\beta \frac{\cos \chi_{1}}{\sin \chi_{0}}-d \cot \chi_{0} \tag{9}\\
m & =\beta \frac{\sin \chi_{1}}{\sin \chi_{0}} \\
\mu & =\frac{X_{1}-\alpha X_{0}-I Y_{0}}{-I_{0}} \\
v & =\frac{Y_{1}-m Y_{0}}{-l_{0}}
\end{array}\right\}
$$

[^81]The equation of the unextended cone in ita first, or unstraned, position is

$$
\begin{align*}
& \left\{\left(\alpha^{8}-1\right) \cos ^{2} \phi+\left(m^{2}+l^{4}-1\right) \sin ^{2} \phi+2 \alpha l \cos \phi \sin \phi\right\} \tan ^{8} \theta \\
& \quad+(2 \alpha \mu \cos \phi+2(l \mu+m v) \sin \phi\} \tan \theta+\gamma^{2}+\mu^{2}+v^{2}-1=0, \tag{10}
\end{align*}
$$

where 0 and ϕ are spherical polar co-ordinates which bear the sumer relation to the rectangular co-ordinatess x, y, z as they did in the case of the tension spectmens (see equations 5)

The most convenient method for finding the equation to the unextended cone in its second position in the compressed material is to replace in formulm 8, 9 and 10 measurements made before compression by thuse made after and vice vers, As in the case of tensuon specimens, suffixes are added to the coeflicients in the transformation formule These then become -

$$
\left.\begin{array}{l}
x_{0}=d_{1} x_{1}+l_{1} y_{1}+\mu_{1} z_{1} \tag{11}\\
y_{0}=m_{1} y_{1}+v_{1} z_{1} \\
z_{0}=\gamma_{1} z_{1}
\end{array}\right\}
$$

In Table 1 is given a list of the data used in calculating the unextended concs for three extension and four compression specimens In the case of Fe 1 , the first of our tension specimens, the methods of calculation described in our Bakerian Lecture were used In the cesc of all the other specimens we used the methorls described in the present paper

Represrntation of Unstretched Cones

The unstrewhed cones are represented by means of a sterengraphic diagram of which the centre 18 the axis of $Z(\theta=0)$. The axas of $x(0=90$ degrees, $\phi=0$) 18 reprosented by a radius marked in cach of figs. 6 to 15
The symbols common to all dugrams are oxplaned in fig 1. Points on the cone are foumd by tahng values $0, \pm 30$ degrees, ± 00 degrees and 90 degrees for ϕ and calculating the two corresponding values of θ from the equation to the cone

Measurement of Onentation of Crystal Axes.

The orientation of the crystal axes was determened by the methods used previously in the case of aluminium crystals.*
The a radations from an iron anticathode were reflected from dodecahedral \{110\} planes in the cryatal, the angle of reflection being 28.9 degrees. In the

[^82]case of alumnium, where reflec trons were obtaned from $\{111\}$ and $\{100\}$ planes, two were sufficient to determine the orientation of all the axes, but in the case of iron two planes are not aufficient to determine the reat completely unless they are at right angles to one another When two \{110\} planes making an angle of 60 degrees have been found. they determine a $\{111\}$ plane, but there are two alternative positions for the crystal lattice, and in this case it is necersary to find another $\{110\}$ plane, not in the same \{111\} plane as the first two Iu the case of the tension specimens it was not always possible to get ipflections from three crystal planes ouing to the hmitations of the apparatus, hut the ambiguty was resolved by cutting the specimen and polishing a plane perpendicular to the axis, aftre the test was hinished It was always pussible to get a reffection from this new luce and ao to remove the ambiguties in the casc of the diatorted material Since the motion of the (110) planes relative to the surface of the specimen during the distortion was not large and was morrover, related to the distortion no difliculy was encountered in identifyng planes in the distorted apecimen with those neesured in the specimen before distortion In this way the umbiguty was resolved in every case

Results of Eatmsuon Tests

Three spar inens were stretched, Fe 1 was extended 15 per cent , Fe 3 and Fe 4 each about 9 per cent it was found that they do not stretch very unformly, a veriation of 1 per cent or even ${ }^{2}$ per cent in a total of 9 per cent beng found between the extengion in successive 5 mm lengths of the apecimen In order to make the best use of the measurements two or three sections 5 mm long were taken in the part of the apecimen where the stretching appeared to be most unform The mearurements in these sections were averaged and used in the calculations The figures given in Table lare derived from these averages In each case the unstretched cone was calculated for both positions, $i f$, before and after stretching. The onentations of the crystal axcs were likewise determined before and after stretching
In figs 6 to 11 the unstretched cones are represented on atereographic dagrams, each of the calculated points being shown by a round dot. On examining these diagrams it was found that the unstretched cones in cvery case coincided almost exactly with two planes In each of the dagrams the parr of planes which passes most nearly through the calculated points is shown by means of two great circlea
Thes type of dastortion was already famhar to us, It can be caused by uniform shearing or shipping parallel to ether of the two unstretrhed planes
in a direction nt right angles to their line of untersection * Accordingly the point on each of the planes which corresponds with a possuble direction of slip was marked on the diagram with a cross and the pole of each possible plane of alip was marked alno

Fill 6-FeI $1=10$

Fio. 7 -Fel 1 - 1180

Fia. B -Fes $\quad=10$

Fig $\theta-\mathrm{Fe} 3 \quad-=10915$.

The positions of the crystal axes were next determined from the \mathbf{X}-ray measurements and marked on the stereographio diagrams From inspeotion of sin diagrams sumar to those shown in figs 6 to 11 the following deductions were drawn .--
(a) In each case one of the two alteruative ponsible directions of alp was close to the pole of a $\{111\}$ plane The spherical polar co-ordinates of the pole

Fits 10 ---Finter $=10$

Fia $11-\mathrm{Fe} 4 \quad=10879$
of the $\{111\}$ plane aurl the corresponding posable direction of slip are given in Table 11, and are marked in each figure by means of the symbol Δ^{*} and the direction of slip is repreyented by a cross \boldsymbol{X}

The ser ond possible direction of slip that marked at D in fig. 6, but not marked in the rest of the diagrams-- seemed to bear no relation to the cryatal ares.
(b) The cryatal axes move during the distortion so that they are nearly fixed relative to that oue of the par of unstretched planes whioh contains the pole of the $\{111\}$ plane mentioned in (n) They move in the opposite direction to the other unstretched plane

The material behaves therrfore both in regard to the motion of the crystal axes and in regard to the total distortion as thuugh this distortion were due to slapping on a crystal plane and in a direction parallel with the perpendicular of a $\{111\}$ plane It remains to discover how the plane of shp is related to the crystal axes In an attempt to solve this question the pole of the plane determined by distortion measurements was marked on each diagram These are shown at P in figs 6 to 11 and an arc representing a portion of the (111) plane, which is nearly perpendicular to the direction of slip deterimned by distortion measuremeats, is also drawn The plane oontains the poles of three \{110) planes and three $\{112\}$ planes In each disgram the poles of two $\{110\}$ planes,

[^83](101) and (110) in fg 6, one either ade of P, are represented by the symbol (4) and the pole of the intermediate $\{112\}$ plane, (211) in fig 6 , is represented by the aymbol Θ It will be seen that in the case of Fe 4 the pole of the plane of ship concides almost exactly with the (211) plane so that the plane of alip coincides with this plane On the other hand, in the case of Fe 1, the pole of the plane of ship 1814 degrees away from the pole of the (211) plane, $\mathbf{t}, \boldsymbol{e}$, almost exactly half-way between the poles of the (101) and (211) planes. In the case of Fe 3 , P 1 n nearer to the pole of the (101) plane than to the pole of the (211) plane

It appeara therefore that the distortion 19 auch as can be produced by slipping parallel to a plane of particles in the material and that the direction of slip has a definte relation to the crystal nxeq, but that the plane of slip is nut a definite crystal plane at all On the other hand, the plane of slip does appear to be related to the distribution of stress The pole of the shp plane lies close to the plane which containe the axis of the sperimen and the direction of ship In cach of the diagrams figa 6 to 15 the atraght liar which representa thus plane 18 shown as SM If it were accurately true that P in every case hes, as it does in fig 8 , on SM, then it would mean that of all poumble planes through the given direction of slip, slipping occurs on the one for which the direction of slip hes along the hine of greateat ulope in the slip plane, the axus of the specimen being bupposed vertical

Metallurginta are fambiar with the conception of a plastic matrial which gields by slipping or shearing on a plane parallel to the plane of maximum whearing stress, and they have recently become famular with the conception of a plastic crystal which yields by slipping on u crystal plane and in the direction of a crystal anis, the choice among crystallographically simular types of slipping being determined by the stress distribution The conception now put forward is quite different from either of these The direction of slipping is a crystal axis and the plane of slipping is determmed chiefly by the stress distribution.

Compression Esprinuents

Before going on to consider how this kind of plastic yulding could arise we shall deacribe further eyperimenta in which the question in examined by meana of a method which permits of much greater accuracy than was possmble in the experiment we have oo far described The chief sources of error in the extenaion experiments wire attributable (a) to the fact that the stretching of the apecimens was not unform, and (b) to the difficulty of determuong the position of the specimen relative to the \mathbf{X}-ray spectrometer in which it was fixed when measurng the orientation of its orystal exes In regard to (b) the accuracy
of the \mathbf{X}-ray determinations relative to the apectrometer can be judged by the fact that the angle between two crystal axes never differed by more than 2 degrees and seldom by more than 1 degree from the angle required by the cubic symmetry of the crystal The accuracy of the diatortion measurements can be gauged from the accuracy with which the points of the unstretched cone line on two planes and from a comparison of the volume of the specimen before and after stretching It is improbable that the calculated direction of ship is in arror by more than 3 degrees On thr other hand, there seems to be a posaibility that an error of 5 or 6 degrees may occur in determining the position of a tension specimen in our \mathbf{X}-ray spectrometer This position is determined etther by rotating the specimen till the line of anght hes along one face when lookng through the holes wheh confine the beam of X-rays or else by adjuating the X-ray apectrometer till the avis of rotation of the table is in the plane pasaing through the vertical seratches on opposite faces The accurecy of both these methods depends on the smallest dimension of the eross section of the specimen, which, for various reasons could not be greater than about 15 mm The hrest method is alao hable to inaccuracy owing to the rounding of the fuces due to poolishing and to the unevenness of the surface when the material has been stretched The second method depends on a high degree of accuray in the axis of the turn-table of the spectrometer With our X-ray spectrometer this sourre of error was appreciable, but the measurements of λ used in our distortion calculationa were made with a first-class gonometer the axis of which was quite good enough for our purpose
The use of compression specinens reduces these sources of error till they are leas than the other errora to which both tupes of specimen are liable. In the first place, the diameter of the flat fnces on which the measurements are made are three timen as great as the thichuess of the largest tenaion spectimen we are able to use In the sec ond plare, the conditions of the experiment kept the faces flat and parallel during compressinn This last point is important because it was sometime found posaible to obtan extraordnary unformity of distortion through the whole volume of a compression specimen The photographe shown in hgs, 2, 3 and 4 illustrate this Fig 2 shows a specimen before distortion marked in squares Fig 3 shous Fe 7 r after compression till its thickness was * $c=0897$ of its initial thichness, $e \rho, a$ compression of about 10 per cent

[^84]It will be seen that after compression the ruled lines remained atraight Fig. 4 shows a specimen Fe 3 c in which the ruled arratibes were so straight and so nearly parallel after compression to 84 per cent of its initial thucness that we were unable to detect any want of uniformity.*

In somie of the compression specumens the distortion was not quite uniform, the ruled scratches becoming shightly beut or curved ln some of these cases it was possible to ary that the want of unformity urose from imperfections in the crystal whech only came to light when the specemen was compressed. In all casea where there was an obvious lack of unformuty in distortion (three out of the wine specimens tried) the apecomen was rejected after compression. In order to save the great wante of tume which the determination of the crystal axes of the rejected specimens would have entaled, the orientation of the crystal axes whe not measured before compression The crystal axes of the four specimens $\mathrm{Fe} 3 \mathrm{c}, \mathrm{Fe}$ ic, Fe 6c and Fe 7 c were determined after compression and the second (distorted) position of the unextended cone was calculated in rach case. The pquations to the cones and also thr data nsed in calculating thein are given in Tuble I

Table I-Measurements and data from which unstretched cones were calculated

Estciaron Teste

c, f, g, l, m, p, q are uon dimensional $\quad \beta_{0}, \beta_{1}, \gamma_{0}, \gamma_{1}, \lambda_{0,}, \lambda_{1}$ arc angles, and are exprenaed in degrees

$$
\begin{aligned}
& \text { Fe } 1-\varepsilon-1 \cdot 150, f=09894, g=0(1010) \xi_{0}=(4) 0 \text { degrees, } \beta_{1}=929 \text { degrees, } \\
& \gamma_{0}=899 \text { degrees, } \gamma_{1}=85 \cdot 5 \text { degreps, } \lambda_{0}=900 \text { degrees, } \lambda_{1}= \\
& 843 \text { degrees }
\end{aligned}
$$

Fe $3-\varepsilon=10915, f=09748, g=09481, \beta_{0}-900$ degrees, $\beta_{1}=$ $89 \times$ dеgreнн, $\gamma_{0}=90$ degтеся, $\gamma_{1}=898$ degrees, $\lambda_{0}=899$ d"gтесs, $\lambda_{1}=940$ degrect.
$l=-00679, m=09460, p-0 \cdot 0034, q=0(9033$
Unstretched cone in first position $18 \cdots$ $\left(0.0498 \cos ^{2} \phi+0.1325 \cos \phi \sin \phi+0.0992 \sin ^{2} \phi\right) \tan ^{2} \theta$

$$
+(-00074 \cos \phi-0 \cdot 0072 \sin \phi) \tan 0-0 \cdot 1914-0 .
$$

[^85]
Table I-(continued)

1u second position it is--
$\left(00525 \cos ^{2} \phi+0 \operatorname{long} \cos \phi \sin \phi+01229 \sin ^{2} \phi\right) \tan ^{2} 0$

$$
\forall(-00059 \cos \phi-00062 \sin \phi) \tan 0-0 \quad 1606=0
$$

Fe $4-\mathrm{e}=10879, f=09379, q=09856, \quad \beta_{0}=900$ degrees, $\beta_{1}=$ 931 degruen, $\gamma_{0}=900$ degrien, $\gamma_{1}=909$ Idegreen, $\lambda_{0}-900$ degrees, $\lambda_{1}=936$ degreen
$l=-0$ 06IH, m $-0.9836, p=-00055, \eta=-0 \cdot 0147$
Whatrutehed rone hirat position in--
(0) $\left.1173 \cos ^{2} \phi+0 \cdot 1144 \cos \phi \sin \phi ; 00.75 \sin ^{2} \phi\right) \tan ^{2} 0$
$+(0) 1202 \cos \phi \mid 00330 \sin \phi) \tan \theta-0 \quad 1835=0$
In second porition it in--
(0) $\left.1397 \cos ^{2} \phi ; 01440 \cos \phi \sin \phi+0038\right] \sin ^{2} \phi$) $\tan ^{2} 0$ $-(00992 \cos \phi+00.311 \sin \phi) \tan \theta \cdots 01551=0$

Compression Tessa
$X_{0}, Y_{0}, X_{1}, Y_{1}, t_{0}, t_{1}$ are exprensed in millimetres $\quad a, \beta, \gamma, l, m, \mu, v$ are non-dimensional
Fe 3c--First compression from $\varepsilon=10$ to $\varepsilon=0$ (10N.

$$
\begin{aligned}
& a_{1}=09117, \beta_{1}-09988, \gamma_{1}-11022 . X_{0}=011 H_{1} Y_{0}-+0111, \\
& \left.X_{1}=-0060^{\prime}\right), Y_{1}=10114 . l_{1}=+00207, m_{1}=109994 \\
& \mu_{1}=100385, v_{1}-10002, t_{0}-1630, t_{1}-1479
\end{aligned}
$$

Second position of unsiretched cone is-
$\left(0-1690 \cos ^{2} \phi-00378 \cos \phi \sin \phi+00008 \sin ^{2} \phi\right) \tan ^{2} \theta$
F (-0) 0702 $\cos \phi-0$ 005t siv $\phi) \tan \theta-0 \cdot 2162-0$.
Total comprensum frome $=10$ to $\varepsilon-0840$
Fe 3c $\cdots x_{1}=0$ H460, $\beta_{1}-0$ 9954, $\gamma_{1}=1141 \%, X_{0}=0114, Y_{0}=+0111$,

$$
\begin{aligned}
& X_{1}=-0078 Y_{1}=0116, I_{1}=+0017, m_{1}=+0.9971, \\
& \mu_{1}=+0 \text { 8417, } v_{1}-0004, I_{0}-1130,1_{1}-1368
\end{aligned}
$$

Second position of unstretched cone is--
$\left(02843 \cos ^{2} \phi-00798 \cos \phi \sin \phi+0(0) .30 \sin ^{2} \phi\right) \tan ^{2} \theta$

$$
+(-00701 \cos \phi-00119 \sin \phi) \tan 0-04214=-0 .
$$

Fe 5c,--Compression frome $=10$ to $\varepsilon=0$ B88

$$
\begin{aligned}
& \alpha_{1}=09968, \beta_{1}=0898, \gamma_{1}-1 \cdot 1268, X_{0}=-0042, Y_{0}=-0002, \\
& X_{1}=-0051, Y_{1}=-0 \cdot 119, l_{1}=-00346, m_{1}=+0.8903, \\
& \mu_{1}=-00038, v_{1}=-00825, t_{0}-1 \cdot 475, t_{1}-1309
\end{aligned}
$$

Table I--(contnued)

Second position of unstretched cone 18 -
$\left(000677 \cos ^{2} \phi+00689 \cos \phi \sin \phi+02064 \sin ^{2} \phi\right) \tan ^{2} \theta$

$$
+(00076 \cos \phi+01466 \sin \phi) \tan \theta-02665=0
$$

Fe $6 \mathbf{c}$-('ompression Iromin $c=10$ to $c=0.902$

$$
\begin{aligned}
& \alpha_{1}=09451, \beta_{1}=09078, \gamma_{1}=11083, X_{0}=0036, Y_{0}=-0 \cdot 171, \\
& \mathrm{X}_{1}=-0045, Y_{1}=-0226, l_{1}=+00275, m_{1}=+09082, \\
& \mu_{1}=-00106, v_{1}=-00243, t_{0}=1575, t_{1}-1421
\end{aligned}
$$

Socond position of unstratched cone 18 --

$$
\begin{aligned}
& \left(0009+\cos ^{2} \phi-0 \operatorname{0r4} 4 \cos \phi \sin \phi+0 \cdot 1744 \sin ^{2} \phi\right) \tan ^{2} \theta \\
& \quad+(00211 \cos \phi+00447 \sin \phi) \tan \theta-02290-0,
\end{aligned}
$$

Fe 7 c -('ompression from $\varepsilon=1 \cdot 0$ to $\varepsilon=0 \mathrm{Ng7}$

$$
\begin{aligned}
& a_{1}=0997, \beta_{1}=0894, \gamma_{1}=1115, X_{0}=-0016, Y_{0}=-0027, \\
& X_{1}--0025, Y_{1}=-0113, t_{1}-+00204, m_{1}=+0894, \\
& \mu_{1}=-0 \cdot 009, v_{1}=0072 t_{10}=1340, t_{1}=1202
\end{aligned}
$$

Second porition of unstretched cone 14 --

$$
\begin{aligned}
& \left(0.006 \cos ^{2} \phi-0 \cdot 041 \cos \phi \operatorname{anc} \phi-10201 \sin ^{2} \phi\right) \tan ^{2} 0 \\
& \quad+(0) 018 \cos \phi+0129 \sin \phi) \tan \theta-0 \operatorname{en}=0
\end{aligned}
$$

Resulus of C'ompression Tests

Sterrographic diagramis for the compression testa simular to those used in the case of extennoon speolmens are shown in higs. 12 to 15 It will be seen that they give the salue result as the tension tests In each case the point \mathbf{S}, which representa the direction of alp deduced from the distorion measurements, hes very close to the trungle which marks the position of a pole of a [111] plane determiued by X-rays The mprovement in the accuracy of the measurementa has producell 4 corresponding improvement in the agreement betueen these two drections This is abown in the second half of Table II, where it will be seeri that the maximum angle betwren them is only 12 degrees Figs 19 to 15 aud the third column of Table III show also that the plane of slip is not a definite crystal plane, but that, as in the case of the tension specimens, it is nearly perpendicular to the vertical plane which parses through the direction of slip and the axis of the specimen In the diagrams this Jane is representel by a dotted line SM It will ber seen that for each of the four compression apecimens the pole of the plane of ship is inchned through a small angle away from the
plane SM towards the pole of the neareat (112) plane and therefore away from the pole of the nearest (110) plane The measured values of this small angle

Fig 12.-Fe3r $\quad \mathrm{F}=0 \mathrm{O} 40$

HIG 14 -Fe He EFO O (M2

Hig, $13-\mathrm{Fe}$ DC $\quad=0$ ess

H 1015 -Fr is \quad - $=0$ 897
are given in column 4 of Table III Ita manamum value is unly $4 \frac{1}{2}$ degrees, but, on the other hand, an error of this magnitude could not have occurred in our measurementes, so that the "ffect represented by it must be a real one
The concluasous to be drawn from these results are that slip can occur on any plane, not necesarnly a crystal planf, which passes through the normal of a $\{111\}$ plane The fact that the pole of the slip plane is so close to the plane

Table II.-Co-ordinates of direction of alip and normal to \{111\} planc.

Ertension Specimens

('ompression spectmuns.

Table III

	-	Angle hetween prole of \{112\} plane and pole P of alip plame	Angle between \mathbf{P}^{\prime} an plane SM through d of slip
	Deurees	Lexreem	Degreera
Fe Jc	53	91	2
Fusis	56	*	3
Fefic	511	${ }^{+}$	41
Fe 7	50	14	1

NM seems to show that the ressistance to shear does not vary much, as the plane of alp takes up different positions round the pole of the (111) plane The fact that the pole of the plane of shp is incluned through a amall but measurable angle away from the plane SM and towards the pole of the nearest\{112\} plane seems to inducate that the resistance to slipping is rather less on planes urar $\{112\}$ planes than it is on those in the negghbourhood of (110) planes

Mrchamam of Nip $2 \boldsymbol{n}$ Iron Crystals

The question now arises how it can happen that a mata rial can mij parallel to a crystal axis but on a plane which in relaled to the direction of strena rather than to the orientation of the cryatul axes Whereslipping ocrurs on a crystal plane, as it does in all mintals which have been exammed in the past, the distortion may be represented by a model conasating of a pack of ards capable of sliding over one another, the cards being ribbed or grooved so that they can only slide on one another in one direction A corresponding morlel for representing the distortion of iron crystalsinght connist of a bundle of rods or pencils, and in order that there may loe three-fold nymmetry about their axpa they maght, loe heaggonal in section *

Another way in which ue conilil conecise the distartion of iron taking place is by slopping on two cryatal planes whic h both pass through the normal of the $\{111\}$ plane, the direction of slip on each of them being parallel to their line of intersection Such planes might be two $\{110\}$ planem or two \{112\} planes Ky adjusting the ratio of the amount of slip on one planc to that on the other the total dastortion can be equivalent tuship on any given plane through therir hase of intersection

It is impossible to distimgush betucen these two by potheses by diatortion or X-ray measuremente On the other hatid, an examination of the slip hnes which appear on a pulished surface of the crystal when it in atramed seems to furmesh the clue requird In emh of the tronsle npermeus these ship lines appeared They were not straight, but, on the other hand, they appeared to run in a definite direction, and mpasurements of this direction could fraquently be repeated in different parts of the sinc eface with a jrobable error of about 2 degrees Fige 16, 17 and 18 show typial examplis of the lines in parts of the specimens where they are free from imperfections in the crystal In many purts these imperfections make meunurment of shp hina mposemble, but some reasonably good meanuremieuts uere ohtamed in the cuace of cryatala He 3 and Fe 4. The urientation of the ship linen on tho faces of Fe t and on two faces and two exira flata ground on the corners in Fr 3 are represented by the symbol Oin figs 9 and $11 \dagger$ It will be sern that they lie close to the plane of alip in each case. In Table IV are gisen the measured values of the angle between

[^86]the axis of the apecimen and (a) the ship lines, (b) the trace of the plane of slip determined by distortion measurements on the face of the specimen, (c) the trace of the nearest (110\} plane, (d) the trace of the nearest \{1]2\} plane, (e) the trace of the second unstretched plane determined by distortion mpasurements It will be seen that the maximum angle between the slip lines and the trace of the plane of shp in 4 degrecs Thas is less than the errors of measurement in the case of slip lines on the faci of tension specimens On the other hand, the maximum angle between alop hines and the traces of crvatal planes are 31 degrees In the case of the nearest (110) plane and 26 ilegrees in the case of the nearest \{112\} plane

Trable IV

It appears, therefore, that the shp lines mark the intersection of the plane of slip determined by distortion measurements with the surface of the sperimen They have no relation to the crystal planes excrph, as in the case of Fe 4, where the plane of slip happens to concide with a crystal plane owing to an arcidental element of symmetry in the original orientation of the crystal axes in the specimen It will be seen later that this result is confirmed with considerable accuracy in the compression expenments

It is worth noticing that the slip liacs confirm our identifecation of one of the two unstretched planes deterimined by distortion measurement as the plane of ship This 18 shoun clearly by the figures in rows a, b and c in Table IV, where row e showa the position of the trace of the second unstretched plane on the surface of the specmen It acema, therefore, that if wa had no X ray mebsureinents, we should atill be able to make our choice by observing slip liues In fact, the information furashed by rough indicstions of slip lines on the curved surfaces of the compression disce were used in our later measurements to guess Which of the two planes was the slip plane and so to limit the range of setting
angles employed during our searih for positions of the specmen in which \mathbf{X}-ray reflections could be obtained Much labour was saved in this way, the search for these positions heing very laborious

Interpritation of Results

We are now in a position to ioterpret our results In the firat place, we can reject the hypothens that the dastortion is due to alipping on two or more crystal planes pasaing through the dormal of a $\{111\}$ plane This hypothesis would explain the nature of the dintortion and the powition of the crystal axes in relation to the slip phenomena, but it is contrary to previous experience with other wetals In the cuses of ulumamum, copper, silver and gold,* planes of alipping which are cryatal planes lave been proved to exint when a bar of the material it stretcherl The material shys on one cryatal plane only till the change in orientation of the cryatal axre, as the distortion increases, bring another erystallographically sumlar plane into such a position that the two planes are symmetrically pluced with respec t to the direction of atrese shippugg then occura on both planes In the case of iron, the two planes of slip requirerl in the hypothesis wo are diacussing would not, except in special accidentul circumatances, be amularly orientated in relation to the axis of the specimen, so that the shearing stress on one plane would be different from that on the other We should, therefore, expect alipping on one plane only, namely, that for which the ghear stress was the greateat

On occasions when slipping on two planes has been proved to exist, t.e, when the two plenes are aymmetrially plared, we have sometimes been able to observe slip hacs and in each case there have beat tro sety of lines crosing one another. Observations of thay hind have also been made in the casc of singlo crystals under alternating strintro \dagger

Among our iron crystals we had one example in which the axis of thr specimen lay very nearly in a $\{100\}$ plane so that the normals of two 111$\}$ planef, e e, two possible directions of slip, were equally inched to the axis of the specimen. On atretching this crystal two mets of slip lines appeared crossing one another. It appeara therefore that double slipping occurs in iron when the shear stress is equal on two possible planes of slip, and that whed it does occur two sets of slip lines appear on the surface In all ensps where the cryatal axps were not

[^87]symmetrinally placed with respect to the axis of the specimen, only one set of slip lines was observed, and that set did not comerde with any crystal plane

The weight of evidence ss therefore atrongly against the hypothess that the distortion is due to slip on two crystal planes

There remains the hypotheas that the crystal does not divide itself into sheetn when a shearing atress is applied but into rods or pencils It is clear that any uniform distortion of such a system due to slipping of the rods on their neighbours mupt be a unform shear with a plane of alp which contans the direction of the length of the rocla, but may be in any orientation round this direction If these role were of mulecular dimensions and if the shear were unform right down to molecular dimensions, so that every rol bore exactly the anme relation to its neighbours as every other rod, any marks or slip lines which could appear on the surface of a straned crystal would depend on the shape of the rods and their relative positions, not ou the direction of the plane of slip. This can be easily understood by thinking of a model Fig. 19 is a photograph, taken from above, of a bundle of hexagonal rods atanding with their axes vertical Thesp roda pack together so an to fill a volume without interstices The ends of the rods are all cut square (ip, at right angles to their axes) and before distortion they ware all at the samie level so that the end of the bundle was a plane perpendicular to the axes of the rods Owing to the fart that the rods were accurately made, the outhne of the hexagonal ends could not be seen before distortion. The bundle was given a uniform shear by sloping the board on which it was standing. The direction of the trace of the slip plane on the plane of the ends of the rode 18 shown as a hane below the photograph The whole bundle was lighted obliquely so as to show up the projecting parts of the surfaces of slip. It will be seen that the "model shp bnes" which appear on the surface are traces of crystal planes on the plane end of the bundle The orientation of the plane of slip which would be determuned by external distortion measurement may affeot the relative brightuess of these "model slip lines," but not their direotion.
As a mattrir of fact, the distortion of whioh fig 19 is a model cannot occur because it would involve an alteration in the spacing of the atoms in the cryatal lattice, which X-ray analybis shows does not occur. In any distartion large bundles of rods must stick together. When they slip they must slip at least one atomuc distance along the direotion of slip--they may ship much more.
In the model one atomic distance is reprosented by a given traction of the diameter of each rod In order, therefore, to see what the model looks like when it is forced to shoar in such a way that the shp of each rod on ite neughbour is
one atomic distance at every point where there is any slip, the sloping board which produced the effect shown in fig 19 was replaced by a pule of drawingboards the thickoess of each of which represented one atomir distance These were arranged in strps so that the alope of the plane whach touched the edges of all the steps was the same as that used in the first experiment The model was then placed on the steps with the rods vertical and they were preased down as far as they would go Fig 20 shows a side view of the model in this position

Fig. 21 is a top new of the bundle of rode in the same position as they occupied when the photograph for fig 20 was taked The pont of new, the method of illumination, the amount of ahear and the orientation of the plane of alip are identreal with those applicable to fig 19 It will be seen that the " model slip hnea " are very different from those shown in fig. 19 In general they run parallel to the trace of the plane of alip which is marked below the photograph. Neglecting the details of their structure in geveral direction, they are straight lues which have no connection with crystal planes, but when examined in detal they have a jagged appearance It has been known for a long tume that allp lines on the surface of iron crystals are not straght in detal We have found that when angle crystals are straned so that the shear is uniform tbroughout a finte volume, the general direction of the slip hues can be found with fair accuracy, and this direction is constant over the whole of a flat surface ground and polished on the outaside of a crystal. We have already shown that thas direction conncides with the trace of the plane of alip derived from distortion measurementa It appears, therefore that our model does in fact reproduce with remarksble accuracy all the facts connected with the distortion of iron crystala which we have brought forward

Prediction of Variation in Character of Slip Lines with Orwertation of Plane of Slap to Surface of S'pectmen.

The success of our model in fitting together the known facts about slipping in iron crystals naturally led us to consider whether it would enable us to preduct any hitherto unknown properties of iron The prediction which seemed most saitable for mmediate vertication was a possible variation in the character of the slip lines with changes in the orrentation of the surface of the specimen in relation to the drection of slip. It will be seen that whatever the form of the bounding surface of the individual rods of the model may be (in our model they were hexaponal, but that is not essential) the' jagged elemeuts of the lines of slip will flatten out and approximate to the general direction of the alip hnee whioh will tharefore become almosst straight when the surface of the
apecimen is nearly parallel to the direction of slip In the hmit when the direction of elip is in the surface of the specimen, the slip lines should appear quite straight provided that the surface is flat and that the hnes can be made visble C'onversely, the most jagged slip hues may be expected when the aurface of the apecimen is most nearly at right angles to the slip lenea.

In order to test this prodution one of the extension specimens, Fe 3, for which the orientation of the direction of alip bad already been worked out from distortion measurements, was taken, and two of its edgea were ground down in guch a way that two new faces were formed Both were parallel to the anis of the specimen and one of them was also parallel to the durection of slip The necond was perpendicular to the first, so that it made the greatest possible angle with the direction of slip The sipecimen becaine therefore a prism whose section was an irregular hexagon Referring to fig 9 , it will be seen that the dotted line SM represents the orientation of thr first of these new faces This line makes an angle of 57 degrees with face 1 , which corresponds with the axis $\phi=0$ Accordingly the new faces were ground at angles of 87 degrees and 147 degrees with face 1 The faces were then pohshed and the specimen again extended. Fig 22 shows the appearance of the shp hnes on the now face cut parallel to the direction of slip, whule fig 23 shows the slip hnes in the fare cut at 174 degrees to face 1 It will be seen that our predirtion is verified in a most strikeng manner The slip lines in tig. 22 are remarkably continuous, they are also straighter than any others we had obtained before, as can be seen by comparing fig 22 with figs 16,17 and 18 The vertical lones in figs 22 and 23 arc due to irregularities in the surface of the specimen which we attribute to somewhat inexpert poluilung it will be seen that the amall wobbles in the slip lines shown in fig 22 are associated with these grinding and polishing marks. If the surface had been flatter, the slip lines would have been even straighter

The slip lines shown in fig 23 are, as we predicted they should be, more jagged or curved than any of the others In order to confirm thas result we ground new faces on another specimen-thas tume a compression disc, Fe 3c. The apecimen was first compressed to $\mathrm{c}=0.908$ The distortion at this stage was culculated and the direction of slip in the dastorted specimen found Ita co-ordinates were $\theta=52$ degrees, $\phi=354$ degrees. Three flat faces were then ground on the curved aurface of the specimen so that they were all parallel to the normal to its upper and lower faces. Two of them were parallel to the direction of slip, $i e$, they were parallel to the plane $\phi=354$ degrees The third was cut at right angles to these so that ite equation was $\phi=84$ degrees Theme extra flat faces are seen in the photograph fig 4, and the relation between

Fic 17

Fig 18

\because
11
\bar{i}
11

Taylor' inill Elam

IIG 22
$\times 150$

Fic 23

thein and the co-ordinate axes 18 shown in fig 12, where an outhe (opy of lig 4 is shown in pogition on the sterrographic dagram representing the disturtion of Fe 3 c

The specimen was next rompressel to $\varepsilon=0.840$ Fig 24 shows the appearance of the surface ground parallel to the line of shp Sorue dufficulty was experienced in showing any slip lines at all on this surface and carrful arrangement of the top illumination wiss necessary It will be seen that the slip hees are extraordinarily straight Their direction can be measured to 05 degrec. The inclunation of the slip lines to the truce of the flat top of the specimen was found to be 37 degrees, so that their inchastion to the normal to the flat top was 53 degrees Thus direction is shown in fig. 12 as the shaded carcle \mathbf{S}. The inaluation of the direction of slip is given in Table II. It is 53 degrees, so that there is perfect agreement between the alip hines and the trace of the slip plane

Fig 25 shows the slip lines on the flat face $\phi=-84$ degrees It will be seen that they are jagged or curved as our theory led us to predit t, but that at as possible to measure their general diretion with a probable crror of about 4 degrees. This direction huppened to be parallel to the trace of the flat top of the specimen Its poestion is represented by the point A in fig 12.

Fig 26 shows the slip lines which appear on the tup surface of the spocimen (the surface which had been in cuntact with the sheret plutes duning conspression). It will be seen that here again they are very much leat, but that ther general direction can be determmed with a probable error of about 3 degrees. This direction, which wag mensured as $\phi=80$ degrees, is marked on the stereographic projection of fig 12 at B Agan, the plane of slip coincides to the himit of accuracy of our mensurements with the general direction of the slip lines.

Coneluswon.

The final result of this work is to show that the mechanam of distortion in iron crystals is aubject to laws which are quite different from those which govern the slip phenomena in any metal hitherto nuvestigated The particles of the metal stick together along a certann crystallographe direction and the resulting distortion may be likened to that of a large bundle of rods which slude on one another The rods atick togetheringroups, or amaller bundles of irregular cross section, and the slip lines which appear on a polished surface are the traces of these bundles on that aurface When the distortion of the cryytal in bulk is a unform shear these bundles atick together to form plates of irregular thickness, but lying in general with their planes parallel to the plane of alip determined by external measurements of the surface. The plane of these plates
is determined by the direction of the principal stress. It han no direct relationship with the crystal axes
This conception was arrived at entirely as a result of external measurements of the specimens and mrasurements of the orientation of thoir crystal axes. The fact that it appears to explain the nature of the slip lines is therefore remarkable. The slip lines, which aro curved in detal, preserve a general direction which can be measured in cases where the distortion is uniform, and this direction coincides with the trace on the polshed surface of the specimen of the plane of slip determined by external measurements The slip lines appear to have no direct relationship with any of the principal crystal planes.
Perhaps the most telling point in favour of the theory is that it has enabled us to predict the hitherto unknown fact that if the crystal is cut with a polished surface parallel to the direction of slip the alip hnes are all atraght. When there is an appreciable angle between the polshed suriace and the direction of alip the alpp lunes are jagged or curved, and the greater thas angle the more jagged they become, but even no they preserve a general direction which is easily measured and is in agreement with the distortion measurements

Bearing of these Conclusuons on Previous Work

This completes the work up to a definite stage Before concludeng, it may be of interest to bring out the connection between our results and those of previous workers. Nearly all our predecessors* have assumed that the cryatal has a plane of alpping which is a crystal plane, and in most cases they have attempted to correlate the slip lines with traces of cryatal planes If the work described in this paper is accepted, it is clear that that method was foredoomed to fallure. One notable exception, however, 18 to be found in the work of Osmond and Cartaud, \dagger who point out that a mong the ship lines which occur when an aron crystal is straned, curved ones predominate. They were unable to find any relationship between these curved lines esther as a whole or in their detal and the crystallographic planes. In order to produce slip lines which are atraght as a whole, though curved in their detauls, it 18 essential in the light of our work here described to subject a angle crystal to a unform distribution of atress It was only after a careful study of the methods by whach a unform atran can be produced that we were able to discover the relastionshup between slip lines and distortion.

[^88]In conclusion, we should like to express our thanks to Sir Lirnest Rutherford for allowing the work to be carried out in the Cavendish Laboratory, to Prof. Carpenter for the use of his laboratory in which the mirro-photography and most of the X-ray work was done, to Dr A Hutchinson for allowing us to use several of his crystallographic measuring instruments, and to l'rof Ingles for allowing us the continuous use of a Buckton compression machine in his laboratory We also wish to express our gratitude to Prof Edwards and Mr. Pfell for supplying the large crystals of iron with which the work was carried out, and to Mr W.S. Farren for much help in designing special apparatus for marking, holding and measuring our specimens

DESCKIPTION OF PLATES

Plate 10

Fin 16 -Ship lines on polushed surface of aron erystal Magnification 100 The lines parallel to the lroad black line which is a serstel mate by a razor hlade are marka made in poliahing
Fís 17 --illip linea maknification 45 . polah marks vertical
Fto 18, -Silp lines (hurizuntal in phutograph) Pohah marka at angle of abnut on degreea to alip Lines Magufication 350.

Plate 11

Fia 10. -Top vlew of model, showing appearance where no rods atuck together during duntortion
Fic 20 -Sule vew of model showiag henugonal rods standing vertically on slope of stope.
Fiu. 21.-T'op view of model showing appearance when rode slip a definte amount or not at all

Platr 12

Fra 22 - Ship linea on face of $\mathbf{F e} 3$ cut parallel to direation of slip Magnification 150
Fia 23 - Slip lines on face of Fe 3 out at maximum posabile angle with duruction of elip. Magnificution 150.
Fia 24 - Slup lines on vertical face of Fe 3c cut paralich to direotion of slip Magnifioation 150.

Fra. 25 --Slip lines on vertical face of Fe 3 c cut at maximum angle (55 degrees) to durection of olip Magnifiontion 150
Fig. 26 -Ship lines on fiat top of iron crybtal These were not actually taken on Fo 30, becaume the specimen got ton much soratshed, but they were taken on enother almost identical specimen Angle to dirortion of sly, 37 degreen Magmefication 150. Blip lunes paraliel to bottom of photograph

The Structure of Thin Falms. Part VIII.-Expanded Fulms

By N. K Adam, M A , Moyal Society Sorby Research Follow; and G Jessor, Ph D)
(Communcated by Sir Willsam Hardy, F H S - Received Junc 14, 1926)
The present paper describes a closer investigation than has hitherto beon possible of the "expanded" state of surface films and of the relation of the films in this state to the condensed films on the one hand, and the gascous on the other. The expanded films were first reported by Labrouste (1) and exammed more closely by one of us (2 , Parts Ill to VI). They are formed from the close-packed condensed films by rase of temperature, the change beiug complete in a few degrees at constant pressure, and being of much the same nature, whatever the substance. It has been established in previous papers that the temperature of the expansion is raseel regularly by an increase in the length of the chan of the molecule, the amount of thas rise being practically the same in all homologous scries where thore is only one chain in the molecule, the absolute temperature of expansion depends, however, on many factors, not yet understood Evidently the expansion is a partial overcoming of the cohesion between the molecules in the condensed film

In the expended films, however, there is still much cohemion In Part VII we have shown that some of the expanded films possess, at low surface pressures, a definite vapour prefaure of a few tenths of a dyne per cm, this region ending in a state of the films which is analogous to a gas in two dimensions In the gaseous film, there 18 very little cobesion between the moleoules. When there is a definte surfuce vapour pressure between the expanded film and the gaseous, we must clcarly regard the expanded film as " liquid." We propose to call the expanded films which end in this vapour pressure region " hquid expanded films."

The results of thas paper, as well as some of those of Part VII, show that films must often be regarded as belonging to the "expanded" class, oven though they may not behave as liquds and do not show phenomens of cvaporation in the surface Such films we shall call "vapour expanded films", they pass without dascontinuity into the gaseous films as the surface pressure is dumumahed By analogy with matter in three dumensions, we consider the liqued expanded films as hquids below their critical point, the vapour expanded as above the critical point. The mand difierence between aubstances
which form " lqquid" and those which form " vapour" expanded films anems to be that with the former the critical evaporation temperature as above the expansion temperature at which the condensed film changes into the expanded, in the latter, the critical temperature is below the expansion temperature

The epparatus used lor measunng low surface pressures is that described in Part VII, for pressures from about 0.5 dyne per em upwards we have used another instrument on the same principle, actually a prelimanary model of the senaitive apparatus, without covers for protection against draughts, with a thicker torsion wire giving a force of 0256 dyne per cm for one degrec rotation of the head, and without the verner on the torsion head The alk fibres connecting the float to the rest of tho instrument were replaced by slica fibres; and to allow of the use of the instrument at higher temperatures, these have been fixed by solder instead of rean cement Both for convenience, and in accuracy, this instrument is a great improvement on the carher arrangement with the balance and ar jets, and the thin gold ribbons at the ends of the float are adequate to prevent leaks at any surface pressure.

Temparature has been controlled by ammeraing the trough to within a few mullimetres of the brim in a very large water-bath with thermostat, up to 35°, above 35° we have used amall burners under the trough. The waterbath changed temperature so slowly that the thermostat was usually unnecessary

Luquad Expanded Falms

Fig. 1 ahows the preasure-area isothermals on myristic acid, on $\mathrm{N} / 100 \mathrm{HCl}$, from 25° to 34°. The three curves unset show the varnation of area with temperature at the three pressures of 14,50 , and 150 dynes per cm . The curves replace figs 1 and 2 of Part III *

[^89]Fig 2 gives simular data for the α-bromo-acids of dfferent lengths of chain. The 14, 15, 17 and 18 carbon acids were Dr. Le Sueur's specimens, 16 and a

Fio 1-Myristlo And.
dupheate apecimen of 18 , giving practically identical rcsults, were made here. The 18 carbon acid was exdmmed at $26 \cdot 2^{4}$, as it is a condensed film at room temperature, the other measurements were made at room temperature.

Fige. 1 and 2 show that (1) the shape of the isothermal of the expanded film
The lose of weight is the cetual emount of solution whob falls from the pipette, plus the ovaporation from tho drope during formation, plus the evaporation from the teat tube during the whole period of waighng. The weight required is the num of the first and second of these quantities, The weight of the solvent epaporating from the test tube during weighing was delermined un a blank expenment, care being taken that the times of the blank end the dropping experiment were apprommately equal. With potroleum ether of $60^{\circ}-70^{\circ}$ boilling point, the correction to be subtrasted from the firat weight was about σ per cent of the whole. Between 13^{n} and 18°, tempersture made no differance to the welght delivered oulalde the arror of dropping.
Probably the areas per molocule given in the curvea are oorreot to 3 per cont.
is acarly independent of the longth of the chain when the film 18 exammed not far above the temperature of expansion, (2) the transition from the

Fio 2 - α-Hromo-Aolda
expanded to the condensed state gives a curve nowhere strictly honzontal, with a sharp changr at the expancled end and a very gradual change at the condensed end of the tranaition region It is difficult to say where the condensed curve is roached, indeed, there may be a very alght increase in area of the condensed film with increasing teniperature It should be recalled that the condensed curve of myristic acid is not one of the closest possible parking, but is on this solution one of close packed heads, in which compression causes the headm to pack more closely by rearrangement

The discontinuous passage of the expanded curve into the transition region was masked in the curver obtamed with the balance and arr-jet apparatus, we believe it now to be grueral, and have observed it also on elaidac amide, heradecyl alcohol, and margaric nitrile.

The films of myristic acid are not quite free from hystereas, there 28 an appreciable dolay in attening pressure equilbrium when the barrier is set at a given area of the aurface This is most marked in the flattest regions of the ourve, where the expanded film 18 turning into the condensed. The
pressures recorded are after about half a minute, when they are practically steady. The hyateresis is so small in amount that in this case it will be difficult to make an exact invratigation of it, we have not yet attempted to do so.
The mynstic ach (at any rate at room temperature and slightly above) and the bromo-acids are defintely hquid expanded films, showing a surface vapour pressure. As the surface vapour prossure is never more than a few tenths of a dyne, and tho expanded curve approaohes the vapour pressure region farly steeply, it is possible to extrapolate the expanded curve to no compression farly accurately It is a very remarkable fact that with the hquid expanded films, the area extrapolated to no compression (with the angle chain molecules) is almost a constant. The following table gives the areas at no compression, and the surface vapour presaures, at the temperatures indicated, which, except in the case of oleic acid, are farrly close to the expanaion temperature -

-	Sulugtanco	Area at no oompresslon	Temperature of hall expansion, at 14 dynea por om	Surleao prenaure vepour	Temperature ol measure. ment of area and vapour preanure.
Myrutic acid	C 1	Sy Al'	$\begin{gathered} \circ \\ 0 \\ 0 \end{gathered}$	Dynea per cm 018	${ }^{n}\left(\begin{array}{c} 0 \\ \operatorname{room}(13-10) \end{array}\right.$
Bromo-acids	Cl_{11}	485	(-17)	005	
	Ci_{1}	465	(-7)	004	",
	Cl_{11}	4 4	3	$0 \cdot 02$	"
	C1,	465	13	0013	
	C_{11}	485	22	-	20
Elajdio arld	Cl_{11}	50	(-05)	000	room
Erucse mold	Cl_{1}	60	45	0015	"
Trajdic amido	C_{11}	49	-	-	"
Frumin minde	$(14$	(a)	--	-	,
Olele moid	C_{10}	55	(-30)	008	"
Palmille nutrile	Cic_{10}	45	6 5	0 15	"
Hemadecyl urea	Cl_{11}	47	485	-	51
Hezadocyl alcohol	O_{11}	47	46	-	53
Hexadacyl phonol	Cl_{11}	40	60	-	8)
Palmitic amide	C_{11}	47	316	\cdots	435

All the areas are so close to 48 sq $A \cup$ that the difference is possibly experimental error, except with palmitic nitrile and oleic acid The palmitic nitrile was collapsing to some extent, and the obscrved area may be too small, the olecc acid was probably nearly 50° above its expansion temperature, whilo the other substanops were nearly all withn 15°, and mostly within 8°, of the expansion temperature It thus appears that the areas, at no compresaon, of the liquid expanded films are very close to 48 sq A U per molecule when the temperature is close to the expansion temperaturo.

Earher papers gave the result that at a constant aurface pressure, after the change from the condensed to the expanded film is complete, there is a slow further increase in area with rise of temperature, of the same oriler of magmitude as the thermal expansion of a gas The present oxperiments confirm this, the magnitude of the thermal expansion of the expanded film 1s, however, difficult to determine with less than about 100 per cent error

The surface vepour pressures in the table decrease with increasing length of chain, becoming very small in the 22 carbon scries These vapour pressures have no relation to the temperatures of expansion beyond the general one that vapour preasures decrease with length of chain, and in any one series the expansion temperature in raised by lengthening the chain

Fig. 318 of oleic acid, on dilute acid with and without permanganate, the curves on acid only being taken at two temperatures, and showing the thermal

Fia 3 -Oleno Aud.
expansion of the expunded filin This filmat 14° is definitely " liquid expanded," although it is probably about $45^{\circ} \mathrm{C}$. above its expansion temperature

Expanded Films with more than One Chain

Fig. 4 gives eurves of lecthin and triolein Triolem tends to an aren of 135 at no compression; we have also made measurements with the older apparatus on tripalmatan and tristearin, obtaming about 115 sq A.U. at 60°, that is, just above the expanion temperatures Therefore in these compounds with three chains, the film in the luqud expanded state occupies about 24 tımes the area of the corresponding compound with a angle chain.

Lecithin, with one saturated, and one unsaturated chain, but with the bulky cholne and phosphoric acsd groups at the head of the molecule, occupies about

Ho 4
114 sq. Λ U. at no compression, a gieater area than that proper to two simular chains singly, in the expanded state In other respects theso curves resemble the expanded curves of single chain substances*

The equation of state proposed by Cary and Rideul (3, p 309), on the basis of their expermnents on the spreading of films from crystals, floef not fit the data for any of these aubstances Ther equation

$$
\mathrm{F}=k\left(\frac{\mathbf{1}}{\mathbf{A}}-\frac{\mathbf{l}}{\mathbf{A}_{0}}\right)
$$

would require that F plotted aganst 1/A should be a straight line. The slope of the curve with F as ordinates and I/A as abscinsar actually increases steadily

* Fig 4 elao shour n-monolaurn and hydroleorthin, the latter ia a condensed film, expanding at about 28° under 14 dynea cormpreseion to an expanded ourve amular to that of leotbin The curve fur the monolaurin is only approxmate, the film collapsing, probably dissolning, very rapully.

Hydrolecithin ahown a great deal of hystervar If sufficient Ume na allowel for the film to settle down, the full urue la given, if the area is contracted rapidly, the right-hand dotted ourve may be obtained, il the aros is increased rapidly from a high compresaion, the left-hand curve may be found. If the area is set auddenly to a given amount, from a low compresion, the observed compression is at first high, falling gradually to the equilibrium carve, if suddealy decompressed, the film shown a low preasure, nang to the equilhbrium The tume for sttainment of equlibrium preselure is several minutes At room tempersture, the nse or fall to the equilibrium presture it not exponential, but the rate falls off more rapidly than if it were exponential at Brat. Further invertigation of this hyateresis is needed, it is doubtleas to be asonbed to the very complicated heade taking time to pack closely. The cross aection of the head is about $\delta 2$ eq. A.U.
as the pressure increases from small values up to 16 dynes or more, and in some cuses is inore than doubled in this range It is not surprising that thes equation proves to be meorrect, as it is based on the assumption that the pressure is proportional to the number of molecules in excess of the number J/A A_{0} requred to pack the film to the area at no compression Since the film can certanly not pack more closely than to about 20 sq A.U, we should expect the pressure to increase more rapidly with decreasmg area than would be required by this equation

Vapour E'spanded F'ulims

Typical natances of films which expand from the condensed state iuto a atate which passes without discontinuity into the gaseous films are the ethyl esters Fig 2 of Part VII shows that none of the esters give a horizontal vapour pressure region, except when the liquid surface phase is a condensed film Earler papers, and figs 5 and 6 of this paper, show that the expanded

Fia. s - Ethyl Palmiltate.
ourve passes into the condensed in much the same way as with the liquid expanded films just considered, there ss the ame discontinuity at the expanded end of the transition region and gradual change at the condensed end, the ohief difference being that the area of the expanded film is greater with the ethyl esters than with the liquid expanded fllms.
Whle it is true that none of the esters ghow a region of constant vapour pressure between the expanded and the vapour regions of the curves, still
ethyl palmitate at 15° and ethyl pentadecylate at $7 \cdot b^{\circ}$ ahow a farly sharp change of direction between 100 and 150 A U . at about 025 dyne per cm This area is of the same order of magnitude as that of the molecules lyng flat on the surface. Fig 6 shows clearly the influence of temperature on the isothermals of these esters, The temperatures of half expansion, under $1 \cdot 4$ dynes por cm , are ethyl palmitate, 13°, ethyl pentadecylate, about 5°, ethyl myristate, below 0°, probably about $-\mathcal{B}^{\circ}$. The curves of ethyl palmitate at 15° and of ethyl pentadecylate at $7 \cdot 5^{\circ}$ are nearly identical, these may be taken as typical of the ethyl eaters just above ther expansion temperature The curves of ethyl pentadecylate at $17 \cdot 5^{\circ}$ and of othyl myristate at 15° show the influence of a rise of 12° and of 20° above the expansion temperature, the angle at the lowest point of the curvos is very much blunted at even 12° above the expansion temperature Twenty degrees above the expansion temperature the film 18 evidently a long way above the two-dimensional oritical evaporation temperature.
A few experiments have heen done on the methyl esters, which give vapour expanded films, very much like the ethyl esters The expansion temperatures of the methyl esters are roughly 10° above those of the ethyl eaters
The methyl ketones \mathbf{R} CO CH_{3} also form vapour expanded films Fig 6 shows the FA-F curve for tridecyl methyl ketone on distilled whter at $12 \cdot 5^{\circ} \mathrm{C}$.

Fin. 6.

It condenses at about 3 dynes per cm , at this temperature, to a film giveng the characteristic curve of close-packed chains Heptadecyl methyl ketone gives a condensed film with close packed chains expaning above 40° The condensed films are hquid, not sold

Methyl Ketones.

Substance

Thidecyl methyl ketone
Heptadecyl methyl ketone

Area of condensed
film at no compression (sq A.U) dynes per cm

Temperature of half expansion, nodre 14

20 Б

The Infuence of Permanganate on Unsalurated Lankages

An attempt has been made to apply a definite attraction towards the water, in the neighbourhood of the middle of the chain of the molecule, by desolving reagents in the water which mught be expected to act on a double boud in this part of the molecule Mercuric chloride, acid potassium bichromate, and hydrogen peroside were found to have no apprectable action on the films Potassium permanganate, in 080 per cent concentration, or in ten times this concentration, with $\mathbf{N} / 10$ sulphuric acid, always caused the films which had a double boill in the maddle of the chain to become "gaseous" Fig 7 shows

Fic 7 --Influence of Permangansto.
the effiect on olesc acid, triolem, and erucic and brasaidic acids, the curves for the last two being dotted, as but few pointa were obtanned. Elasicic acid on permanganate gives a curve almost identical with that on olenc up to $\mathbf{2}$ dynes
per cm. Comparison of these curves with those obtained by Sohofield and Rideal (4) on the absorbed films of the soluble fatty acids (RT being equal to 400, very nearly) shows that the cohesion between the film molocules has been reduced to a very amall amount for olerc acid on permanganate, with erucio and brassidic acids, which have four more carbons in the chain, there is rather more cohesion, but the films are far above their critical temperature

The same "ffect has also been found on films of ethyl brassidate, erucic and elande amides, and on lecithin, which has one saturated and one unsaturated chain Permanganate has no such action on films of ethyl pentadecylate, palmitic nitrile, α-monolaurin, and barely perceptable action on the reo-oleic acd, which has the double bond in the $\alpha \beta$ position to the carboxyl. On tetradecyl alcohol the film wus not a gaseous film, but there was evidence that the $\mathrm{CH}_{2} \mathrm{OH}$ group was undergoing oxidation to myristic acid, as the curve alowly changed from that proper to the alcohol towards that of the acid at the same temperature This change is to be further investigated

It is quite clear that permanganate turns the film into a gaseous film only when the double bond is in the middle of the chain, it appears that the action is amply to make the molecules lie flat We have other evidence that the molecules of the shorter chann acids lie flat on the surface in the adsorbed films of the soluble acids, and the flat position appears to be characteristic of the gayeous state of the films

Discusszon of the Structure

The experimental evidencr described abovo shows that the liquid expranded state is a definite intermedinte stage betweon the gaseous and condensed films Its stability depends very much on the nature of the head of the molecule, the free carboxyl group, and the bromo-acid head, favouring the formation of liquid expanded films, while in no case has a ligud expanded film been obtained with an catcr or a methyl ketone The area at nu compression as limited and is with one chain, 48 aq A.U, being madependent both of the length of chain and the nature of the bead. Thes aren ϕ is much too small for the inoleculea lying flat and much too large for the vertical close packed orientation

In aldition, there is considerable compressibility, which decreases with increasing compression, and a large coefficient of thermal expansion. The change from the expanded to the condensed films has some resemblance to a chunge of atate, but requres a few degrees interval of temperature for completion.

We suggest that the molecules are coiled down in helioes, with vertical axis, and are closely packed by their cohesion, even without external compression,

The compreasibility may be due to the chains being straightened out by lateral compression and forced vertical 0 wing to the tendency of the valencies between carbon atoms to form the tetrahedral augle with each other, the cross aection of thas helix should be about the same ay the maximum section of cyclobexane or cyclopentane by a plane parallel to the ring Direct evidence as to the dimensions of these ringy does not appear to exist, a possible bass for an estimate is found in Bragg's measurements on crystals of naphthalene and anthraceve (5). The area in the plane of the ring occupted by one molecule of naphthalene, as parked in the crystals, is 834×869 sun $57^{\circ} 11^{\prime}=61$ sq. A U ; the corresponding area of ant hracene is $87 \times 11 \cdot 6$ sin $55^{\circ} 36^{\prime}=83 \cdot 1$, Now the difference between benzene and naphthalene 18 the same as that between naphthalene and anthracene , therefore benzene should have an area, in the plane of the ring, of about 39 sy $A \mathbb{U}$ It is well known that additional hydrogens greatly increase molecular dumensions, so that 48 sq AU dues not seem an unreasonable value for the cross section of a helix with vertical axis

The lugh co-efficient of thermal expansion may be analogous to the high co-efficients observed with hquefied gases not far below their critical point
The rapour expanded state in not a delinte phase in the surface, but if the films are not far above the critical evaporation temperature, the properties of the vapuur expanded films are not very different from those of the liquud expanded Probably the vapour expanded films are homogencous mixtures of molecules colled down and lying fat, an the temperature is raised, or pressure lowered, the proportion of those lying flat is increased

In the following paper some instances will be given of films whelh expand straight from the condensed state into a state farrly closely resembling perfect gases; in these the molecules must be nearly all lying lat These molecules heve polar groups at each end
Sinoe the fatty acids gencrally furm linuad expanded films, but the esters and methyl ketones form vapour expanded films, it appears that the lateral attraction between the coled-down molecules is much increased if the heads have plenty of reardual affinity Possibly far the most important factor determining whether a substance forma a hquid or a vapour expanded film is the amount of the additional cohpsion given to the conled-down molecules by the adhesion between adjacent beads, It would appear that the contribution to the total cohesion, made by the adhesion between headr, is much greater in the conled-down configaration than in the vertical close packed arrangement of the condensed films. This would account for the comparative independence
between the valuc of the surface vapour pressure and the temperature of expansion.
If the hypothesis that the chans are colled down in incorrect, we are forced to fall back on somo special kind of vibration, which is so controlled by the cohosive forces that the area in the liquid expanded films becomes defintely limited at 48 aq A U There neems little hope of developug a working hypothesss on such assumptions

Summary

1. The expanded atate of the films of fatty acids, bromo-acids, esters, methyl ketones, and other compounds possessing one chain only in the molecule, and of aeveral compounds with more than one chain, has been re-investigated with improved apparatus.

2 Two types of expanded film exist-the liquid expanded, which exhibita a constant vapour pressure in the surface, and a discontinuous tranition into the "gaseous" film, und the " vapour expanded," which passes contrnuously into the gaseous film The liquid expanded filus show a defintely lumited aren at no compresaion, which is very close to 48 sq. A U per molecule, and is independent both of the nature of the hearl and of the length of the chain, within the range of substances investigated. The vapour expanded films have no limiting area, as the temperature is raned und the pressure lowered they gradually approach the gasoous cundition Some vapour expanded films give, near the temperature of expansion, pressure-urea curves farrly closely resembling those of the liqued expanded films

The structure of the hquid expanded filme may be that the long chains are coled down in helices with the axis vertical, the molecules being close packed in this orientation by their mutual cohesion. The two-dimensional eveporation in the surface will then be a separation of the moleculcs, followed by uncoling and lying fiat The hquid expended state can only exist when there is aufficient adhesion between the moleculesin the cooled-down state It appeara that the adhesion between the heade of the molcoulea is an important factor in conferring tho necessary adhesion in this configuration The esters and methyl ketones formed only vapour expanded filma, the auds and most of the other compounds liquid expanded films
3. Acid potassum permanganate in the water acts on ethylenc linkages in the muddle of the chain in such a way as to make filma gascous, which would be either condonsed, or very far removed from the gaseous state, in the absence of thes reagent Permanganate does not act on baturatod chains nor on one in
whioh the ethylemc linkege is next to the head of the molecule. The action is probably aimply that the extra attraction on the middle of the chain causes the moleoule to lie flat

4 The methyl ketones form condensed films with close-packod ohams, the heads packing to less than 21 sq . A U
b. Hydrolecithin, in the condensed atate, requres some minutes to reach its final prasure in the films; a similar hysterears, though more rapid and much smaller in amount, probably occurs also with a simple fatty acid. The hysteresus may be due to alowness of the moleoules in taking up ther final paciangs

We are indebted for the leathin and hydrolecithin to Prof Leathes, the specimens being prepared by Dr. P A. Levene, of New York Messrs J. Crosfield and Sons, Ltd., kindly gave us the \boldsymbol{a}-monolaunn, and Mr W B Savile the methyl ketones

REFERENCES

(1) Labrouste, 'Ann. de Phya,' vol 14, p. 164 (1920)
(2) Adsm, ' Roy Soc Proo,' Parta I to V. A, rol 99, p. 336 ; vol 101, pp 462, vol. 103, pp 676, 687 Adam and Dyor, Part VI, vol 106, p. 604 Adem and Jemeop, Purt VII, val. 110, p. 423.
(3) Cary and Rudeal, ' Roy. Soo. Proo ;'A, vol 109, p. 300 (1025).
(4) Sohoflold and Rideal, 'Roy. Soo. Proo,' A, vol 109, p 67, vol. IL0, p 170
(6) Bragg, 'Phys Boo Proo.,' vol. 34, p 83 (1021).

The Struature of Thin Films. Part IX.-Dibasio Substanoes.

By N. K. Aday and G. Jessor.

(Commanjoated by Bir Wlliam Hardy, F.R.S.-Reoeived Junc 14, 1026.)
We have been ancuous for some time to examine mono-moleoular films of long chain molecules with a polar group at each end. In 1924, Mr. Dyer prepared apecimens of the acid $\mathrm{COOH}\left(\mathrm{CH}_{1}\right)_{10} \mathrm{COOH}$, and of its mono- and dethyl ester, but the publication of the results obtanned on these has been deferred unthl a more extended senes of compounds were available. Now Dr. D. A Fairweather, who has prepared a long seres of compounds of thes senes, including many new compounds, has most lindly placed at our disposal specimens of the acide $16,20,24$ and 32^{*}; of the di-ethyl esters $10,11,16,20$ and 32 ; and of the mono-ethyl ester $\mathrm{COOH}\left(\mathrm{CH}_{4}\right)_{10} \mathrm{COOC}_{2} \mathrm{H}_{3}$ Films of these compounds have been examuned by the methods of the preceding paper.
The esters gave films of farr atablity and easy to work with ; figs. 1 and 2 show the $\mathrm{F}-\mathrm{A}$ and FA-F curves. The shorter chain substances are gaseous films at room temperature; below 2 dynes per em they approach much more closely to the perfectly gaseous condition than any insoluble films yet stadied. The minumum for FA is about 330, the theoretical for a perfect gas being $1-372 \mathrm{~T}$. or about 400 Variation of temperature from 1° to 15° made no difference appreciable within the accuracy of experment, the fact that the curve for 10 appears below that for 11 is probably due to the former being so volatule that the moleoules leave the film too rapidly for exact measuremente. Above 2 dynes par cm . the correction to the gaseous state due to the size of the molecules causes the curves to take a form similar to those of the adsorbed films of the slightly soluble acids (reference 4 of preceding paper).

At 1° the eater 11 changes to a condensed film.
The ester 16, in the gaseous state, shows more cohesion, the minimum for FA being just above 200. The three muddle curves show the influence of temperature on the transition from the gaseous to the condensed state. This resemblea the transition from the vapour expanded to the condensed atate in the case of the ethyl esters, but thereis no discontinuty at the gaseous end of the transition region.

The ester 20 is condensed up to 40°, expanding at higher temperatures to a

[^90]

Fros. 1 and 2. -Diethyl Enters.
gaseous film resernbling those of the lower esters. The ester 32 forms a condensed film at all temperatures we could employ.

The mono-ethyl ester 16 was examined on dulute HCl . Its behaviour is very similar to that of the di-ethyl ester, corresponding curves to those of fig l being found at a temperature thrie or four degrees lower
The condensed curves all cnd, above 10 dynes per cm., in a steop ourve of area 20 to 21 sq A.U, e the cross section of chains close packed This ahows that under moderate compressions the molecules atand vertioally with only one end in the water Fulms in this state were found to be solid, except with the ester 11, which was so visoous as to be nearly solud. In most cases there was a farrly rapid collapse above 10 dynes per cm.

The question arises whether any aign can be detected of a paciang in which both polar ends of the molecules are in the water, the chains forming an aroh between the molecules. In such a packing the two ends would ocoupy an area of at least 40 and the arch mght easily require considerably more, owing to the umposeiblity of bending a hydrocarbon ohain very sharply ; since there is no suoh definite area, we conclude that this packng is never found. But below 10 dynes per cm . the condensed filme' do have a greater area than that of close paoked chains. The curve for the condensed film, produced from 2 dynes, where there is a sharp bend, cuts the absoissa at about 28 sq . A. U, this area being rather variable in succesaive experments it seems possible, therefore, that a proportion of tho molecules are adhering by both ends to the water aurface, these being entangled among a greater number in an upright position, and being themselves foroed upright by compressions of 10 dynes per om
The marked tendency of these dibssic esters to form gaseous films is no doubt due to the atrong attraction for water at both ends, thu makes it easy for the molecules to he flat, and dufficult for them to stand upright. The molecules probably lie flat in all gaseous films, in oondensed films they are upright, closely paoked, and held together by the lateral adhemons of the chaing All the previous work on these filme shows thet thermal agitation tends to diarupt the lateral cohesion between the upright moleoules, and favour either a less definite or a horizontal orientation.

The temperatures of half expansion from the condensed to the gaseous films under 1-4 dynes per am. compreselon are as follows:-The anrve of change of area was very muoh like the usual change from condensed to expanded filma, and the change required several degreer for completion.

Temperalures of Half Expansion

The acids formed rather unstable films In the condensed atate areas from 6 to 18 aq A U. per molecule were obtained with a great deal of contraction. We do not think these low areas can be taken as evidence that the molecules form films two or three molecules thick on the auriace, as the areas were not reproducible in successive experiments if the temperature was varied, and very frequently not when all conditions were apparently constant, the contraction was so great that it was difhoult to select any one area as correct It ahould be said, however, that the acids 24 and 32 very frequently ceased contracting almost completely at an apparent area of 12 , and that the acid 20 had a tendency to cease contracting about 8 aq $A \mathrm{U}$ We think the most probable explanation is that much of the matcrial had been forced away from the surface, a tendency to cease collapsing whon a part of the film is left, as if part of the film was more stable than the rest, has been noticed before (Part I) It was easy to see visible aggregates on the surface after collapse had proceeded some way. The free carboxyl groups which would be exposed at the surface of the film, if the molecules were standog upright as in the condensed films of the esters, would form natural ponts for the adhesion of tresh molecules in the proper positions for bulding up crystals in bulk and would facilatate collapse
The acids 16, 20, and 24 wore found to form gaseous films, of rather amaller area than the esters At 2 dynes per cm , the areas were roughly two-thirds of those of the di-ester 16 m the gaseous state. There is thus a greater cohesional correction in the gascous atate of the films of acids than in those of the eaters, it is probable that thas is duc to the attraction between the COOH groups of neighbouring molecules in the film.

Summary.

The dibasio esters $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OOC}_{(}\left(\mathrm{CH}_{3}\right) n \mathrm{COOC}_{2} \mathrm{H}_{5}$ form mono-molecular surface films of the gaseous end condensed types. The cohesional correction to the gaseous films increasee with the length of the chams, the films of the esters, in which n has the values 10 and 11, being the closest approach to the perfeotly gaseons state yet found with insoluble filme.

R. W. Guraey.

In the condensed films the only stable state is one with the molecules adhering to the water by one end only and packed olosely in an upright poaition The transation from the condensed to the geseous films is of the same nature ase that from the condensed to the expanded filma described in previous papera; but the condensed films expand in all cases to films of the " vapour" type.
The behanour of the scids of the series, and of the mono-ethyl ester, for which n is 16 , is generally simular.

> The Number of Partıoles in Beta-Ray Spectra.-II. Thorıum B and Thornum ($\mathrm{C}+\mathrm{D}$).

By R W. Gurney, Ph.D , Trinity Hall, Cambridge.

(Communicated by Sır Ernest Rutherford, Pres R A -Received June 30, 1926)

1. Introduction.

Measurements of the number of particles emitted with dufferent velocitices in the beta-ray apectrs of Radium B and Radium C have been reoently described by the writer." In the present paper the measurements have been extended to the spectrs of Thonum B and Thorium ($\mathrm{C}+\mathrm{D}$). As before, portions of the magnetac spectrum were fooussed unto a Faraday cylinder, and the number of electrons determined in absolute magnitude

The conclasion reached in the provious paper was that in the case of both Hadium B and Radrum C there 18, underlying the beta-ray lines, a continuous spectrum simular to that of Radium E, and of the same magmitude-that is, contaning one electron per atom breaking up. This leaves little donbt that in these three bodies it is the nualear electrons ejected in the disuntegration with varging velocities which form the contmuous apectra. If this is true of other bodies we expect to find in the Thorium senes also large continuous speotra containing one electron from every disintegrating atom. The measurementa of the spectrum of Thoriom ($\mathrm{B}+\mathrm{C}+\mathrm{D}$) by Pohlmeyer \dagger showed, however, that the continuoue spectrum wan feeble in companson with the beta-ray line Hp 1398. But aunce an ionisation method was ased, no determination of the absolute number of particles wis ponsble.

$$
\begin{aligned}
& \text { " 'Roy. Soo. Proo,s' A, vol, 109, p. } 640 \text { (1028). } \\
& \text { † ' Z. I. Phyik.,' vol. 28, p. } 210 \text { (1084). }
\end{aligned}
$$

In the present inveatigation the gamma-ray activity of each of the souroes was measured on an electroscope and the number of atoms dasintegrating in a source of known gamma-ray eotivity was aftarwards determined by counting the number of alpha particles emitted, as descrabed below.

2. Apparafus and Method.

The radioactive material was deposited on metal plates 8 mm . long by 9.5 mm wide, which were tilted at an angle in the usual way, so that the beta partioles left the surface at angles approaching grazing incidence The sources of Thorium ($\mathrm{B}+\mathrm{C}+\mathrm{D}$) were obtsined on aluminum by exposure to the omanation, those of ($C+D$) were obtained on mokel by deposition from solution.
The method was the same as before, except that the residual gamma-ray effect was balanced out by means of the leak in an ionisation chamber, to the walls of which about $1 / 30$ of a volt was applsed. Reference should be made to the previous paper for the precsutions that were taken to ensure that no particles entered the Faraday oglunder other than those travelling direct from the source. A large correction is necessary for particles reflected from the metal plates on whoh the radioactive material was deposited, detals of this are given below.

3. The Magnetic Spectra.

The beta-ray lunes of Thorium ($\mathrm{C}+\mathrm{D}$) have been recently remeasured photographically by Black." The lanes which give the strongest photographic densty are -

Hp	Level of Orign.	Intensity.	Energy.
541	L_{1} level	100	2-52 104 volts
658 \}	Outer levels	$\{40$	$3 \cdot 69$
684 \}		25	3.98

He found that there is a complete gap in the line speotrum between $\mathrm{H}_{\rho} 4040$ and Hp 10080. The curve obtained by plotting the rate of charge of the Faraday oylinder aganst values of Hpis given in fig. 1. Thus demonstrates very clearly the eeparate eristence of contmuous and line spectra, for the speotrum curve remobes ite maximum sbove $\mathrm{H} \rho \mathbf{4 0 4 0 \text { , where there are no linea. And below the }}$ peaks at $\mathrm{H}_{\mathrm{p}} \mathrm{B} 40$ and 670 there happens to be no contunnous bsokground,
The thorough measurements of Poblmeyert chowed that some of the beta-rey

[^91]lunes of Thorium D produced irregulanties in the speotrom curve, bat in the portion of the spectrum investigated by him (above $\mathrm{H}_{\mathrm{p}} \mathbf{1 0 0 0}$) none of them

Fie 1 -Thorium (C +D). (Vertial acale representa divinions per minute per milligram.) were strong enough to give definte peaks. In the present measurements the urregularities were not investigated

The curve for Thornum ($B+C+D$) is given in fig $2 \quad B y$ subtracting the portion due to Thonum ($C+D$), as has been done by the broken line, we

Ma. 2-Thorium ($\mathbf{B}+\mathbf{C}+\mathbf{D}$) (Vertical acale representa divisions per minute per miligram.)
obtain the spectrum of Thorium B alone. At first anght this appears to be much emaller than that of $(C+D)$, but this a only a pecularity of the diaperaion. For, as was pointed out in the previous peper, if for a certain value of the magnetic field the Faraday oylinder collecta particles over the range of velocitiem $\mathrm{H}_{\mathrm{p}} \mathrm{500}$ to $\mathbf{5 4 0}$, then in a field of ten times the intensity particles are collected,
not over the range $\mathrm{H}_{\rho} 5000$ to 5040 but from $\mathrm{H}_{\rho} 5000$ to 5400 , that is, over a range ten tmes as great The expermental curves of fige 1 and 2 do not therefore at all represent the true velocity distribution of the particles as eroitted by the source We have to transform the contmuous speotrum by diviling the ordinatps everywhere by the corresponding field-strength This has been done in fig 5 , omitung the praks. This transformation does not apply to the height with which the peaks stand out above the continuous apectrum. For with the very wide slit used the whole of any beta-ray line will enter the Faraday cylonder at once for some value of the field corresponding to the top of the peak

4 The Number of Disintegrating Atoms.

The bodies present in the active deposit of Thorium are shown in fig. 3. Since the penod of Th B is much greater than that of the others, they will all be in equilibrium with it three bours after removal from the emanation The number of atoms of ThC and Th D ondergoing heta-ray disuntegration per second will then be together equal to the number of atoms of B breaking up. The number of atoms of Th C and $\mathrm{Th} \mathrm{C}^{\prime}$ undergoing alpha-ray disintegration will alao be
 together equal to the number of atoms of
B. Hence to determine the number of atoms breaking up in a aource of Th B with C and D in equilibrium, we havi only to count the number of alpha particles emitted To make a direct count of the absolute number of alpha partioles emitted within a given solid angle at is necessary to know the efficiency of the counting A simpler indirect method is to compare the number of particles with the number of particles emitted in the same solid angle by a source of Radium ($\mathrm{B}+\mathrm{C}$), whose gamma-ray activity is compared with a Redum standard. In this comparison it 18 unnecessary to know the efficency of the counting or the value of the solid angle For sources of Thorium ($\mathrm{C}+\mathrm{D}$) free from Thorium B thes deterninstion has already been made by Shenstone and SchLundt *

Using the wheel method of counting sountillations, this comparison has been made for sources of Thorium ($\mathrm{B}+\mathrm{C}+\mathrm{D}$). To ensure that all the

$$
\text { * ' Phul. Mag.'' vol. 48, p. } 1038 \text { (1028). }
$$

cotive depont should be on the front of the source, the metal plato, when exposed to the omanation, was protected by an ebomte cap and backed up by a rubber washer. The way in which the measured gamma-ray effeot depends on the thiokness of lead surrounding the eleotroscope is shown in fig. 4.

Fio 4.
The curve for Thorium ($\mathrm{C}+\mathrm{D}$) given by Shenstone and Schlundt 18 also shown Since the gamma reya of Thorium B have an absorption coefficient in lead of sbout $2 \cdot 0$, the gamma-ray effect of a source of ($B+C+D$) when measured through 15 mm of lead will be due almost entirely to ($\mathrm{C}+\mathrm{D}$) alone. Putting them equal at thus thickness of lead we obtain thê curve in fig 4. The sources used for the beta-ray spectra were measured through 6 mm of lead, At this thickness we see from fig. 4 the ratio is 1.06 Now Shenstone and Schlundt found that the number of alpha particles of range 8.6 om . emutted by a source of Thonum ($C+D$) was 0.77 of the number of alpha partioles emitted by a source of Radium ($\mathrm{B}+\mathrm{C}$) which when measured through 6 mm . of lesd had the same gamma-ray effeot. It is known that the particles of range 8.6 cm form 65 per oent. of the total from Thorium ($E+D$), so that the resulta may be compared.

I have to thank Mr. Wormall, of thas laboratory, for hus asaistance in countang scintillations. When 5,000 particles had been counted, the ratio Thorium to Radium was found to be 1.07 for one observer and 1.06 for the other. From the date given in the preceding paragraph it appears that the value to be expected for ($\mathbf{B}+\mathbf{C}+\mathrm{D}$) from Shenstone and Soblundt's counting of ($\mathbf{C}+\mathrm{D}$) is $\frac{0 \cdot 77}{0 \cdot 65106}=1 \cdot 12$. They counted 26,000 particles and claim a probable
error of $2 \cdot 5$ per cent. ; so that a value for the ratio of $1-10$ is within the probeble error of both determinations. The number of disintegrating atoms for equivalent gamma-ray activity is therefore 37410^{7} per second per molligram,* taling Geuger's recent value for the number of alpha particles from Radium; Hess and Jawson's value gives 40910^{7} as the number for Thorium ($\mathrm{B}+\mathrm{C}+\mathrm{D}$)

6) The Number of Beta Partucles

In the daagrams the clectron-current has been reduced to a standard sensitivity of 3,000 divisions per volt, and a large correction bas been subtracted for particles reflected from the metal plate on which the radioactive material was deposited Schonland has recently measured the amount of reffection of electrons of velocity Hp 1100, which is where the maximum concentration of particles occura in fig. b . He found for aluminum 13 per cent. were reflected, and for nuckel 30 per cent Another correction to be applied is 1 per cent to be added for particles which escape from the Faraday cylinder after reflection inside. Corrections of 12 per cent for aluminiun and 29 for nickel have therefore been apphed.
The method of calculating the solid angle for a line source was given in the previous paper. In the present case it has to be averaged over the surface of the metal plate, the value was found to be 0048 Owing to the magnetic dispernion the number of beta particles actually entering the Faraday cylinder was a fraction about $1 / 10,000$ of the total number being emitted The electrostatio capacity of the system was redetermined, and it was found that the addition of the compensating chamber had increased the capscity from 87 to 98 cm . A current of one division per minute at atandard sensitinty is thus equal to 3,800 electrons per second This mesns that the total number ernited in all directions which this current represents $18 \frac{4 \pi \quad 3800}{0048}=1.0$ mullion electrons.

The method of integrating the spectra to find the total number of partioles was described in the previous paper Owing to the much smaller sources available and to their more rapid decay, the accuraoy with whioh the number of partucles in the continuous apeotra has been determined is leas than that obtained for Radium ($\mathbf{B}+\mathbf{C}$) using Radon-tubes. The following table gives the apprommste number of particlea, after mating the above corrections for

[^92]refleotion. For Thonum D it must be remembered that the number of disintegrating atoms is only 35 per cent of the number of Thorium B.

-	Divisions per imin. per mg	Nectirone per mec	Eleotroin per 100 etoms of Th B
	Thorium B		
Peak at H_{p} 1898 Remainder of Th B Apectrum	$\begin{array}{r} 0 \\ 45 \end{array}$	$\begin{array}{r} 910^{0} \\ 4510^{\circ} \end{array}$	$\begin{array}{r} 20 \\ 120 \end{array}$
Peak at Ho 540 Peak at $\mathrm{H}_{p} \mathbf{8 7 0}$	Thoriam D		par 100 etoms of Th D
	27 10	27100 10100	
Remainder of spootrum	'Thonum ($0+\mathrm{D}$)		per 100 atoma of ($\mathrm{C}+\mathrm{D}$)
	4	+4 104	118

It has been pointed out above that the three peaks included in the table are the only beta-ray hnes that have been studied The method is not surtable for the investigation of hines which do not stand out as definite peaks

6 The Internal Conversion Coefficient of the Gamma Rays.

It is unnecessary to repeat here the argument that the beta-ray lunce are due to sbsorption of the gamms rays not in neighbouring atoms but almost entirely in the atom in which they origunate. The origin of a gamma ray is believed to be the tranation of the nucleus to a quantised state of lower energy. It is therefore very unlikely that any atom in breaking up ahould emit more than one gamma-ray quantum of the same energy. The peak of Thonum B at Hp 1398 is due to the conversion in the K-level of a gamma ray of energy ID0,000 volts The peak contans 20 particles per 100 disintegrating atoms, so that if we are right in aupposing thet no atom can emit more than one quantum of this energy, there cannot be more than 100 gamma rays to produce these 25 beta partacles. The chance of a garmma ray being converted in the K-level instead of escaping from the atom must therefore be at least 1 in 4.

The two peaks found for Thorium D are due to the converaion of gamma rays of 40,500 volts Since this is less than the energy of the K -level, absorption in that level is impossible. The peat at Hp 540, containing 21 electrons por 100 atoms, is due to converaion in the L_{1}-level, snd the other peak, contanping $7 \cdot 6$ electrons, to conversion in outer levels Using the same argument as
above, we have at most $\mathbf{1 0 0}$ gamma-ray quanta to produce these 27 electrons, so that the probability of conversion in the atom muat be more than 1 in 4. The coefficient for the L-level alone must be more than 1 in 5

These values are even higher than the eatimate given previously for Radium B. That calculation was based on Kovarik's experiment, which appeared to show that Radum ($\mathbf{B}+\mathbf{C}$) omits two ganma rays per par of atoms in addition to all the gamma rays which by internal conversion give rise to the beta-ray lines Taking this number it was divided equally between \mathbf{B} and \mathbf{C}, and the gamms rays of Radum B were then shared out among the various frequencies in the ratio of the observed intensities of the peaks Suxteen gamma-ray quanta per 100 dinntegrating atoms would in this way be allotted to the line $\mathrm{H}_{\mathrm{p}} 1410$, which is the most interasting line to consider, annce it has almost the same energy as Hp 1398 The internal conversion coefficient may well vary with the frequency of the ganma ray, or with the structure of the extra-nuclear levels But ance Thorium B is isotopic with hadium B, it would be interesting If the value were deferent for these two hues of nearly the same energy The number of electrons in the peak at $\mathrm{H} \rho 1410$ was found to be $2 \mathbf{6}$ per 100 atoms. Thus to give a minumum conversion coefficient of 1 in 4 such as has been found for 1398 , we should require the correspondung number of gamma rays to be not more than 10 per 100 atoms. This is quite possible, for we clearly do not know how to share the gamms rays betwean the lines of Raduum B and C It seems olear, however, that the average value of the ocefficient is smaller Thus we ahould antiopaste, anoe most of the garma rays are of higher Irequenoy than that giving 1410, and by anslogy with external absorption we ahould expect the absorption to decrease with increaning frequenoy, the coefficient oannot however decrease so rapidly as λ^{3}.

The converaton of esoft gammeray an the L-level is quite snalogous to the internal converanon of a quantum of K radiation in the L-level. Values for the coefficient have been found by Auger * and by Bothe. \dagger It has been auggested that the converaion of \mathbf{K} raduation is due to a coupling of two electrons, one of which leaves the atom while the other jumpe from the L to the K-leval. If this is true, then converaion of gamme rays is probsbly not comparable with that of X-rays, sinoe any coupling between the auoleus and the L-level in likely to be of a different land

The gamma ray giving the Thorium D peaks has a frequency near that emitted

[^93]by Radium D. For that gamme ray Gray* deduced an intersal oonversion coefficient of $0 \cdot 67$. In his caloulation he did not, however, take into account the internal conversion of the L radiation in the M ring. Thus effect is likely to be large, since Auger found a value $0 \cdot 75$ for conversion of the L radintion of Xenon. This would rase the coefficient of the Radium D gamma raya from 0.67 to about 0.9 . The size of the Thorium D peaka found here would be consistent with a high value of the coefficient if only about 1 in 3 atome duantegrating emits a $40,500-\mathrm{gamma}$ ray.

7. The Contrnuous Spectra

The absorption coefficienta in aluminium allotted to the beta particles of Thorium C and Thonum D are not very different, $14 \cdot 4$ and $21 \cdot 6, \dagger$ whle that of Thorium B 1s 1690 . Since the average velocity of the partucles from C and D are nearly the same, we should expect their spectra to be one on top of the other The curve obtaned showe no sign of separation into two spectra We expect 35 per cent to belong to C and 65 to D. The total number of particles is sufficient to contan the nuclear electrons of both C and D. We have therefore now six beta-ray bodics known to possess continuous apectra of the appropriate magnitude, Radium B, C and E, Thorium B, C and D. Uranum X_{1} has also been shown to possess a continuous spectrum, most intense at 100,000 volta, \ddagger but the number of beta particles in it is not known There does not seem to be any information about the nuclear electrons of othor bodies
If fig. D_{18} compared with the curves given previously for Radium B and C, it is seen that a remarkable analogy exists between the two series. The conthnuous spectra of Radium \mathbf{C} and Thornum ($C+D$) extend over a very wde range of velocites, while those of Raduum B and Thonum B are confined to a range of low velocities. Now the important fact emerges that the line apectra of these bodies are confined to the same regions as their contmuous apectra. Thus Radum B emite no beta-ray line of velocity greater than $\mathrm{H}_{\rho} 2480$, and Thorinm B notbing above H_{ρ} 2095, slthough the lines of Raduum C and Thorium D are spread over a wide range
The continuous spectra and line spectra are roughly co-extensive, end it may be that this points to an important law in beta-ray disintegration; namely, that no gamma raye of high energy can be emitted by those radroactive bodies

[^94]which expel their nudear eleotrons with low energes. Another body whow beta partiales are known to have low velocities is Raduum D. This emita only

Fic 0.-The vertioal acale represente number of partacles in arbitrary unite.
very soft gamma raya, which may be connected with the fact that its nuclear electrons are slow
The difference between the extent of the line spectra of Raduum B and Radium C has been discussed by Ellus and Wooster.* They brugg forward an idea due to Mr Slunner, which has also been discussed in more general terms by Meitner, that the limitation of the energes of gamma rays emitted does not at all imply a restriction of the nuolear-level system. The energy of the hardest gamma ray depends only on the level from which the diantegration electron has just been expelled, and the maxmum kinetio energy of the nuclear eleotron itself presumably also depends on the level from which it comes. So that since both are governed by the same faotor, it is not surprising that the enarges are co-extenaive.

8. The Heating Efject of the Beta Partucles

By integratung the energy in the spectrum we obtain the heating effect due to the linetio energy carried by the bets particles, as was done for Radrom B

[^95]end C. For as source of Thonum ($\mathbf{B}+\mathbf{O}+\mathrm{D}$) whote gemmeray motivity mearured through 6 mm . of lead is the same as that of one gram of Raduam, we find the values 4.1 calories per hour due to Thorium ($C+D$) and 0.65 calories for Thonam B

Summary.

The measurements of the absolute number of beta particles emitted with defierent velocities in beta-ray spectra havo now been extended to the spectra of Thonum B and Thorium ($C+D$). The separate existence of continuous and line spectra is proved by the presence of the continuous apectrum of Thonum $(C+D)$ in the large gap in the line-spectrum between $H_{p} 4040$ and 10,080 In these spectra, as in the spectra of Radium B, C and \mathbf{E}, the total number of particlea is found to be consistent with the view that they contan the nuclear electrons, of which there must be one from each atom disintegrating It 18 suggested that the fact that the energles of the particlea in the line spectra of different bodies are roughly co-extensive with the energies of those in the continuous spectra points to a law of beta-ray disintegration, namely, that no gamma rays of high energy can be emitted by those radioactive bodies which expel thour nuclear electrons with low energies.
From the measurements of the number of particles in certain beta-ray lines, munumum values have been deduced for the probability that the gamma-ray quantum is concerted into a beta ray instead of escaping from the atom, For the gamma ray of 150,000 volta energy, emitted by Thorium B, it is found that the coefficrent of converaion in the K-level must be at least 1 in 4 For the gemma ray of $40, \mathbf{5 0 0}$ volts emitted by Thornum D, the coefficient of converaion in the L -level must be more than 1 in B .

In conolusion, I wah to express my thanks to Sir Erreast Rutherford for his interest in this work, to Dr. Chadwick for landly preparing the radioeotive sources, and to Dr. Ellis for helpful articiem.

Experiments upon the Reported Transmutation of Mercury into Gold. By M W. Garrett, B A , Exeter College, Oxford

(Communioated by Prof. F A Lindemann, FRS-Received July 14, 1926)
The possibility of effecting a tranamutation of the atom by electronic bombardment, as distinct from the alpha-ray methods so successfully used by Rutherford and othery, has attracted attention from time to tume in recent years The first to report surcess in such an experiment was Ramany, who announced in 1912 the artificul production of helum and neon in \mathbf{X}-ray bulbs The controversy aroused by his announcement has not yet subsided, for Riding and Baly have supported quite recently. in this Journal, the genumeness of such a transformatiqu
Miethe,* in 1924, reported the transmutation of mercury into gold, and aince the origural amouncement he has deacribed various experimental arraugements which he clams have proved successful \dagger Two principal methoda have been employed by thes investigator First, a Jaenicke mercury vapour lamp, operating at atmospheric preasure with a current of $12 \mathrm{\delta}$ amperes, a terminal voltage of 170 , and a potential gradient of 11 or 12 volta per crn., was run for 20 to 200 hours, and amounts of gold up to 0.1 mg reported, though no durect proportionality existed between the quantity of gold and the number of hours run. Miethe also reported the formation of silver in these experiments, often in larger amounts than the gold, and stated that the yield of noble inetals was ancreased by irregular buraing of the aro, with frequent extinction and relighting No gold was obtained from vacuum arca The second method was a development of the first, in which the effect of irregular burnug was artificially enhanced by constant interruption of the arc. The final sumplofied form of this experiment consisted in the employment of an ordinary rotating mercury interrupter, and with this apparatus Miethe states that he obtained for the first tume consiatently reproducible results, a direot proportionality existing between the number of ampere hours run and the yeld of gold (about : $\times 10^{-7} \mathrm{gm}$. per ampere hour.) He also descnbes a series of experiments in whioh one and the same quantity of inercury (ca. 1.5 kg) was submutted to a number of successive runs, about a score in all, when no duminution of the

[^96]yield was observed. He states that self-indactance was here found to be absolutely without effect, though from certan earlier experimenta he had believed that the unduason of an inductance in the ourcuit increased the gield. No mention is made of the production of slver in these experiments

Nagaoka," workang quite independently, used an induotion coll capable of giving a spark of 120 cm length. With a capacity of $0002 \mu \mathrm{~F}$ in parallel and a secondary current of 10 ma he aparked for four hours between a tungsten pole and a mercury surface under transformer oul, untul the entire mass carbonused. He then tested for gold by methods which, though they could gave no quantitative idea of the amount present, seem to have been qualitatively relable, and he states that all the tests were unmatakably positive In a second, somewhat different, experiment he found mannly silver

It seemed worth while to make some attempt to confirm or refute these experiments, more especially since there appeared, shortly afterwards, an announcement by Smita \dagger that be had succeeded in transmuting lead into thallium and mercury by a somewhat ammlar method When the work described in this paper was undertaken, only the positive results outhned above were extant. Sunce then, no further positive resulta have been reported, whereas negative resulta have been announced by various experimentera \ddagger operating under diverse conditions Of these the work of Haber is the most complete, as well as the muat recent. In some cases the publashed papers contann so few details of experimental conditions, duration of the runs, and analytical methods, that it is difficult to draw any conclusions from them A general discusaion of the various results will be postponed until after the description of the experimental work carried out by the writer has been completed

Experimental

Destrlation of the Mercury

The mercury employed in these experiments wes taken from a single stock prepared by two successive dastillationa and leept in a glass-stoppered bottle

- 'Naturw, ' vol 18, p 692 (1928), and vol. 14, p. 85 (1026); 'Nature,' vol. 116, p. 06 (1025), 'J Phydique et Ra,' vol. 6, p. 200 (1925).
\dagger 'Natarw,' vol. 13, p. 609 (1026), 'Nature,' vol. 117, p. 13 (1926) (An examination of the reaulta of Bmite is now in progrees, and it in hoped to be able to report upon it, as well an opon certain related wark, in the near future.)
\ddagger Sheldan and Eatey, 'Eel. Amer.,' p. 296 (Nov., 1825), and p. 389 (Dec., 1828); 'Natare,' vol. 116. p. 782 (1926), Tiede, Schleede and Goldechmidt, 'Naturw,' vol. 13. p. 745 (1025), Piuth and Boggio-Lern, 'Rendic. Accad. Sol. Fu. Met.' (Naplea) (Sept-Deo.,
 vol. 14, p 405 (1928); 'Z. anorg Ch.,' vol 163, p. 153 (1926),

Two identical stilla of Pyrex glass were employed, one for each stage of the dystillation. These were of ordinary design, conalsting of a wide inverted U -tube and two narrow limbs of barometrio height dipping into rearivoirs of mercury When once exhausted, baked out and sealed, thry arre quite coutinuous in operation, it being necessary only to pour the mercury into one aude and draw it off from the other They were electrically heated by means of nuchrome colls of hagh resiatance, yo that only 50 watta were cxpended in heatiog in pach still, and in spite of the wide tubes (3 cm) and water cooling, the rate of distillation was ouly about 100 gm per hour Under these circumstancer the temperature of the mercury did not riar murh above 150°, and evaporation took place quietly from the surface Since the whole of the input aide of the still was heavily lagged with asbestos cord, any particles which mught be situated in the free space above the mercury were not subjected to any unnecessanily heavy differential molecular bombariment from below (as in a mercury vapour pump), and there was no tendency for surface impuritien to be mechancally curried over with the vapour

These detalls are mentioned here because of the herce (and somewhat pointless) battle which has been waged over the question of whether the noble metals are completely removed from mercury by distillation This question is of some interest in itself, but ith importance to the tranamutation conlroveray has been greatly over-esumated For Miethe has regulaly analyaed has mercury after ith clectrical treatment by the same process which he employed before it, and his blank expenmenta have been invariably negative The question of whether distillation removes all traces of gold is thus clearly resolved into tho question of whether distillation removes electrically treated gold more efficiently than it does ordinary gold. Nobody has yet attacked this problem experimentally, or rather this problem is, experimentally considered, practically identical with the transmutation question proper.

Hulett, Resenfeld and Hasse, and Tiede have all reported* that gold distills over in amall quantities with mercury, though all except Thede agreed that two or three diatillations even of a strong amalgam were sufficuent to reduce the concentration of gold to the extreme limit detectable. 'Tiede found that under certan conditions the gold actually concentrated itself in the distillata, a sufficiently improbable result which is in want of confirmation.
Methe and Btammreich, \dagger as the result of methodical experments on tho

- Hulett, ' Phya. Rev,' vol. 33, p. 308 (1011); Hiesenfeld and Hasse, ' Ber. deuteah. Ch. Ges ;' vol 68, p. 2828 (1025) ; Tiede, ' Phys Z;' vol 26, p. 846 (1085).
\dagger 'Phy: Z,' vol 26, p 842 (1925); 'Ber deulsoh. Ch. Gen.,' val. 09, 'p. 359 (1926); 'Z. enorg. Ch,' vol 149, p, 288 (1925)
distillation of amalgams of variots metala, have concluded that with proper precautions thesc metals pass over into the diastilate only by virtue of their own proper vapour pressure (i.e, in very small amounts. so small as to he beyond the himits of detection in the case of the noble metals) They believe that where gold is not removed from mercury by a single distillation, the cause is to be sought in small particles of it having been carricd over mechancally with dropleta of mercury which have reached the receiver without pasaing through the vapour phase at all. This form of mechanical contamiaation can be eliminated by careful attention to the design of the apparatus and regulation of the conditions of distillation They quote Michaelis in support of this new, which is shared by the present writer, and is capable of explaining the results of the other exporimenters Hulett distilled at a preasure of over a oentamatre with a stream of air bubbling through the mercury, while the work of Riesenfeld and Hease 18 fragmentary, and is otherwise open to grave objections which have been pointed out by Miethe Never in the courae of the experiments described below has it bren found possible to detect gold in mercury which had been distilled, though in the course of the prelimunary analytical praction some moderately strong amalgams were distilled

Analytical Procedure

Methods of analyas have been demcribed by Haber,* and by Maethe and Stammreich \dagger The method employed in the present research was easentially that of Miethe. This consista in distiling off the mercury till only about one gram remains, and dissolving up this last drop, under the microscope, in nitric acid of apeafic gravity $1 \cdot 20$, fres from all tracers of hydrochloric and. The gold romains behind as metal, and may be estimated by fuaing it in borar and measuring the diameter of the resulting sphere

This method of analysus was tested on 100 gm . semples of mercury to which known small quantities of gold had been added, and it was found posaible to detect $10^{-7} \mathrm{gm}$, and alterwards, with improved microsoopy, $10^{-8} \mathrm{gm}$ of gold with absolute regularity It was also repeatedly proved that no gold could be detected in the stack of distilled mencury when analysed by this method. There oan be no question that the analyas could have been rendered atdl more senative, but a auitable microscope was not at hand, and it was considered

[^97]that quantaties of gold less than $10^{-8} \mathrm{gm}$ could have no signficance in testing methoda said to be capable of producing $10^{-1} \mathrm{gm}$ with moderate energy inputa, particularly aince the danger of error through accidental contamination breomes quite large when working with quantities below $10^{-8} \mathrm{gm}$

All the experiments were so designed as to require minimal quantilies of meroury, never more than 100 gm and rarely as much as 50 It is perhape unnecessary to add that all the vessels employed in the remparch had been carefully cleaned with boilng aqua rega

Spark Mrthods

The first experimenta were simular to those of Nagaoka, but with slight modfications A transformer giving a peak voltage of 15,000 was employed, with a condenser of $0 \cdot 000 \mu \mathrm{~F}$ (apacity The spark was passed between tungsten wires in a glass vesel contaning an emulsion of ine mercury drops in white paraffin oil Mrethe, in simular sparking experiments, had alwayn found the gold concentrated entirely in the amall droplets of mercury dispersed along the path of the discharge, and the above method, by starting with a fine emulsion, permitted the man mass of inert mercury to be eliminated altogether from the experiment, less than 10 gm being required for each run. Furthermore, in expermenting on the Stark effect in alver arcs Nagaoka had found that the presence of small droplets resulted in a marked local intensifioation of the potential gradient. It was found necessary to place the two wires constituting the apark gap less than 2 mm apart in order to permit the apark to pass, so that although the actual voltage was much below that employed by Nageoke, the potential gradient remaned substantially the game. The gradient is, in fact, determined by the dielectric strength of the oll, and it should be noted that even this inital gradient beconues much reduced as the experiment proceeds and the onl is carbonsed The larger condenser permitted heavier becondary currents ($20-30 \mathrm{ma}$.) to be employed than those used by Nageola, and the transformer delivered a much steadier voltage than is obtained from an induction coil.

Considarable trouble was expenenced with the burating of the glase vessel and the splashing of the emulsion, snd the final form of apparatus employed was a glass tube about 6 cm . deep by 2 om . in diameter, whth a widely flared top ground fiat and beld aganst a aheet of ebounte by rubber bands. The tuagaten wires were carned by thick-walled glase capllaries inserted through the ebonite. The aparking vessel wes water-cooled It wes found poasible to run about
half an hour before the oll solidified corapletely and showed a tendenoy to are. The murture of mucellaneous organic matter, mercury and carbon wat then transferred to a Pyrex flask and distilled in an electric furnaoe, when the carbon remaned behind Thas was ondised by heating in a stream of orygen, leaving hardly a trace of renidue of any kind The fask was now washed out with hot aqua regia, the solution diluted, and a small drop of mercury added. When this had dissolved, the solution was make alkaine with ammona, and the mercury raprecipitated by the addition of ammoniacal 6 per cent hydrazine sulphate solution The mercury drop, which would have oarned down with it any gold present, was filtered off, washed, and dissolved up as usual, under the microscope, in dilute ntric acid This experiment was

Fia, 1 repeated acveral times, with uniformly negative renults.
Distilled water was then substituted for the oil, in the hope that it rould be made to run longer without losing ity inqulating properties Aluminume eleotrodes were employed, and the emulsion was prepared by passing an arc at 100 volts between an alummum pote and mercury at the bottom of a beaker of diatilled water Hut the water always became conducting after 20 minutes to half an hour, and the explosive spark at first produced could no longer be manntained One lot of mercury in water emulsion was analysed alter about 25 mimutes' run, but no gold was found
longer runs and larger energy inputs were found possible when hydrogen was used as the dielectrac. The apparatus used is sketched in fig 1 It was constructed in Pyrex, with a tungsten wire sealed into the bottom to establish contact with the mereary pole The other pole consist od of a 4 mm . amo rod, clamped by means of a set-screw into a stepl tube attached to the copper electrode A, The latter was turned down to a thin tube at its upper end, and sealed directly into the contral glass tube oarried by the ground joint This electrode was kept cool by the bolling of water which filled the central glass tube, and the mercury pole was cooled in a sumular manner by a vessel of water in which the outer tube was immersed The apparatua was connected duning the experiment to a reservoir of hydrogen, and the ground joint fitted so twell
that whthout any lubrication only a few cubic centimetres of hydrogen per hour esomped through it.

With a spark gap of about 1 cm and a capacity of $001 \mu \mathrm{~F}$, the secoudary ourrent of the 15,000 -volt tranaformer was 75 mas, and the current in the spark gap 15-20 amperes A limit to the useful length of a run was set by the oontamination of mercury and glass by fine dust from the iron pole, which burned eway at the rate of about half a mullimetre an hour, so that the apparalus had to be continually reopened and this pole reset Two analyses were made on runs with this spparatus, one after five hours and one after twelve. The ligud meroury wes mechanically separsted from the superincumbent omulaion of Gmely divided mercury and iron dust, the former was distilled to a ressdue of 1 gm., and the latter digeated with aqua regia until all the morcury had dissolved. The resudue from the distillation was dassolved in the solution containing the ertract of the cmulsion, the mercury precipitated with hydrazine, and the remainder of the analyas proceeded with as usual. The result was negative in both cases

The conditions in such a spark duscharge mught be expectod to be very favourable to the formation of gold. In the first place, it seems highly probable that doubly charged sons of mercury are present, the signuficance of this fact will be discussed hereafter. The spectrum of this spark showed a very different intensaty diatribution from that of the mercury vapour lamp, the three lines 6149,5679 and 6425 being among the atrongest on the plate. The light was nearly white except at the iron pole, where it was coloured quite red by a preponderance of the Ha line

In the second place, Miethe concluded, from the irregularity of hus early results, that the formation of gold depended upon the exact reproduction of certain conditions of potentisl gradient and current density, which he was unsble to define, but which he assumed his arcs passed through at some atage during the changes accompanying extination and relighting. Now in an oscillatory discharge such as that hers employed, the current varnes between a manomum value of several hundred amperes and zero, and the voltage between the luaits of 15,000 and zero, so that at some time during the cyole the favourable conditions should be reproduced, and the cycle is repeabed 100 times per second.

> Interrupted Arc Method. .
A. method was now developed which proved capable of giving more deaisive results. Miethe has constantly maintanned that the earler forms of experiment; rwhich he employed did not yneld consistently reproducible resulta, and hesiat
occasion attrituted the failure of other experimentors to this fact. Bat from the first he has considered the interrupted direct-current aro to be quite relenble, and in particular he has found a reasonable proportionality between energy inpat and yield of gold when uaing a mercury interrupter of atandard deaggn. It was conadered dearable, accordingly, to repeat these experiments in some form, but the objections to the ordinary type of interrupter are conaderable. It makea use of large electrodes of copper in a case consating of enamelled iron or some ammlar material It in difficult to ensure that these matenals are quite free from gold, and sance the electric discharge plays contmually over thear surface and they are gradually worn away, there 1 g great danger of contamination from this source Large quantities of mercury (15 kg .) must be used, and the mercury emerges in a very dirty condition from the run, so that the analytical procedure is also rather unsatisfactory The "blank" experiments of Miethe (in which the interrupter ran without current and no gold was found) are not oonvincing as proof that the gold did not arise by contammation from the eleotrodes, since in this case there is no sparking at the electrode surfaces. It would be interesting to know whether the mercury did not emerge in a cleaner condition from such a "blank" determination, as might have been expected.

To obviate several of these difficulties the construction of an all-glass mercury interrapter, with mercury cups in place of the copper electrodes, was undertaken Such an interrupter was actually completed, bat it was never ueed, sunce a much sumpler design was evolved which permitted the use of munumal quantuties of materal and the removal of the foreng electrodes to a poant remote from the dacharge, while preserving the essential features of the break.

The epparatus conssisted of a tube such as that sketched in fig. 2. Thas was filled with an amount of mercury indicated in the dragram, sealed oflin an atmosphere of hydrogen, and fastened to a machine which swung it baok and forth in arce of $50-80^{\circ}$ about the point 0 , the 100 -valt mans being connected to the two ends of the tube The mercury in the two branahes flowed together and then separated twice in every awng, an arc being formed and pulled out to extnotion each time Sir or enght interruptions per second were obtained in this way, and the sharpness of the breat was atteated by the intense condensed apark obtained in the secondary circut of an induction conl when the break was unserted in the primary curcuit Such tubes were first constructed of Pyrez, with $0 . \mathrm{Bmm}$. tungiten wres sealed into the legs. But the current-aarrying capecity of the Pyrer tabea was limited to ebout 12-15 emperes (at make), and their hife to some 60-70 bours. The intense loeal rpartang removed amall cakes from the glase surtace, whoh soon became covered with a network of
fine cracks, the mercury was alightly contammated, and the Pyrex in thme blackened. A number of tubes burat after some hours' sparking Nevertheless,

Fia 1
three rons were obtaned with Pyrex tubes, the current at make averaging 13 amperes, and the duration of sparking 85 hours. No gold was found in the mercary from these tubes.

A simular tube was now constructed frorn quartz, as soon as a suitable tachnique had been developed for making the seals into this maternal. The 05 mm . molybdenum wire to be used was first heated to incandescance on vacuo to remove occluded gases, and the quarte was then shrunk upon the molybdenum, alvo in vaono, and the seal completed by means of pure lead and a short length of copper wre. Such seals were always found to be quite vacuum-tught, but an an additional precaution the hydrogen was introduced, after baling out and olling with mercury, at euch a pressure that the constriction would only just collaper on sealugg the tabe off from the pump. Thus ensured a preasure greater
than atmospheric at all tumes on the meroury at the seal, and partioularif when the tube was heated by the arc.

It was found possible to operate this tube indefinitely with 30 -ampere sparics at 100 volts The mean current was given as 10 amperes by a thermal junotion constructed of 22 -gauge copper and eureka wrea, mounted in a brass osse immersed in water, and calibrated on direct current. The tabe was run under these conditions for 144 hours It was then operated from a direot-current dynamo, delivening 240 volth in 18 ampere aparks (7 amperes average) for a further 144 hours During the last 24 hours of this run, the primary of an induction coll was included in the nircuit, energy heing drawn from the seoondary in the form of a condensed apark disoharge in air At the end of this time the quartz tube remanned as clear as at the beginning of the experment, while the mercury aurface was perfectly bright and uncontaminated. The tube was, in fact, indistinguabable in appearanoe from a fresh one
In the analysis of this run, dastulation was avoided, on aooount of the controver日y referred to sbove Two ammples of 15 gin each were drawn from the atock bottle of datilled meroury. To one of these was added $10^{-\beta} \mathrm{gn}$ of gold Both samples were dissolved in nitric acid, also ready mured in a stock bottle. The 10^{-8} gin of gold was identifed without question by several people when the mercury to which it had been added had dissolved The other sample of mercury left no residue whatever The quartz tube was now opened and found to contain 18.8 gin of mercury, which was dissolved up at once in eond from the same stock bottle as had been used for the blanks. It left behind a residue about 003 mm in diameter. conaisting of a flattoned reficulated akeleton of some dark rasterial, presumably silica , Not a trace of the lustre of metallic gold could be discerned The blank tests which were carried out amultaneously with this analyas remove all doubt as to the aensitiveness of the test, $10^{-8} \cdot \mathrm{gm}$. of gold could have been detected with absolute certainty.

It is easy to form a rough ides of the amount of gold which should have been expected in this experiment according to the results obtained by Methe. If we take the efficiency of the arrangement, expressed in grams of gold per ampere hour, to be the same as that of Miethe's rotating mercury interraptar, we arrive at an eatmate of 1 mg . of gold, an amount larger than that whieh any experimenter has clamed to produce in a single run \mathbf{A} more aocurate estamate is probably obtained by considering the number of " ampere sparke." That is, if Miethe's view of a " labule state " passed through by the arc oncein each cycle is correct, an approximiately constant emount of gold should. be produced each time an arc of 1 ampere is mede and axtinguighed, and Miathe's
own reaulte indicate that the yield is directly proportional to the current for the asme number of interrupted arcs, hence, we arrive at the "ampere spark" as the effective unit of gold-producing elertrical energy Assumung now four interruptions per secoad (a very conservative figure) in the quartz tube, and taling Miethe's figure of 2,000 per minute for the frequency of interruption in his mercury break, the above eatimate is reduced to 011 mg , which is still at least 11,000 times the amount of any gold which may artually have been produced.

Discussum

There are various theoretical objections to the work of Miethe and of Nagaoka Perhape the most cogent arises from a consideration of the voltages which they employed in their experiments In order to bring ahout a transmutation of the atom, it is first necessary that the loumburding particle-in this case an electron--should penetrate the successive electronic orbits, and gain access to the nuoleus. The most obvious methol of ansuring this is to make use of electrons of sufficient velocity to excite the hardest K radiation of the element in question. The corresponding voltuge, in the casp of mercury, is about 89,000, and though Nagaoka emploged consuderably higher terminal voltages than this, it as imposable that any indindual electron could have possessed more than a small fraction of the requred velocity, for the potential gradent in these expenments was about 15,000 volts per mullumetre, so that the electron would have to fall freely through the field for a distance of 55 mm 12 order to attann the velocity in question The actual free path must have been of quite a different order of magoutude from this, and it is, of course, well known that the K apectra are not exoted under the conditions of Nagaoka's experment The highest electronic velocities hitherto applicd to the tranamutation of mercury were probably those employed by Haber in hin experuments with an X-ray bulb whose anticathode consisted of frozen mercury, but here a voltage of 8,000 was not exceeded.
However, the work of Rambauer* and others on the rare gases indicatea that under certain conditions these eitremo electronic velocities may not be necessary, for certain atoms show a marked transparency to very low-voltage electrons Where auch a property exists, it is obviously of advantage to use as low a voltage as possible, partly because a slow-monng eleotron, once safely inside the innermost electronic orbit, might be expected to be more readuly attracted anto the nuoleus than a last one, but principally because with low voltages it

[^98]is possible to use much larger currents, and thus by increaning the number of alectrons to ensure a greater chance of sconng a hit upon the nucleus.

Brode* has examuned the mean free path in mercury vapour of electrons possessing velocities between 0.4 and 150 volts, and has found between these limita no indication of any special transparency of the mercury atom, neither does extrapolation of his ourves suggest the existence of any such property at other voltages Thus it begins to appear doubtful whether any of the electrons in the various transmutation experiments really had access to the mercury nucleus at all. Franck has auggested that doubly charged ions might resemble a rare gas to such an extent as to exhbit transparency to electrons of certain velocities, but an experiment described in this paper, as well as a somewhat amilar one periormed hy Haber, in both of which such doubly oharged ions were probably farly numprous, proved quite as incapable as the rest of yielding gold

We cannot altogether reject the possibility that the plectron, once inside the innermost planetary orbit, should be attracted towards the nucleus and might fall unto it This might occur with surb volence as to produce disruption of the nucleus, or, alternatively, the invaring elertron might be captured and remain permanently attached to the nucleus, thereby givng rise to the inverse of a beta-ray disintegration, and reducing the atomic number by one unit The latter seems the more likely alternative, though Nagaoks has supported the former. He was led to undertake his experiments by observations on the apectrum of mercury, from which be concluded that the nucleus contained a quasi-elastically bound proton which might be dislodged by bombardment with very swift electrons. But the theory of Nagaoka has been attacked by Runge \dagger and the experimental work by Wood \ddagger The theory was based, moreover, on a list of the isotopes of mercury, which has mince been revised by Aston,

If a tranamutation of the inverse beta-ray type is to occur at all, the moat hopeful case would seem to be that of two neighbourng elements in the periodic table exhibiting ısobanam. Unfortunately, Aston's table of isotopes does not reveal a single eatablished case of auch a relation, though the isotopes of gold, lead and thallium, all of which are involved in the reported transmutations, have not yet been established. Hönugeohmid'a determination of the atomic weight of Miethe's gold, though a triumph of analytical chemistry, has lost its aignifirance in vew of Miethe's recent statement (st a meetring of

$$
\begin{aligned}
& \text { - 'Roy. Soo Proo,' A, vol. 109, p. } 807 \text { (1826). } \\
& \dagger \text { ' Neture,' vol. } 113, \text { p } 781 \text { (1824) } \\
& \text { t ' Natore,' vol. } 115, \text { p. } 48 \text { (1096). }
\end{aligned}
$$

the German Chemical Society, May 10, 1920) that the gold which he submitted to Honigachmid for this determination was not actually produced by himself under known conditions, but was obtamed from residues found in old mercury lamps

In the present state of our knowledge of atomic phyaics, it in difficult to form an estimate of the importance of these theoreticul considerations in the circumstances, therefore, it is perhaps safest to regard the whole question from the purely experimental point of view When this is done, it is found that the various experimenters have arrived at mutually incompatible conclusions Further, it seems probable that thr cause of the contradiction is not to be sought in a difference in the electrical conditions of the experiments Granted that the Cormation of gold is bound up with some one particular set of conditions (potential gradient, current density, etc), and that these conditions are difficult to reprodure, it may perhaps be argued that no angle sot of samlar experiments leading to negative results is convincing But when the wide diversity of the experimental arraugemente which have failed in the hands of several investigators to produce gold is considered, it appeare that every positive experiment has been adequately confuted by a negative one

Miethe has always refused to recoguse the validity of any negative resultes obtaned by repeating his own carlipt experiments, on the ground that only the interrupted-arc methods are rapable of giving consiatently reproducible results. He is justified in taking this stand, but the interrupter experiments now appear to be at least as conclusively negatived as any of the rest by one of Haber's experiments, in which the fluctuating current passed by a rotating mercury interrupter was madr to traverse a mercury vapour lamp. and more particularly by the quartz tube experimeut descinbed in this paper, where the electrical conditions were to all intents and purposes identical with those exiating in the interrupter experiments of Miethe. For it is hardly conceivable that the actual difference in apeed of motion of the mercury in the two cases can apprectably affeet the electrical conditions, when it is considered that the inaximum velocity of the mercury jet in a rotating break is very small compared with the clectronic and even molecular velocities The abrupt and complete extinotion of the arc in the tilting quartz tube was shown by the effinency of the apparatus as an interrupter for an induction coil, by the small ratio of mean to shortcircuit current, and by the behaviour of an uncandescent lamp connected across the termingla of the tube. Even if one admuts a slight differenoe between the electrical conditions in this experiment and Miethe's, to assume that it oould be such as to yield large quantities of gold in the one case and abeolutely none in
the other is quite inconsistent with Miethe's own earber work on continuously burning and interrapted arcs The explanstion of the descrepancy between Mrethe's resulta and those described in this paper must be sought elsewhere.
Much the most probable explanation seems to be that Mrethe's gold was denved from the electrodes or other materials of the vessels used, though this conclusion is uot altogether satisfactory, in view of Miethe's statement that the purty of all the materiala be employed was "dauernd kontrollert" Further detals of these controls would seem desirable

Perhapa ajso it is atraining a puint to attempt to explain in this way the direct proportionality which he obtaned betwaen power input and yield of gold, but it is possable, particularly annce discrepancies of the order of 40 per cent were found In this connection it is argnificant that the method which has given the most consistently reproducible results is one which is so conspicuously untidy that only the most rigld proof will serve to eliminate the auspicion of contamination Apart from the interrupter experimenta, it is in general true that the most successful arrangements were the least satisfactory from the point of view of cleanluness

Additional support is lent to this view by a consideration of the status of the allver question Silver was found and reported in many of the earler experimente, both of Miethe and of Nagaoka, but Miethe makes no mention of it in has later experiments, and bas apparently ceased to estimate it. The whole question has been allowed tolapse until Haber in a recent paper called attention to its importance It is almort inconceivable that the silver could be formed by diaruption of the mercury atom, and if salver can find its way into the mercury by accidental contamination during the course of the experimenta, there is nothing to exclude the possublity of the gold baving a ammlar origin. It would thus seem to be a matter of the utmost importance to determune the silver aimultaneoualy with the gold in every experiment in which gold in believed to be produced, as a direct check upon the thoroughness with which accidental contamination has been elummated It is unfortunate that Miethe has not continued to carry out this estimation in all his experiments.

Haber has also reached the conclusion that Methe's gold oame from his electrodes, and has given expenmental evidence in support of his conclusions, though it must be admitted that this evidence is not altogether cousustent with the results of the experiments described in thes paper, for, if contamination from the materials of the seals occurs as readily as Haber has found, it is dufficult to understand the unformly negative results of the present investigation. The writer feels that some of the results of Haber stand themselves in
need of further elucidation. In one experiment, in particular, he found an astonishing result. Here 97 per cent. of the enture gold content of several grams of aickel and ateel wire, employed in the seale of a hot-filament discharge tube, diffused in some extraordinary way to the surface of the wire, whence it evaporated and found its way quantitatively to the mercury anticathode, from which it was recovered by analysis This surprising obsirvation, if confirmed, would be capable of explannig in a perfectly satisfactory manner most, if not all, of the discordant resultes obtamed by the various experimentars Haber, in a very recent paper (already quoted) has announced his intention of further invertigating this phenomenon. In the meantime, an oxperiment has been carried out by the writer in an attempt to explain it, but without success
Ordinary diffusion seems powerless to account for suoh a remarkable reault, though it might possibly be brought about by aome novel form of electrolysis To test thas point, a small glass tube was divided into a number of ar-tight compartments by shrinking the wall upon pleces of nuckel-steel scaling-in wires, which served to establish eleotrical connection between successive compartments Alternate cells were now filled with pure mercury and a 0.1 per cent gold amalgam, each pure mercury compartment having amalgani on both sides of $1 t$, so as to catch gold electrolysing either way A current of $2 \cdot 5-3$ amperes was passed in series through this tube and a simular oue contming pure mercury throughout (to provide a blank in case of any positive reault) for a number of hours Tubes were analysed after runs of 250,570 and 820 ampere hours respectively, and again it was proved by direct aimultaneous determination that $10^{-8} \mathrm{gm}$, of gold could have been detected had it been present No gold was found Further results of Haber will be awaited with interest

Summary

The transmutation of mercury into gold, reported by Methe and Stammrech, and by Nagaoka, has not been confirmed. The methoda employed were as followe -
A.-Condensed spark discharges at 15,000 volts were passed-

1. Hetween tungaten electrodes immersed in an emulaion of mencury droplete in transformer oul.
2. Between alumunum electrodes under the surface of distilled water carrying mercury in suspension
3 Between an iron pole and a mercury surface in an atmosphere of bydrogen.
B. - An interrupted direct-current arc of 30 amperes at 100 volts was run for six days and nights between pure mercury poles in an atmosphere of hydrogen in a quartz tube, followed by a simular arc of 18 amperes at 240 volta for an equal penod Only 188 gm of mercury were used, and the analyse was carried out without distillation. simultaneously with appropriste blank testa, which proved that $10^{-8} \mathrm{gm}$ of gold, had such a quantity been present, could not have escaped detection No gold was found

Special stress is lad upon the last expenment, which duphcates the electrical conditions obtaining in the " most relishle" method of Miethe and Stammreroh, while avoidng the attendant danger of contamination from foreign electrodea, and which ahould, in accordance with the resulta of thear investigators, have yrelded gold in quantitices at least 10^{4} times greater than the amount which could have been detected under the conditions of the experiment

Since the work of Miethe and Stammreich, in so far as it has dealt with analytical methods and with the distillation of mercury, has been in the main confirmed, the most probable inference is that the gold which they obtained was derived from the materials of their electrodes and their vessels The same conclusion has been reached by Haber, but it is ponnted out that some of the experimenta which he has described to prove this point are themselves in need of further explanation

In conclusion, I wish to thank Prof F. A Lindemann for his kind and neverfailung interent throughout the work, and for numerous highly valuable suggeathons at every stage of its progress The work described in this paper wis carried out at the Clarendon Laboratory, Oxford, under has supervision.

Acknowledgment is also due to the International Education Board, whone generous financial assistance rendered the work possible.

The More Refrangible Band System of Cyanogen as Developed in Active Nutrogen.

By W Jevons, Ph D, A R CSc, Senior Lecturer in Phybics in tho

Artillery College, Woolwich.
(Comminseated by Prof A. Fowlor, F RS-Racosvel Thne 9, 1926)
[Phates 13 and 14]

1 Inuroductory.

In 1911 Lord Raylengh and Prof A. l'uwler* observed that when the vapour of a oarbon compound is introduced into the afterglow of active uitrogen, the two CN systems- the so-called " red " and " violet" nystems- -are developed, but their appearance in this source is slrikingly different from the more familiar appearance of the aame bands in the carbon arc in ar The " violet" aystem es ordinarily observed in the arc, comprises the four well-known groups \dagger of bands which degrade towards the further ultru-violet from promuent heeds at $\lambda \lambda 4606,4216$, 388.3 and 3590 respectively, and four groups of weaker bends, the so-oalled " tail" bands, degrading towards the red The modafications of the $\lambda 4216$ and $\lambda 9883$ groups are shown in figs 4 and 5 of Plate 6, in Rayleigh and Fowler's paper. The deacription of these modifications will be much fachitated by reference to Table 1 , which shows the wave-lengtha and wavenumbers of the baud-heads, and the initial and final vibrational quantum numbers ($n^{\prime}, n^{\prime \prime}$) fur the bands, as well as other partioulars to which frequent reference will be made later. The moditications arn conveniently describerl as two effeote. -

Farst Effect. - In the typical case of tho $\lambda 4216\left(n^{\prime \prime}-n^{\prime}=+1\right)$ group in the afterglow, there is a modified development of the lines of the first (0,1) and the third $(2,3)$ bands, and a partial suppression of the hoads of the second $(1,2)$ and fourth $(3,4)$ bands. The lines near the head of the $(0,1)$ band in the afterglow are apparently identical with lines in the corresponding part of the aame band in the aro, but at a short distance, about 9 A U., from the head there is a

[^99]VOL. CXII.-A.
conspionous gap of nbout 3 A.U , beyond which the lines recover in intensity and overrun the weakened $(1,2)$ head The $(2,3)$ band, though not nearly so atrong as the (0,1), showa a ammlar gar and regam of intenaity, its lines overrunning the weakened (3,4) head. A simular effect ocecurs in the λ 3 ${ }^{2}$ R3 ($n^{\prime \prime}-n^{\prime}=0$) group
Second Effect.--Whle in the arc the bands of each group gradually duminush in intensity from the less to the more refrangible end of the group, $i e$, in the direction of increasing vibrational quantum numbers, in the afterglow the more refrangible end of each of the three groups $\lambda 4600, \lambda 4216, \lambda 3883$ shows a marked increaso of intensity, which, according to Rayleggh and Fowler, " may possibly be duc to a local intensification of some of the series of structure lines, or to the introduction of entirely new bands. Until stll greater resolving power can be employed, it will be dilioult to deteraine the exact nature of the difference, but the develupment of new bands offers the simplest explanation. In favour of the view is the observation that the structure lines of the afterglow bands do not all occur in the bands of the arc, and also the fact that in aome of the photographs the supposed new bands are far stronger than the first heads of the groups Assuming that new bands are developed, thear less refrangible edges would be about 4495 (in the 4806 group), 4103 (in the 4216 group)* and 3800 (in the 3883 group)."

From a atudy of Raylengh and Fowler's published photographs of the $\lambda 3883$ and $\lambda 4216$ groups Birge has givon a complete interpretation of the First Effect, ascribing it to the low temperature of the active nitrogen The Second Effect finds its interpretation in Mulluken's recent discussions of band intensities. Reference to these interpretations is made later (section 4).

In 1913, the writer, working in Prof. F'owlor's Laboratory, photographed the violet aystem as developed by ucetylene in active matrogen, under highar dispersion than that of the Littrow spectrograph used by Rayleagh and Fowler. An Eaglo-mounted Rowland conoave grating (10 foet radius of curvature. 14,438 lines per inch) was employed, the first order disperaion being about $5.52 \mathrm{~A} / \mathrm{mm}$ The present communiation records the result of an examination of the most satisfactory of the first order speotrograms then obtained with an "Imperial Flashlight " plate exposed for about an hour It includes all four promment groups of the system, though the $\lambda 4600\left(n^{\prime \prime}-n^{\prime}=+2\right)$ group is only very faintly shown on account of the diminished plate sensitivity in that region; the other three are reproduced in Plates 13 and 14. A aecond

[^100]order plate of the $\lambda \mathbf{3 8 8 3}$ group was obtained with the sume grating, but it is not quite as autable for reproduction.

The writer's main object has been to discuss in some detal the modficiention of the $\lambda 3590\left(n^{n}-n^{\prime}=-1\right)$ group, which was not included in Raylengh and Fowler's investigation Some duta obtaned for the "tall" batids ncar $\lambda 3883$ are also included (section fi), ance these present a general resemblance to bands of the $\lambda 3590$ group in the afterglow Before proceedng to the afterglow observations, however, reference is made in aection 2 to the analyas of the avallable aro data, and to the representation of the system by formula This is fullowed in acction 3 by an application of the combination principle as a check on thr formulas for the $\lambda 3590$ group, in aection 4 a brief account as given of the grating photographs of the $\lambda 4216$ and $\lambda 3883$ groups, with reference to the rotational and vibrational dsatributions of intensity, these sections bewg prelumnary to the discussion of the $\lambda 359$ group in section 5 .

2 The Structure in the Arc.

As developed in the arc, the band lines of the $\lambda 4210, \lambda 3883$ and $\lambda 3590$ groups wery measured by Kayser and Runge* The $\lambda 3883$ group was remeasured in greater detall (in R A) by Jungbluth \dagger and (in I A.) by Uhler and Pattorson. \ddagger Heurlingers recorded more precise data (I A.) for the $\lambda 4216$ group and also gave enipincal formulw derived from new and correspoudingly detaled measurements (I.A.) for the first two bauds of each of the groups $\lambda 4606$ and $\lambda 3590$; so far as the writer is aware, however, the latter measurements havo not been publushed, and oniy Kayser and Runge's are available for the $\lambda 3590$ group, and none at all for the $\lambda 4606$ group.
Each band consists of two branches, $\mathrm{R}[\equiv m+1 \longrightarrow m$] and $\mathrm{P}[\equiv m-1 \longrightarrow m$], the heal being formed by the P branch, If each R aud P the were angle the

[^101]2 к 2
band-lines of the whole gystem would be approximately represented by a single set of formuler of the now well-known types.--

$$
\begin{align*}
\left.\begin{array}{r}
\mathbf{R}(m) \\
\mathbf{P}(m)
\end{array}\right\}=v & =v^{\prime}+\mathbf{r}^{\prime \prime}\left(n^{\prime}, m \pm 1\right)-\mathbf{F}^{\prime \prime}\left(n^{\prime \prime}, m\right) \tag{1}\\
& \equiv v^{\prime}+v^{\prime \prime}+v^{\prime \prime},
\end{align*}
$$

where

$$
\begin{equation*}
\nu^{n}=\left(a^{\prime} n^{\prime}-b^{\prime} n^{\prime 2}\right)-\left(a^{\prime \prime} n^{\prime \prime}-b^{\prime \prime} n^{\prime \prime 2}\right) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{m}=B^{\prime} \pm 2 R^{\prime} m+\left(B^{\prime}-B^{\prime \prime}\right) m^{2} \tag{3}
\end{equation*}
$$

n^{\prime} and $n^{\prime \prime}$ are the imital numl final vibrational quantum numbers fur the bands, and a^{\prime}, b^{\prime} and $a^{\prime \prime}, b^{n}$ the initial and final values of the vibrational energy coeffictents a, b, B^{\prime} and $\mathbf{B}^{\prime \prime}$ are the mutial and final values of $\mathrm{B}=\mathrm{B}_{0}-\alpha n=-h / 8 \pi^{2} \mathrm{I}_{0}-\alpha, n$, where I_{0}, the moment of mertia of the vilirntoonless molecule ($n=0$) and $\alpha 18$ a constant Thus $\Omega^{\prime}=B_{0}{ }^{\prime}-\alpha^{\prime} n^{\prime}$, and $3^{n}-B_{0}{ }^{n}-\alpha^{\prime \prime} n^{\prime \prime \prime} \quad m$ is the final rotational quantum number for each line of a band, in Kralzer's parher theoretical interpretation \dagger it retamed the intpgral values 1, £, 3, . ussigned by Heurlnger, but hall-integral values, $\frac{1}{2}, 1 \frac{1}{2}, 2 \frac{2}{2}$, were subsequently found to be necessury \ddagger
Actually each branch is double, the doublet serparation Δv slowly inereasing with m from the bund-ongin ($v_{0}=v^{\circ}+v^{n}, v^{m}=0$). For the doublet branches $R_{1}, R_{2}, P_{1}, P_{2}$, Kratzor§ has derived four expressious, which, however, need not be invoked for the present purpose (whero only low m values wall be considered) owing to the fact that the oarlier doublets remain unresolved oven under thr high daspersions which havo bean employed in obtanning the arc data || For the low-m lines - -say, the firet twenty --of any branch of the nystem an expression for the doublet centres, z e., the mean wave-numbers $\frac{1}{\frac{1}{2}}\left[\mathrm{R}_{1}(m)+\mathbf{R}_{\mathbf{z}}(m)\right]$ aud

[^102]$1\left[P_{1}(m)+P_{y}(m)\right], \dagger$ may be used instead of Kratzer's full formule for the componente, these centres are given by the expreserion (3) fur anglet hanches $\mathrm{R}(m)$ and $\mathbf{P (m)}$.

The massing lines in the four branches are --

$$
\begin{aligned}
& \mathbf{R}_{1}\left(-\frac{1}{2}\right), \Delta m \equiv \frac{1}{2} \rightarrow-\frac{1}{2}, \quad \mathbf{P}_{1}\left(\frac{1}{2}\right), \Delta m \equiv-\frac{1}{d} \cdot{ }^{\frac{1}{2}},
\end{aligned}
$$

and ance the maseing $R_{2}\left(\frac{1}{2}\right)$ is practically coinentent with the observed $R_{1}\left(\frac{1}{2}\right)$, $\left[\Delta n \iota \equiv 1 \frac{1}{2} \longrightarrow>\frac{1}{4}\right]$, and the missing $P_{2}\left(\frac{1}{2}\right)$ with the ohserved $\mathrm{l}_{1}\left(1_{2}\right)$, [$\Delta m \equiv 1->1 \frac{1}{2}$], it appears that each band has only a sangle null-hne very near the band-ongin, $v^{*}-\mid-\nu^{n}$, in the pusition of the missing $R_{1}\left(-\frac{1}{1}\right)$ and $P_{1}(\underline{b})$, namely, at

$$
\begin{equation*}
v=v^{\prime}+v^{\prime \prime}+\frac{1}{d}\left(H^{\prime}-B^{\prime \prime}\right) \tag{4}
\end{equation*}
$$

For the constants in the above expressions ($1-1$) Krizari his given the following valury $\left(m^{-1}\right)$, in tuhing hulf-integral values, $\frac{1}{2}, 1 \frac{1}{2}, 21$, , -

$$
\begin{array}{rlrl}
a^{\prime} & =2143 \cdot 88 & a^{\prime \prime} & =205564 \\
b^{\prime} & =20 \cdot 25 & b^{\prime \prime} & =1375 \\
2 B^{\prime} & =2\left(B_{11}^{\prime}-a^{\prime} n^{\prime}\right) & 2 B^{\prime \prime} & =2\left(B_{0}-\alpha^{\prime \prime} n^{\prime \prime}\right) \\
& & =3918-0 \cdot 0443 n^{\prime} & \\
& -3783-00344 n^{\prime \prime}
\end{array}
$$

Constant term for the $(0,0)$ band $-v^{\circ}-1-\mathbf{B}_{\mathbf{0}}{ }^{\prime}-2579977, \ddagger$
whence system-origin $=v^{0} \quad=25797.81$
and null-tue of $(0,0)$ band $=-v^{\prime \prime}+1\left(B_{0}{ }^{\prime}-B_{0}{ }^{\prime \prime}\right)=-25797 \cdot 83$
The band-origins are therefore given by ($f .2$) -

$$
v^{0}+v^{n}=25797 \cdot 81+\left(214388 n^{\prime}-3 n 25 n^{\prime 2}\right)-\left(206564 n^{\prime \prime}-1: 375 m^{n 8}\right),(5)
$$

the calculated values are shown in Table I , us also are tho values of $\mathbf{B}^{\prime}, \mathbf{B}^{\prime \prime}$ and $\mathbf{B}^{\prime} /\left(\mathbf{B}^{\prime}-\mathbf{B}^{\prime \prime}\right)$ for cach band.
\dagger in is here used for Krulzor's half-untogral m*, indi, for convenienee in the application of the combination prinoiple in the next mention, the use of Kratzer's whole-number m (for whoh g is now commonly subetituted) has boen uvoided Thas avoldanco neoesestates a ro-dealgation of the hnos, inatearl of rotauning Kratzor's numbering of a llne by the whole-number g (old m), the hall--ntegral m (old m^{*}) ts employad lere, thum, the lines here dealgosted $\mathbf{R}_{1}(m), \mathbf{R}_{1}(m), \mathbf{F}_{1}(m), \mathbf{P}_{1}(m)$ are respeotively $\mathbf{R}_{1}(j), \mathbf{R}_{1}(j-1), \mathbf{P}_{1}(j), \mathbf{P}_{1}(j-1)$ in the whole-number deaigantion, in accordance with Kratzer's original $\mathbf{R}_{1}(m), \mathbf{R}_{1}(m-1)$, $P_{1}(m), P_{1}(m-1)$.
\ddagger Kratzer writoe " $v_{d}+25700$ 77," but this v_{u} does not eppear to be the aystern-origin $r_{1}\left(\nu^{n}=v^{m}=0\right)$, bat the $\boldsymbol{n}^{0}+B_{0}^{\prime}$ given ebove ta a probable unterpretation \mathbf{R} Mcohe (' Phya, Zeitechar ,' vol. 26, p. 231 (1025)) renders Kratzer's y, ns the null-hne of the (0,0) band, in stanting that the null-lines of tho aystam are given by

$$
\nu=26709 \cdot 77+\left(2148 \cdot 88 n^{\prime}-20 \cdot 25 m^{2}\right)-\left(2055 \cdot 64 n^{\prime}-18 \cdot 75 m^{\prime \prime \prime}\right) .
$$

Table I -Constante in Kratzor's Formulas, and Band-heads.

Heurlinger had already derived a set of formulac of the type (cf. 9) :--

$$
\left.\begin{array}{c}
\mathbf{R}(\jmath) \tag{8}\\
\mathbf{P}(\jmath)
\end{array}\right\}=\mathrm{A} \pm 2 \mathrm{Bj}+\mathrm{C} \jmath^{2}
$$

to represent his analyas of the data for the earlior bands of each of the four groaps. Heurlinger's values of the constants \mathbf{A}, \mathbf{B} and \mathbf{C} are given in Table \amalg,

Table II -Constanta in Heurlinger's Formula and Band-Heads

n^{\prime}	n'..	0	1	2	3
0	null lino A	2870781	237584	2173054	
	2H	384	383	$3 \cdot 85$	
	C	0008	0 O85	0101	
	Jheed $\simeq 3 / \mathrm{C}$	28 E	226	191	
	- cald	2574.362	2371231	21702 н\%	
	Whead Lobs	$2 ¢ 743$ 35	2371228	217040	
1	null hne A	27021]	258700	238030	21873
	2n	3 88	381	5 B0	382
	0	0045	0004	0082	0007
	$\text { Shand } \mathbb{O} / \mathrm{C}$	431	298		
		27H37 06	2582230	2.418 日號	2183580
	Thasal $\begin{aligned} & \text { ohs }\end{aligned}$				
2	null hno $\begin{array}{r}\text { A } \\ 2 \mathbf{B} \\ \end{array}$		270627 388	28945 3 388	239595 378
	0		$0 \mathrm{OH1}$	0050	0076
	Jbead $\simeq 1$ / ${ }^{\text {c }}$		461	316	24.0
	Tread vala		27874 60	2587830	2390960
	Vheal $\left\{\begin{array}{l}\text { obs }\end{array}\right.$		2787800	2588600	2301100

j taking integral values $1,2,3$, . for the observed lines (or ceatres of ubserved doublets) and 0 for the null-lines

In the present investigation both Hrurluger's and Kratzer's formula have been used in calculations of the heads and of low-m lines of the bands The head of a band is located by the line or lines for which m (or j) most closely approximates to the particular valuc making $d v / d m$ (or $d v / d j$) zero; thus in Kratzer's formula (3) $m_{\text {dead }}$ is the half-integer nearest to $\mathbf{B}^{\prime} /\left(\mathbf{B}^{\prime}-\mathbf{B}^{\prime \prime}\right)$ and in Heurbnger's formula (6) $J_{\text {head }}$ is the integer vearest to B / C These values, which will be required linter (eection 5), are shown in Tables I and II respectively, together with the oberrved* and calculated wave-numbers for the band-heads, Agam, it has beon necessary to calculate the low-m lines of bands of the $\lambda 3690$ group, for which no recent data are available, and Kayser and Runge's data have not been ordered (with values of $n^{\prime}, n^{\prime \prime}$ and m) Heurlinger'a formula may be expeoted to give satisfactory values since they were empirically denved from

[^103]new（unpublished）data for these bands．The application of Kratzer＇s thooretica formula to these bande，however，being in the nature of an extrapolation，cennot be expected to give very clnse representations The combination principle has been applied as a check on the formula for the $\lambda 3590$ group

3 The Combnution Prinaplo．

The combination primiple，unlike the above formules，is independent of nny ansumption as to the forms of the expressuons for the vibratiousl and ratational crergies The \boldsymbol{R} and I^{1} wave－numbers of the（ x, y ）band are obtaned by combining those of threc observed lands $(w, y),(w, z)$ and (x, z) as folluws＇－

Maling successive substitutions for $n^{\prime}, n^{\prime \prime}$ in（1），we have

$$
\begin{align*}
& { }^{(s v)} \mathrm{R}(m)=v^{e}+\mathrm{F}^{\prime \prime}(x, m+1) \quad \mathrm{F}^{\prime \prime \prime}(y, m) \tag{1}\\
& { }^{(x, s)} \mathrm{R}(m)-v^{n}+\mathrm{F}^{\prime}(x, m+1)-\mathrm{F}^{\prime \prime}(z, n) \tag{2}\\
& { }^{(w, v)} \mathbf{N}(m)=v^{2}+\mathrm{F}^{\prime}(w, m+1)-\mathbf{F}^{n}(y, m) \tag{a}\\
& { }^{\left(w^{2}\right)} \mathrm{I} R(m)-v^{0}+\mathrm{I}^{\prime}\left(w^{\prime}, m+1\right)-\mathrm{I}^{\prime \prime}(z, m)
\end{align*}
$$

By subtraction ${ }^{\prime}$

Hence，tahng pairs of these expresenons，we have

Thua we may ommpute lines of the band	by inuting eother of two difforent coublinations of the avallable data for hues of the throc bande－			giving the following values to－			
（ x, y ）	（ x, x ）	(w, y)	（ $w, ~$ x	ω	x	y	2.
（0，2）， 14006	（0，1）， 14210	（1，2）， 14197	（1，1），A3871	1	0	9	1
（1，3），入4878	（1，2）， 44187	（2，2）， 14181	（2，2），入3862	2	1	3	2
（1，0），גарро	（1，1），入3871	（0 0）， 13888	（0，1），A4816	0	1	0	1
（2，1），入3036	（2，2）， 13862	（1，1）， 18871	（1，2），入4187	1	2	1	$\underline{1}$
（3，8），入3684	（3，3），入3885	（2，2）， 13802	（2，3），$\lambda 4181$	2	3	2	3
$(2,0)$ ，	（2，1），$\times 4588$	（0，0），A3883	（0，1），入4210	0	8	0	1

Uhler and Patterson'a and Heurlinger's data for the low-m linew (up to $m=$ 101) for the carher bands of the $\lambda 3883$ and $\lambda 4216$ groups are collected in Table 1II,* and the above apphcation of the combination priserple to there data \dagger is shown in T'able IV, where the wave-numbera given by the principle are compared with those given by Heurlinger's and Kratzer's formulw for the first two bands of the $\lambda 3590$ group, the table could, of course, be extended to melude comhunations for each branch of the first two bands of the $\lambda 4600$ group Wherever there is a marked discrepancy between the two formula, it is found that Heurluger's more closely secords with the combination principle over the range Labulated. Using ordered observational data only, it is not posable at preseat to extend the combinatione (within thes range of the low m values) far beyond the branches tabulated, on secount of the absence of data for the low-m lines of the P branches of the $(2,2), \ddagger(3,3)$ and $(2,3)$ bands, the detection of these lines being prevented, evidently, by the superposition of the atronger higher-m lines of the sume branches by combinng wave-numbers calculated by formule (4) and (6) as well as observed wave-numbers, further branches, eg., ($L, 1$) P (n), could be appronmately computed

Heurlinger's formulw, supplemented by the combinstion principle, has led to the identification of some of the lines measured by Kayser and Runge; the order of agrerinent of observed and computed wave-numbers may be soen from Table IV The last of wave-numbers in vacuo from Kinyser and Runge's measured wave-lengthes is given later in Table VI.

[^104]Table III.-Low-m lenes and heads of bands of $\lambda 3883$ and $\lambda 4216$ groups.

σ	(0, 0) Hand, $\lambda 3883$.		(1, 1) Band, $\lambda 3871$		(2, 2) Band, $\lambda 3862$		(0, 1) Band, $\lambda 4216$		$(1,2)$ Band, $\boldsymbol{A} 4187$		$(2,3)$ Band, $\lambda 4181$	
	R (m) \%oba O.P.	$P(m)$ U. ${ }^{\text {P }}$ (R (m) $\boldsymbol{v}_{\text {obs }}$ C P	$P(m)$ $V_{\text {ols }}$ \mathbf{L}, \mathbf{P}	R (w) - ${ }_{\text {obe }}$ L' P	$P(m)$ Cubs C	R (m) ${ }^{\text {goba }}$ \mathbf{H}	P(Ra) Vabs H	R (NR) $\substack{\text { Pobe } \\ \text { H }}$	P (m) y (H	R (m) \% ${ }_{\text {obs }}$ \mathbf{H}	$\mathbf{P}(\mathrm{m})$ Fobs H
1	25801-82	$(2579783) \mathrm{N}$	25882. 73	(25878 97) N			2375933	3755 44)	(23866 88)	86300		
$1 \frac{1}{2}$	05-60	9402	86.99	${ }^{75} 37$			6347	5168	71.14	5913		
21	10.02	9041	9094	7178			6788	4813	7519	5564		
3.	1423	86.80	0081	6814			72 14	4473	7945	5232		
41	1876	8303	99-71	6480			7672	4147	8400	4810	2397731	
51	(23-34)	8037	2680427	6188			8147	3840	8870	4504	8189	
61	\$806	7719	0888	5850			$86 \cdot 36$	3551	03 50	4316	8685	
$7 \frac{1}{2}$	33.02	7483	1355	5551			9146	3278	9830	404	9158	
81	3797	7134	18 60	5266	2598512		9680	$30 \cdot 15$	2.390368	3780	9681	
9.	43.13	6873	2353	1897	0006		2380222	2786	0900	3552	2400226	
104	4840	6616	2882	4733	95.08		0789	2565	14.46	3326	0723	
11%	6377	6375	3401	4502	2600033		1363	2360	2015	3120	1268	
121	5989	6147	39-31	1258	0553		(19 6il)	217	2582	2930	1843	
131	6400	60.88	4499	4032	1089		$2 \mathrm{2i} 00$	2002	9188	2758	24-30	
14.	7050	5725	5057	(38-30)	1638		3191	1854	3804 ,	2600	3026	
$1{ }^{1}$	7670	6539	5640	3644			3842	1714	4436	2447	3639	
164	8873	5348	6231	3472	2757		4502	1583	5096	2322		
171	88.01	51.98	9838	3302	3360		5187	($14 \cdot 80$)	5757	2230	4920	
18	0581	$50 \cdot 51$	7449	3152	3981		5875	(11 04)	6434	2125	5593	
193	25001-64	4918	6079	3010	4551		6980	$(13$ 35)	7129	2055	4247	
Head - Column -(1)		4335 (2)	(3)	2288(4)	(5)	2588689 (6)	(1)	1228 (8)	1893 (9) (10)			2391109
		(11)									(12)	

[^105]More Refrangible Band System of Cyanogen.
Table IV.-Low-m linea and heads of bands of $\lambda .3590$ group

A further test of both data and formula by the combination prinoiple may be mado by onnsidering again the foregoing expressions for $\mathrm{F}^{\prime \prime \prime}(z, m)-\mathrm{F}^{\prime \prime}(y, m)$, from $\left(8_{1}\right)=\left(8_{1}\right)$ and from $\left(B_{3}\right)=\left(8_{1}\right)$ respectively, we have :-

$$
\left.\begin{array}{l}
\left((x, v) \mathrm{R}(m)-{ }^{(x, v)} \mathrm{P}(m)={ }^{(x, 1)} \mathrm{R}(m)-{ }^{(5,1)} \mathrm{P}(m)\right. \tag{10}\\
(w, r) \mathrm{R}(m)-(w, v) \mathrm{P}(m)={ }^{(w, n)} \mathrm{R}(m)-{ }^{(\omega, 1)} \mathrm{P}(m)
\end{array}\right\} .
$$

That is to say, the R and P brauches of all bands having the same mutul vibrational quantum number are equally divergent. This condition in clearly satisfied by Kratzer's theoretical formula (4), according to which the divergence is

$$
\begin{equation*}
\left(n^{\prime}, n^{\prime \prime}\right) \mathrm{P}(m)-{ }^{\left(m^{\prime} ; n^{\prime}\right)} \mathrm{P}(m)=4 \mathrm{~B}^{\prime} m=4\left(\mathrm{~B}_{0}^{\prime}-\alpha^{\prime} n^{\prime}\right) m \tag{11}
\end{equation*}
$$

On the other hand, it is not satisfied by Heurlinger's empirical formule (b) in terme of which the divergence is

$$
\begin{equation*}
\left(n_{n}, n^{\prime}\right) R(\jmath+1)-\left(n^{\prime} ; n^{\prime \prime}\right) P(\jmath)=\left(2 B+\mathbf{c}^{\prime}\right)(2 j+1) . \tag{12}
\end{equation*}
$$

for the values of ($2 \mathrm{~B}+\mathrm{C}$), as may be seen from Table II, do not remain constant for any ong value of n^{\prime}. In Table V this condition is illustrated by the data of Tables III und IV

Thble V -Observed values of $\mathrm{R}(m)-\mathrm{P}(m)$

m	$n^{\prime}=0$.		$n^{\prime}=1$			$\begin{gathered} n^{\prime}+\mathrm{g} \\ \hdashline \begin{array}{c} (2,1) \\ \text { A } 35156 \\ K R . \end{array} \end{gathered}$
		$\begin{aligned} & (0,1) \\ & \times 421 \theta \\ & H \end{aligned}$	$\begin{gathered} (1,0) \\ \mathrm{N} \$ 000 \\ \mathrm{~K} \mathrm{R} \end{gathered}$	$\begin{gathered} (1,1) \\ A 3871 \\ \cup 1 \end{gathered}$	$\begin{gathered} (1,2) \\ \mathrm{A} 1107 \\ \mathbf{H} \end{gathered}$	
1	(3) 90)	(780)	(40)	(878)	(4 88)	(3 8)
1.	1178	1179	118	1160	1201	(116)
21	10 \$1	19 65	(190)	$18 \cdot 16$	1955	104
31	27.33	27.41	(27 1)	27.17	$27 \cdot 14$	26.6
4	358	3525	351	1481	3400	348
σ	(4302)	4807	(427)	4268	4268	(42.1)
61	(50) 87	15080	$\bigcirc 07$	8038	5034	48.7
75	8878	5848		6804	5808	676
81	6618	66 \%		0584	6582	6512
θ	7440	7436		78.85	73 48	727
10.	8224	82.24		8149	8120	809
11	00.02	0003		8899	8805	88.8
12	0782	(97 89)		1672	0168	05.4
13.	10682	10888		10467	10430	1033
14	11334	11387	112 N	(112 27)	112.04	111.0
18	121.81	121.88	1203	11880	11980	118.87
16	189.28	194.19	1877	187.61	127.74	1266
17	13693	(130 87)	185.5	185.36	18597	1J4.6 ?
18	11170	(144 71)	1481	14297	14309	141.6
10	15846	(182.65)	1808	150.62	15074	

Notia to Table V,
U.P, H. and K.R. an in Tablea III and IV.

Figure in brakikta mvilve an entimated wave-number trom 'Sable III or IV Ior one or both of the linee oomblired.

4 Intensity Dretrbution in the $\lambda 3889$ and $\lambda 421 \mathrm{\beta}$ Groups in the Aflerglow.

Rotutional Datrilution - Birge* pointed out that the difference in appearance of a given band of the $\lambda 3883$ and $\lambda 4216$ groups in the arc and in activo nitrogen is due to a difforence of intenaty distribution with respect to j (or m) in each branch. Whereas in the 4 -ampere are the intensity maximum in each branch of the $(0,1)$ and (0,0) bands occurs at $j=28 \dagger$ (2 e , near the head in the care of the P branch), Birge eatimated the maximum to be at or near $j=8$ or 9 in the afterglow. Thus whle the arc develops strongly lines having relatively hgh m values (far exceeding $m_{\text {nad }}$), the afterglow only feebly develops these lines and so permits of easy observation of the relatively strong lines of low m values (less than $m_{\text {head }}$) The gup noter liy Rayleigh and Fowler (First Effect in nection 1) marks, in fact, the position of the null-line $\mathrm{P}\left(\frac{1}{2}\right), \mathrm{R}\left(-\frac{1}{1}\right)$ and the weak neighbouring lines $P\left(1 \frac{1}{2}\right), \mathrm{R}\left(\frac{1}{2}\right)$, it becomes inconspicuous in the arc on account of the overlyng P lines of high in Further, by an extension of Kemble's relation connecting the absolute temperature of the source with the value of on for the line of maximum intensity in a given branch, Birge showed that the above estimates of this value, $m_{\text {max }}$, in the two sources accorded satisfactorly with the temperatures of the 4 -ampere aro and of the afterglow, which latter has been estimated at $100^{\circ} \mathrm{C}$ or less As a result of Birge's investigation, then, the CN apectrum in the afterglow is abown to be a low-temperature CN spectrum, ith essential frature beng that low values of m are more favoured than in the high-temperature (arc) spectrum. In the analogous afterglow spectrum of SiN the same modihoation (\boldsymbol{F}^{\prime} irst E'ffect) wan observed by the writor \ddagger and, much more completely, by Mulliken,8 whose reproduotions of the spectrum ahow very clearly the null-luc gap in many of the bands; in fact, Mullikes obtained some of has null-Line data directly from mucrometer seltings ou the gaps. Further, from a rongh eatimate of $m_{\text {max }}$ in the case of SiN, Mulliken deduced a temperature for the afterglow agreeng both with the actual temperature and with Birge's estimate in the case of CN.

Vibrational Dhermuntion.-The intonsification of the more refrangible end of each of the groups $\lambda 4216$ and $\lambda 9883$ (referred to in sention 1 as Kaylengh and Fowler's Second Effect) finds an interpretation in Mulliken's discussions\|| of the

[^106]intensitues of bands with respect to n^{\prime}. Mulliken has pointed out that, while for therunal equulibrium there should be a steady decrease of intensty with inoreasing n^{\prime}, the intenatty distribution in band apectra developed in active nitrogen differs from this in cases where a chemical reaction is involved, eg., $\mathrm{CN}, \mathrm{BO}, \mathrm{SiN}$. In these spectra the intensities of the bands in a given group or, better, the sume of the intensities for all bands with a given n^{\prime}, firat ancrease with n^{\prime} and then fall off as n^{\prime} further increases 0 n the other hand, in the apectrum of CuI in the afterglow the summed intensities fall off as \boldsymbol{n}^{\prime} increases from 0
The present grating observations of the $\lambda 4216$ and $\lambda 3883$ groups in the afterglow confirm both the above features of the distribution, ie, the absence of lineswith high m values and the occurrence of bands with high n^{\prime} values Though the large mass of observational data upon which the conclusions are based cannot be given at this atage, some particulars as to the development of the bands may now be atated

The $\lambda 4216$ Group $\left(\Delta_{n}=+1\right)$--Measurement shows definitely that the afterglow hnes are identical with Heurlunger's lines of relatively low m values, eapecially in the carlier bands, $(0,1),(1,2)$ and (2,3) At the other end of the group, where the lines in both sources are nore numerous, comparison becomes more difficult, but many lines have been measured on the high wavenumber side of the (2,9) head, which do not appear in Heurlinger's aro list. It would appear, therefore, that there are in the afterglow bands which have still not been traced in the arc Further measurements from spectrograms of atill higher duspersion are much to be desired for the identification of lines of the bands of higher n^{\prime} values
The group as shown in Plate 14, strip 3, is much shorter* in the afterglow than in the arc, thus the loweat wavo-length measured in the afterglow is $\lambda 4117.90$, while Heurlinger's arc wave-lengths extend to $\lambda 3961 \cdot 799$; the difference could, of course, be somewhat reduced by an incresse of the afterglow exposure. The shortening is a direct consequence of the non-development in the afterglow of lines with high m values, which are relatively atrong in the arc. Thus the \mathbf{R} branch of the (0,1) band which has been traced only as far as $\lambda 4190 \cdot 10, R\left(18 f_{j}\right)$, in the afterglow plate, was measured by Heurlinger in the are to $\lambda \lambda$ 4018.489, - 199, R (96d)

[^107]From the grating observations, of which a brief deacription follown, it appears that the approximate order of intensity of the bands from strongest to weakest is $(4,5),(5,6),(2,3),(0,1),(3,1),(1,2)$

The $(0,1)$ band has been sdentifiod in the grating photograph from $\mathbf{P}(2 f)$ in $\mathbf{P}(10 f)$, and thenoe withont resolution to the head $\lambda 4216$ 04, and from $\mathbf{A}(21)$ to $\mathrm{R}\left(18 \frac{1}{2}\right)^{*}$ The intennty mayime appear to bo at about P ($0 \frac{1}{2}$ or 101) and $R\left(8 \frac{1}{4}\right.$ to $\left.10 \frac{1}{2}\right)$

The (1, 2) band is the weakest of this group in the aftarglow Though it is favourably entanted for observation from ita head $\lambda 410716$ to $\mathrm{R}(17 \mathrm{f})$, no lene of euther lornnch has been detacted in the grating plate, only the unresolved head being recorded.

The $(2,3)$ band is developed rather more utrongly than the $(0,1)$ band in the afterglow, and the absenoe of linee of the (0,1) and (1,2) bands in thin region favours ite obsorvation from ite own head $\lambda 4180$ 98, to that of the $(3,4)$ band, $\lambda 4107 \cdot 77$ The P lines haveng low an values are not given in Huurlinger's aro list, but have been identified in the afterglow from $P(2 f)$ to $P(16 \phi)$ and thence without resolution to the head, the intensity maximum being st about $P(\boldsymbol{\theta})$). The identification of the \mathbf{R} lines in the afterglow in less oertain on acoount of the ocourrence of blends, but they have been tracad from $R(3)$) to at least R(10y). A few additional liner apparently not belonging to the (2,3) band bave been measured In this region, some of these aro definitely absent from Heurlnger's ary lint, and others are near the poaitions of some of the (${ }^{(1, r)} \boldsymbol{P}$ linee haping high m values, \dagger but appear to be two atrong to be identified with the latter, these linee are oonspicuous in the nullhne rogion between $P(2 \dagger)$ and $\mathbf{R}(3 \mathfrak{k})$.

The $(3,4)$ band is very wank, being very hittio, if any, better developed than the $(1,2)$ bend, By actual measarement only lter nnrusolved head $\lambda 416777$ has been satialectorly traoed, identritastion of ita weak lines being hampered by the coourrenoe of linees which do not appear to belong to thin or to the overlying $(2,3)$ band

The $(4,5)$ and $(5,6)$ bands are, as judgad by the high intansitles of their hoeds $\lambda 416806$ and $\lambda 415242$, the moat atrongly developed bands of the group.

The $\lambda 3883$ Grousp ($\Delta n=0$) -The $\lambda 3883$ group, though the most heavily recorded of all m the afterglow spectrogram, shows a shortening which is even more marked chan that of tho $\lambda 4216$ group, while Uhler and Patterson's are racasurements extend to $\lambda 3090676$, i.e, to the first head of the next ($\Delta n=-1$) are group, the grating measures in the afterglow extend only to $\lambda 3816 \cdot 2$, beyond which no lines can be detected untl $\lambda 36274$ is reached, there begins the next $(\Delta n=-1)$ afterglow group. Geuerally, a deacription somewhat similar to that of the previoun group applies to the observations of the $\lambda 3883$ group
 R(36) or even still farther, say, K ($\mathbf{2 2} \frac{1}{\mathrm{y}}$). The ocourremse of blonds acoounte for the

[^108]uncertainty as to the presence or absence of these lant Hnea; the carllest line whloh is dofinitoly shasat is \mathbf{R} (461) In Uhler and Patterson's aro thia branch la very long, ertending an ter as $\lambda 3640$ 296, $\mathrm{R}(139 \mathrm{f})^{*}$ - This further demonstratea that the ahortening of the group mast be duc to the absenoe of high-m llnes, and not to the absence of high n bands The P hranoh lines have been ilentilied from $P(1\})$ to $P(18 \mid)$, \dagger and thonce without resolution to the very etrong head $\lambda 3883 \cdot 40$, the most nitense hne being probably $P(10 \mid)$. No satisfentory endence of the development of resolvad P lines having m valuos exseeding $m_{\text {head }}$ is afforded by the first order plate, bat the meoond order photograph, though weaker and more coarsely grained, auggests tho presence of such lines Contrary to what might appear from casual inspection of the region between the heads of the $(0,0)$ and $(1,1)$ bands in the reproduction (Plete 13, atrip 2) the lines ahown in the two souroes are not identioal, the prominent are lines of the \mathbf{P} branch have $m>m_{\text {had }}$ whle the afterglow lines ahown have $m<m_{\text {ha }}$ The apparent contradiotion arines from the Iact that the resolution is too small to dititinguish clearly between the two parta of the P branoh, $z e$, betwean the linea with $m>m_{\text {head }}$ and those with $m<\boldsymbol{m}_{\text {luead }} \ddagger$ In the null-Lne gap betweon $\left.P(1\}\right)$
 Thus is so near the pontion of the null-line that on oasual inapection of the photograph it might appear that the null-lne in sotually developed, whoh of oourae in not the anse. The line may be P (67 1), as it in more favourably placed for mensurement than the P linea immedlataly preceding it ; or, alternstively, it mey belong to another band, e \boldsymbol{g}., a poselble extension of the " tall " band nert beyond $\lambda 3883$

The (1,1) band, Uke the second (1,2) band of the $\lambda 4210$ group, 1a, as Rnyleugh and Fowler pointed out, relativaly weakened in the afterglow Ita P Lnea have, however, been satiafaotorily identified trom \mathbf{P} (1) to at least \mathbf{P} ($\mathbf{1 1}$)) || and loes completely (owing to the frequent ovourrence of blenda) from that point to the hend, $\lambda 3871$ 44, which 18 strongly developed though it is not easily seen in Plate 13, atrip 2, bechase it has about the seme Intanaity an the nolghbourng lines of the preceding band, namely (0,0$) \boldsymbol{0}(4 \mathrm{f})$ and (0,0$) \mathrm{R}(5 \mathrm{f})$. In the case of the R branch of the $(1,1)$ band blends are so numerous that only isolated early membery have been identufied

The $(2,2)$ band -In the range of low m values Uller and Pattermon identilied ouly the

- Uhlar and Patterson's deagigutions of these six R lines, in the arder named, aro A (20), A_{1} (69), A_{2} (65), $A_{1}(71), A_{1}(75)$ and A_{1} (168).
\dagger Uhler and Pattarnon's dosignations of those two P lines are $\mathbf{A}_{1}(27)$ and \mathbf{A}_{1} (10) respeotively.
\ddagger The (0,0) P (m) lines with $m<m_{\text {head }}$ are Uhler and Pattorson's A_{1} lines as aleo are $(0, \theta) R(m)$ lines, and those with $m>m_{\text {hend }}$ are their A_{1} linen (doubleta). Uhlor and Pattermon's ano llat olearly showa the necemalty of high resolution for the soparation of noighbouring \mathbf{A}_{1} and \mathbf{A}_{1} lines.
\& Uhler and Patterson's $\mathrm{A}_{\mathbf{2}} \quad \mathbf{3 8 7 5}$.975, $\mathbf{3 1 0}$
|| Thewe are Uher and Patterson's $B_{1} \lambda 3863 \cdot 693$ and $\mathrm{B}_{1} \lambda 3868124$ rempeotively. Though no $(1,1) \mathrm{P}(m)$ lines with $m>m_{\text {heal }}\left(1.0\right.$, Uhler and Peiterwon's B_{a} doubleta) have been definitoly deteoted in the aftarglow, it ahould be mentioned that thore are in the region between the $(1,1)$ and $(2,2)$ heade two afterglow lines which cannot be identufied as elther A_{1} or B_{1} Ilines, namely λ 3865-06 and $\lambda 3868-14$ The latter le vary near the ponition of the $(1,1)$ null-line, and both are near the podilions of B, lines. It would appear, however, that they are too strong to be idsatified with $\mathbf{B}_{\mathbf{1}}$ linea and that they may belong to eatirely new hands,
 branoh ather from the aro observations or from the combination princuple, the examunation of thls region in the afterglow is difficult It appears, however, that membera of enoh branoh are present in farr intensity, the head $\lambda 386185$ boing, in fant, well doveloped

The (3, 3) band, for wheh Uhler and Pattarson identiflod the R hines from $\mathbf{I L}(11 d)$ onwards, \dagger is niso proseut in tho afterglow, but to n lase extent thun the $(2,2)$ band, ita head, λ SN54 74, not being deteoted in the grating plate

The $(4,4)$ band -The now head observod by Rayleugh and Fowlar at $\lambda 3850$ w, no doubt, that of tho $(\mathbf{4}, 4)$ band, which would, in fact, be expeoted to be atrongly developend in view of the hugh intensity of the (4. J) baud of the formacr groap. The present photogreph does not dofimioly show thas head, the position in question being occupied by an unresolval beckground. The region occupped by the $(2,2)$ and sucuceding bande noell further work, proferably with now platew of still hugher dispersion

The order of intensity of the bands is less easily juilged in this than in the former group, but would uppear to be rougbly (2, 2), (0,0), (3, 3), (1,1) Thus taking only valuen of n^{\prime}, it appears from observations of both groups that the; band intensities decrease in the ajproximate order 4, $5,2,0,7,1$ in the ulterglow, while in the are the probable order is 0, 1, 2, 3, 4, 5, that as to say, featureb of the distinbution with respect to n^{\prime} in the ufterglow are, (a) association of high values of n^{\prime} with high band intensitien, (b) marked weakness of hands with $n^{\prime}=1$, and (c) a tendency for the intensities to alternate, as well as to show a genoral increase, as n^{\prime} inoreases.

Б The Afterglow Group mar $\lambda 3590(\Delta n=-1)$

It as apparent from tho arc and aiterglow photographs reproduced in Plates 13, 14, that the change is more marked in the $\lambda 3590$ group than in either of the other groups $\lambda 4216$ and $\lambda 3883$, in whach Rayleigh and Fowler discovered the two effects already discussed, indeed, it would hardly appear that the drastic modification of the $\lambda 3590$ group is merely a further example of the same two effects. In the hrest place, the heads $\lambda \lambda 35904,35859$ and $3583 \cdot 9$ of the $(1,0),(2,1)$ and $(3,2)$ band respectively, which are promment in the arc, are not observed at all in the afterglow Secondly, while the are group as measured by Kayser und Runge extends from $\lambda 3590 \cdot 33$ to $\lambda 3482 \cdot 26$, the afterglow group as now measured extends from $\lambda 362742$ to $\lambda 3557$; 05 ; that is to sey, thes group, like the $\lambda 4216$ and $\lambda 3883$ groups, is shorter in the more refrangible direotion in the afterglow than in the are, but unlike those groups it extends beyond the less refrangible limit of the aro bands On casual inspection of the photographe it would uppear that the aro bands (1,0), (2,1) and (3, 2), are

[^109]vOL. CXII.-A,
roplaced in the afterglow by an entrely different group of bands, It will now be shown, however, that both of the above features, namely, the absence of heads and the continuation on the less refrangible alde of $\lambda 3590$, are to some extent oxplicable of the afterglow group consists of band having $n^{\prime \prime}-\boldsymbol{n}^{\prime}=-1$ as in the arc group, but with intensity inodificalions smuilar to thoso described 1u section 4

The Absence of Heads - Assuming that the $\Delta n=-1$ bands in the afterglow reach a maximum intensity in each branch at about $m=9 \frac{1}{2} \pm 2$, as in the casc of $\lambda 4216$ and $\lambda 3883$, it can casily be shown that no band of this group is likely to form a head The valuce of $m_{\text {haes }} \simeq \mathrm{B}^{\prime} /\left(\mathrm{B}^{\prime}-\mathrm{B}^{\prime}\right)$, shown in Table I . increaso considerably from the less to the more refrangible end of each group of bands, thus, for the $\lambda 3883(\Delta n=0)$ group they are $290,309,331,357 \ldots$ They mocrease inore rapidly from group to group in passing from the less to the more refranglble end of the systern ; being $19-2 \ldots$ for the $\lambda 4608$ ($\Delta m=2$) group, $23 \cdot 1$ for the $\lambda 4216(\Delta n=1)$ group, $29 \cdot 0$. for the $\lambda 3883$ ($\Delta n=0$) group and 42 l for the $\lambda 3 \mathrm{~b} 90\left(\Delta_{n}=-1\right)$ group A sumpar variation sa shown in Table II for $j_{\text {bad }} \simeq B / C$. A band will form a head provided, of course, that one of ats branches (the \mathbf{P} branch in thesc $\mathbf{C N}$ bands) extends to or beyond $m_{\text {haed }}$ before the lines fade off to an undetectably low intensity Thus in the $\lambda 3883(0,0)$ band, the head of which 18 welldeveloped, the R lines have been definttely traced to at least $\mathbf{R}\left(30 \frac{1}{2}\right)$, and the \mathbf{P} lines inust also have apprecisble intensities for m values exceeding 28 , which is the value of $m_{\text {bead }}$, even though the intenaty maxamum occurs so early in the branch as $P(9 \pm \pm 2)$. Simularly the P lines of the $\lambda 4210$ group are developed to or beyond $m_{\text {hen }}=231$., although this group is less strongly recorded than the $\lambda 3883$ group The hnes of the $\lambda 3690$ group are also less heavily recorded than the $\lambda 3883$ group, and will probably not be deteotable in any branch beyond, say, $m=30 \frac{1}{2}$ to $40 \frac{1}{2}$, ift be agan assumed that the intansity maximum occurs at ubout $m_{\max }=91$ This pounts to a non-development of the head, ance the $m_{\text {mad }}$ values for all bands of this group exceed $40 \frac{1}{2}$. From Tables I and II it would appear that this argument, whle satasfactory in the cases of the higher bands of the group, may not indicate an enturely headless structure for the first band (1,0) But analogy with the othar groupa would lead us to expect that this band, having $n^{\prime}=1$, will be the weskest of the whalc group and wall not be detected far away from $m_{\text {max }}=9$, if at all.

The noo-development of high-m hnes in the afterglow wall also account for the obsorverl shorteming of this group, as of the former groups, at the more refrangible end.

It may be remarked in passing that, according to the above argument, the $\Delta n=+2$ bands in the $\lambda 4606$ afterglow group should hnve well-developed heads, ance $m_{\text {bead }}$ is not very much greater than $m_{\text {max }}$ Tbis conclusion has, in fact, been verifirel hy observation of the grating spectrogram Though individund band-lines of thas group are only frebly recorded, the heidd of the higher-n' bands (3, 5), (4, 6), (5, 7) and (6, 8) were actually mensured Thowe of the low-n' bands $(0,2)$ and $(1,3)$ were not detaeterd, and that of $(2,4)$ was measured with difficulty Thas is in general actorlance with the observations of the $\Delta n=+1$ and 0 groups in the foregorng section -

T'he Extensuonto Wave-Lenyths higher than $\lambda 3590$ - On the further assumption that, 昭 in $\lambda 4606$, $\lambda 4216$ and $\lambda 3883$ groups, the bands with higher n^{\prime} valuen are favoured by the afterglow conditions, it is possible to offer an explanation of the continuation beyond $\lambda .3590$ In any one group, ess i' mercases the intervala betweon succesulve bands decrease in arithmetical progression,* $i e$, the binds close up in pasang from higher to lower wave-lengths, and if onough baude are developed the group will turn back t.owards the higher wave-length end. According to Kratzer's theoretical anulyss of the syatrm, the range of n^{\prime} within which this return of hugh- n^{\prime} bands takes place is smallest for the $\Delta n=-1$ group and increases progressively from group to group in the direction $\Delta_{n}=-1,0,1,2$ This is seen in Table I, which gives a range of values of the band-ongins, $v^{*}+v^{n}$, calculated from Kratzer's formula (5) It would thus appear that the band-hnes measured between $\lambda 3590$ (or less) and $\lambda 3627$ may belong to the high $\cdot n^{\prime}$ bands which have overrun tho $(1,0)$ band, or inderd that the whole observed afterglow group from $\lambda 3557$ to $\lambda 3627$ consista of low- m hnes of these returning high- n^{\prime} bands Mullakent has expressed the belief that the "tall" bands may be simularly interpreted

Alternatively, this high wave-length end of the $\lambda 3590$ afterglow group may represent an intensification of the structure of the $\Delta n=0$ group below $\lambda 362 \pi$. this, however, вcens very improbable, as no lues of that group have been detected between $\lambda \lambda 3816$ and 3627 . Or ugan, the afterglow bande may le entrely different ones from those constituting the $\lambda 3590$ arc group

Data for the Lines. -With the object of finding to what extent tho arc lines are present in the $\lambda 3590$ afterglow group, the grating photograph of the latter has been meanured na completely as possuble against aron arc wave-

[^110]lengths * Tho wave-numbers are given in Table VI, \dagger together with thowe pertaming to the ranges of the $\lambda 3883$ and $\lambda 3590$ arc groups which occupy this region Many of Kayser and Runge's hees have becn allocated, as abown in the table, to the R and P branches of the $(1,0)$ and $(2,1)$ bands, the moans of ther identification bering the formulas and tho conabination principle as described in sections 2 and 3. Though the 'are and afterglow data aro not strutly comparable in virw of the great differonce in the despersions used in the two cases, certan general reaulta are immedutefly evident from the table --

1 A great number of lines are common to the two sources, but the distributhous of intensities are radically different
2 Certan limes are developed in the afterglow wheh do not appear in the are Thus, to take a fow examples, ullowing a very wide margin of error in the uflurglow incasures, it is evident that the well-defined hnea vo $27609 \cdot 2$, $27613 \cdot 0,270168,276241$ and 977374 in the afterglow, less refrungible than λ,590), are not amongst those listed by Uhler and Patterson. On the more refrangible sule of $\lambda .3690$, the nfterglow hene $\lambda \cdot 27875 \cdot 7$ is absent from Kayser and Hunge's arc list, the position of the last-namest line is so favourable for observation in the writer's are comparisun photographs that it is unlikely that the line could eqcape deter tion
3. Many of the hines strongly developed in the are are not detectedin the aiterglow, even though account must be taken of the much greater probability of blende in the afterglow spectruin than in the higher dispersion arc data. 'Thus, on the higher wave-length side of $\lambda 3500$, there 18 no trace of the lines vv $2776903,27773 \cdot 92,27777 \cdot 25,27792$ 25, 27827 32, all of whech are given by Uhler and Patterson as intense relatively to ucughbouring lines in the arc. On the lower wave-length ade of $\lambda 3590$, wo have important examples in the heculs of the ure bands (0,1), (2,1), (3, 2), no trare of whech is detected in the afterglow spectrum. Further, if the writer's sdentuhcations of the R and P lines of the $(1,0)$ and $(2,1)$ bande are correct, it is evdent that the $(1,0)$ band is enturely absent from the afterglow in apite of frequent approximate colncidences of ono of ats band-linos with an aftergluw band-line. Such comodences are

[^111] $\mathbf{R}\left(13 \frac{1}{2}\right), \mathbf{R}\left(14 \frac{1}{2}\right), \mathbf{R}\left(19 \frac{1}{2}\right), \mathbf{H}\left(22 \frac{1}{2}\right), \mathbf{R}\left(25 \frac{1}{2}\right), \mathbf{R}\left(29 \frac{1}{2}\right)$ Since no other hnes of this band can be tracod in the afterglow spectrum, these apparent concidences must arise from the occurrence of blends in both spectra and indicate the necessity of still higher remolution. The absence of (1,0) is in accordance with the prevous observations as to the weakners of the bands with $n^{\prime}=1$ in the other afterglow groups.

Simlar considerations pront to the almost entire absence of the $(2,1)$ band, though the comparisona hoth of the photographe and of the tabulated data are rather more difficult than for the (1,0) band It is posubble that the \mathbf{R} and \mathbf{P} lines ator near $m=9 \frac{1}{2}$ areactually present in the afterglow spectrum; theso lines, if any, would be expected in the afterglow As no lines of the (3,2) band havo been identfied in the arc, nothigg cen be said of its occurronce in the afterglow, except that ite head has not been detected
4 A study of the afterglow spectrogrum and of the tabulated data. without regard to the arc', has led to the division of the lines into certain sets or sequences which are suggested by the general run of the intensities and of the first differences of wave-number, though the regularity of hoth is often vituated by the occurrence of blends The sete suggested include all but a very few of tho observed lines, and are indicated in the table by numbers (I)-(XIV) at the top of each soquence of first differences (Δv) Whule there is reason for believing that the regularitics implied in some of the sequences have a real signuficance, it it clear that for others no such clam can be made

Taking (I) and (XII) as typical of the more trustworthy sequences, it is seen that each rescmbles a headless brunch of a band in that it is charactersed hy the uaual rise of intensity from each ead to a maximum near the middle, and by a steady increase in the frat dufferencos from one end to the other, further, the first differences are of the same order of magnitude as those in the known bands of the $\Delta n=+1,0$ and -1 groups * The same features are shown, though not so clearly, by other sequences, e.g., II, LII (apart from its irregular begnning which may be duo to blends with hines of II), and JV (again apart from irregulanties in the first five linos, which may not actually belong to this set) VI, VII and IX are much less satisfactory, and the reat consist of very few and sometamen doubtful lines \dagger

[^112]Table VI -The Afterglow Group near $\lambda 3590$

 5 \&

Table VI-(continued)

$1{ }^{\circ \prime}$	1	$\stackrel{*}{\square} 1$	m	1		$1:$		\%	1			E1\% 10				
$\stackrel{\infty}{ \pm}$	\square	"		${ }^{\circ}$	a	$\%$	\%		\%		$\stackrel{7}{8}$		\%	\%		
	\pm	'		\cdots		-		-	-		$=$			1		

\qquad

Table VI－（contınued）．

	$\frac{\text { 震 }}{}$	\cdots－
	$\stackrel{\text { d }}{ }$	
	5	
	当	
	号	
$\frac{5}{4}$	a \square 吕	
	\％	
	4	
	$\underline{8}$	
	古	
年	号	
	吕	－＊

Table VI-(contunued).

Thr two weak setw I and II at the less refrangible end of the group apprar to be the \mathbf{R} and \mathbf{P} branches of one hand, the intervening gap (v $27634 \cdot 8$ v 27656 5) representing the positions of five unobserved Jues as well as the nullline of the band With this interpretation, it is the \mathbf{R} branch (II) which converges towards (without roarhing) a head, and not the P hranch (I), in this respeet the band differs from the orlunary bands of the are grouph, but resembles a "tanl" band degraded towards the red. For the location of the null-hme of 1.his pussible band, and for the discussion of the sugnitiane if any, of the other suggested apts a more heavily exproed spoctrogram is necessary

It may be pointed out that while the regularitien implied in the tahle are rather rough and [ragmentary and parhaps to some extent fortuitous, they extend to, portions of the CN apectrum where no regularties have been previously recorded This results from the development in the afterglow of only relatively few of the arc band-lines The writer 18 of the upimon that although the tabulated afterglow lines overrun $\lambda 9590$ into the region occupied by the more refrangble end of the $\lambda 388: 3\left(n^{\prime \prime}-n^{\prime}-0\right)$ group in the are, they all belong. neverthelese, to bauds for which $n^{n}-n^{\prime}=-1$, the low n^{\prime} banils (1,0), (2,1), and (3,2) beung largely if not completely excluded

$$
\text { 6 The " Taul" Hands near } \lambda \text { 3s8" }
$$

Introductory - It may be recalled that Thuele* regarded a band an boqimmug with a head and endung with an oppositely degraded head which was approprutely called a " tall"; thus, in passing along a band from head to "tall" the intervala between successive lines first incrensel from zero up to a flat maximum and then decreased to zero. Kingt discovered in the carbon arc four groups of faint CN bands the positions of the heads of which bore certan ample numericul relations with those of the bands in the four promment groups to which we have so far confined our attention, esch of the new heads was regarded as the "tall" of one of the prominent bands onits high wave-length side Thus, takng ns examples only two groups, we may write King's wave-length (converted to I A) for esch " tail " beneath the wave-length (from Table I) for the head with which it was parred by Kugg thus,

[^113]Heads of group $\Delta_{n}=+2 \cdot-4606-15,4578.01$ 455:3 13, $405189,451478,450218$
"Tsils" of King's group IV .--3984 78, 3944 76, 1910 30*
Heads of group $\Delta n=+1-421004,4197 \cdot 16,418098$, 4167-77, 4158 06, 4152-12
"Tals" of King's group III -3658 19, 3628 91, 360297
(The first three " tails " of these groups ware not detected, they fall within the heavily exposed $\lambda 4216$ and $\lambda 388 s$ groups, respectively) Jungbluth modified King's arrangement, by paring the head of longest wave-length in it group with the "tail" of shortest wave-length in the associated group, eg, the "tauls" at $\lambda \lambda 3910 \cdot 30,394476,398478$ with the heads at $\lambda \lambda 460615$. 4578 01, 455313 respectively Uhler and Patterson concluded from their high resolution messurements that, some of the "tals" in King's groups I, II and III, which were essential to both King's and Jungbluth's arrangements, bore Little or no resemblance to real heads \dagger Mulliken, as has already becn remarked, regards the connection between the two sets of bands as quite different from that onginally supposed, his view being that a group of "tall" hands is the "returning " high n^{\prime} portion of the group of prominent bands on the lowir wave-length side, thus the "tails" at $\lambda \lambda 391030,3044 \cdot 76,3984 \cdot 78$ belong to the bugh n^{\prime} extension of the $\Delta n=0$ group, $\lambda \lambda 388340,387144,3861 \cdot 85$,

Doveloponent in the Afterglow - Rayleigh and Fowler observod that the "tail" bands are developed in the afterglow, and, hke the more prominent groups already described, they show vory marked changes as compared with ther appearance in the arc In particular, the bende of King's group lV, given above, exhibit the First Effect, ie, the clearness of the null-hne gap reaulting from the non-developmont of lines of high m valuos The gap in each band in beautifully shown in Rayleıgh and Fowler's hg $\boldsymbol{\theta A}_{\mathrm{A}}$

Grating measurements have been made over a short range of the bands of King's group IV in the sfterglow, the intensities and wave-numbers are given in Tsble VII. A very close simlarity is shown to exist between the structure of these bands and that of the $\lambda 3590$ ufterglow group deacribed m section 5. In the first place, no heads aro detected i \ddagger Muljken's interpretation of the "tall" bands would presumably roqure this absence of heads in the

[^114]T'able VII "Tail" band lues from λ 3934.5 to λ 3883-7 in the Afterglow.

Table VII - (continued).

Int	$\boldsymbol{\nu}$ var	Δv.	Notes	Int	Vver	$\Delta \nu$	Notes
4	255257	2.8		2	25704-8	-	ε
4	28 б	27		2	058		
4	31-2	-		1d	086		
4	330	27		$4 b d$	110		
		26					
4	365	- ${ }^{-6}$		5	147	(VI)	
4	391	-	*	$3 d$	188	(V1)	
						9.7	
		(IV)		5	$22 \cdot 5$	-	
01	718	48		$5 d$	262	3.7	c
007	782	-		sd	0	37	
		43		4	280	-	
0	80 ¢	-			37	38	
0	85.2	47		6	337	$\overline{7}$	
		43		0	374	87	
1	896	- 4.2		8-	412	38	b

Notieg to Tamle VII.
a-See Tsble VI note a for g, b, n, d.
a, Am in Tablo VL
u-The opan structure ie interrupted at thu pount, boyond which there ua grey heokground of unrealved linoe anding in a head at $\lambda 391007, y 255678$ degraded towarde the red, this is one of the " tala" goven by King
N_From both the grating photograph and Maylelgh and Fowler's roproduotion (By 6a), it is ovident that theee two gepa represent the nall-line reglons of two bands oonaisting of II + III and IV + V reapeotavely.
e-The appesrenoe of V eupgeata that it should continge beyond this point, but thin hot shown by the tabulated numencal data as the followng four linea do not fit in.
c-Doubtinal lined werv measured at $\boldsymbol{r} 257202,257308$, not satinfeotorily resolved from the muoh more certan linea vo $2: 8718 \cdot 8,257262$ respentavely
h.-VI ovidently continues beyond the strong head $\lambda 889340$ of the $(0,0)$ band, and may be followed by other aumilur sequencen of liner whoh nannot be doteoted with the reeolation employed See $(0,0)$ band, $p(22$.
afterglow spectrum, for high values of n^{\prime} are sccompansed by hagh values of Theas (see Table I). Secondly, it is quite clear from Table VII that the lines fall into a number of sequences (I-VI) olosely resembling the more certain of the sequences observed in the $\lambda 3590$ group; the amaller degree of overlapping in the "tall" bands favours more complete recognation of the sequences. The distribution of intenatises and the progressions of first differences are, as far as can be determined, typical of branches of bends. Sequences II and III appear to be short low-m ranges of the P and R branches of one band, vol. dxis.-A.
having its null-hne in the intervening gap, and its R branch (III) converging towards, though not reaching, a head, this is, of course, implied in the observed fact that the " tails" in the arc clegrade towards the red Similarly, aequences IV and V are the P and R branches of the next " tall " band, the R branch (V) agein proceering towards the absent head, this is the band near $\lambda 3883$ which was noted by Raylpigh and Fuwler For the cyact location of the null-lines of these two bands (II + III and IV + V) more heavily exposed plates are necessary, Hayleigh and Fowler's original Iattrow spectrograms may auffice

7 Summary

Rayleigh and Fowler described certain modificationa in the $\lambda 4210\left(n^{n}-n^{\prime}=\right.$ $+1)$ and $\lambda 3883\left(n^{\prime \prime}-n^{\prime}=0\right)$ groups of $C N$ bands developed in the afterglow of active nitrogen as compared with the are 'The mordications of the λ 3590 ($n^{\prime \prime}-n^{\prime}=-1$) group and of some of the "tail" bunds are now discuased

By means of Heurlinger's and Kratzer's formula, and the combination principle, data for the (1,0) and (2, 1) bands of the $\lambda 3090$ group are adentafied in Kayaer and Runge's arc List

The modifications in the $\lambda 4216$ and $\lambda: 3883$ groups and the interpretations of then given by Birge and Mulliken arediscuseed with the aid of grating measures The afterglow develops eqpecially lines of low m values and bands of high n^{\prime} vulues As n^{\prime} mereases the intensities of the bauds in each group tend to show an alteration as well as a general increase. Bands with $n^{\prime}=1$ are the weakest

The $\lambda 3590$ group (like the above) is shortened in the low- λ direction, but (unlike the sbove) it is prolonged in the high- λ direction in the aftergluw as compared with the arc, and alao consists of headless bands It is shown that on the assumption that these bands have $n^{\prime \prime}-n^{\prime}=-1$, the absence of heads follows from the non-development of bigh-m lines, and the high- λ extension may be due to the enhancement of high-n' bands

Grating measures of the $\lambda 3590$ afterglow group are recorded and compared with the arc data for the same region Each source develops some lines which the other does not The $(1,0)$ and $(2,1)$ bands are not deteoted in the afterglow; and the head, at least, of $(3,2)$ is also absent The afterglow lines of thes group fall into rogular sequences (branches), some of which taken in pars appear to form bands of the PR type, degrading in the oppoaste direction to the low-n bands. The "tail" bands near $\lambda 3883$, for which sorne grating data are recorded, form simular headloss branches in the afterglow

The author has great pleasure in thanking Prof. A Fowler, in whose laboratory the experimental part of the work was carried out, for his unfailing help and interent, and the Government Grunts Committee of the Royal Society for the Hilger merometer used He is deeply indebted ulso to Prul E N da C Andrade, Dr W E Curtis, and Dr R S Mulliken for very helpful dircussions of various points in the investigation

DESCRIPTION OF PLAATES 13 and 14
The more refrangible bind-ayatem of CN (10 It coneave grating, firat ordor)
(a) In the carbon arc in air
(b) In the afterglow of active aitrogen with oyanogen

1 The λ ismo group, $n^{\prime \prime} \quad n^{\prime}=-1$ Fe lines are shoun ut an impurity in (a), and as a comprinmon apectrim in (b)
2. The λ 38N3 gromp. $n^{\prime \prime}-n^{\prime}=0$
\& The $\lambda 4216$ group, $n^{\prime \prime} \quad n^{\prime}=1$

Crystal Structure and Chemical Constttutwo of Basic Beryllum Acetate and its Honologues.

By Gilhert T Mobaan and W.T. Astbury.

(Communicated by Sir Willam Bragg, F R S -Roceived July 21, 1926)
(Platid I5)
The physical and rhemucal properties of basic beryllium acetate, $\mathrm{OBe}_{\mathbf{a}}\left(\mathrm{CH}_{\mathrm{a}} \mathrm{CO}_{\mathrm{a}}\right)_{\mathrm{a}}$, are those of a non-1omsed substance having the untary structure of a typical organic compound, each chemical molecule of which may be regarded as furming one co-ordination complex
The fact that the arrangement of the eliven associatmg unty of which this molecule is composed possesses the geometrical attributes of a tetrahedron bas led to a stereochemical conception of the constitution of the oompound, which is contirmed by the results of X-ray analyus *
The unique oxygen atom is astuasted at the centre of the tetrahedron, the four berylhum atows are arranged on lines joining the centre with the four vertices of this regular sold, whereas the six acetate groups are distributed

[^115]symmetrically about the six sides of the tetrahedron. The precise arrangement of the air pairs of orygen atoms derived from the ans acetate radicals is discossed in detail on p 6 (loc. out)
The three atoms which are attached to the inner carbon atom of the carboryl group (vie., the outer methyl oarbon atom and two simularly situated orygen atoma) are arranged on a plane passing through the centre of the carbon, bat this plane is not neceasamly either parallel to the edge of the tetrahedron or perpendioular to it. Neverthelese, the aux pars of oxygen atoms in the acetate groups occupy symmetrical positions in the molecule.
The arrangement of the hydrogen atoms on the methyl carbon atom presenta a difficulty There are eighteen of them and they cannot all be aymmetrically distributed with respect to orther the vertices or the edges of the tetrahedron. But since the cryatals of the acetate display cubic symmetry, it must be assumed that, owing to therr relatively small importance, the presence of these eighteen hydrogen atoms does not modify appreciably the crystal atructure of the compound

When, however, one of the three hydrogen atoms in each methyl group is replaced by a larger methyl radical, as in basio beryllum propionate, $\mathrm{OBe}_{4}\left(\mathrm{CH}_{\mathrm{g}} \mathrm{CH}_{\mathbf{1}} \mathrm{CO}_{\mathbf{2}}\right)_{\text {e }}$, the inflaence of this substitution on orystal structure becomes at once apparent in the marked change produced in the oryatalline form of the beryllium compound. The crystals of basic beryllium propionate belong to the monochne syatem and the crystal unt is made up of two ohemical molecules (loc, ott).

A similar departure from cubic symmetry was observed (loo ctt.) in the case of basic beryllum acetate propionate, $\mathrm{OBe}_{4}\left(\mathrm{CH}_{3} . \mathrm{CO}_{3}\right)_{3}\left(\mathrm{CH}_{3} . \mathrm{CH}_{1} \mathrm{CO}_{4}\right)_{1}$, in which the replacement of hydrogen atoms by methyl groups occurs only in halt the acetate radicals present.
Thus study of the influence of chemical constitution on orystal structure has now been carried farther by an \mathbf{X}-ray examingtion of the following homologues of basic beryllum acetate :-

$$
\begin{aligned}
& \text { basso beryllum usobutyrate, } \left.\left.\mathrm{OBe}_{3}\left(\begin{array}{l}
\mathrm{CH}_{3} \\
\mathrm{CH}_{3}
\end{array}\right\rangle \mathrm{CH} \mathrm{CO} \mathrm{CO}_{\mathbf{a}}\right)\right)_{0} \text {, } \\
& \text { basa beryllum } n \text {-butyrate, } \mathrm{OBe}_{\mathbf{6}}\left(\mathrm{CH}_{3} . \mathrm{CH}_{\mathbf{3}} \mathrm{CH}_{9} \mathrm{CO}_{\mathrm{a}}\right)_{0} \text {, } \\
& \text { basce berylhum pivalate, } \left.\quad \mathrm{OBe}_{\mathbf{1}}\left(\mathrm{CH}_{\mathrm{B}}\right)_{\mathbf{1}} \mathrm{C}_{\mathbf{2}} \mathrm{CO}_{2}\right)_{0} \text {. }
\end{aligned}
$$

The propionate (already examined), the reobutyrate and the pivalate are of special interest in this mvestugation because they represent the progreasive replacement of the hydrogen atoms of the scetate radical by methyl groupo.

The following aummary inoludes a brief desoription of the preparation and properties of these homologous beryllium compounds -

Basc Berylhum n-Butyrate, formerly desoribed as an onl,* was obtained in solid form by dissolving specially purified beryllum hydroxide in the caloulated amount of n-butyric acid heated to bollng. On coolng, the product separated as an oil and was extracted with cold benzene The benzene extract was pvaporated and the realdue crystallised repeatedly from light petroleum boling below $40^{\circ} \quad$ (Found $\mathrm{C}=49 \cdot 76, \mathrm{H}=7$ 30, $\mathrm{Be}=6 \cdot 42 \quad \mathrm{C}_{24} \mathrm{H}_{48} \mathrm{O}_{18} \mathrm{Be}_{4}$ requires (' $^{\prime}=50 \cdot 18, \mathrm{H}=7 \cdot 32, \mathrm{Be}=629$ per cont.) Basc berylhum n-butyrate separated in colourless leafiets melting at $25-27^{\circ}$.

Basw Beryllusm isoButyrate, prepared by the foregong method using ssobutyrio acid, was obtanned in needles from light petrolewn (b p. 40-60). (Found $\mathrm{C}=49$ 56, $\mathrm{H}=7$ 97, $\mathrm{Be}=6.42$ per cent).

Large cryatala of the usobutyrate were isolated by allowing the petroleum solution to evaporate slowly into a confined apace. The melting point of this preparation wat 88-89 ${ }^{\circ}$ Lacombe (loo ott.) gave m p. 76°.

Basw Herylluum Proalate-Pivalio or trimethylacetic acid was prepared from pinacolint and its beryllium dernvative was produced by boiling under reflax 6.5 gron of beryllium hydromde ($\mathrm{Be} 0=49$ per cent), 16.6 grm . of pivalic acid and 30 c.c. of petroleum bollng at $80-100^{\circ}$ The filtered solution was concentrated when 15.5 grm of crude pivalate was obtained (yield 87 per oent) By crystallisation from petroleum (b p 40-60 $)$ needles of beryllium pivalate were isolated (F Found $\mathrm{C}=54 \cdot 44, \mathrm{H}=8 \cdot 15, \mathrm{Be}=5 \cdot 66$ $\mathrm{C}_{30} \mathrm{H}_{\mu} \mathrm{O}_{18} \mathrm{Be}_{\text {، requires }} \mathrm{C}=64 \cdot 71, \mathrm{H}=829$, $\mathrm{Be}=5.48$ per cent.).

On alow evaporation of the petroleum solution large pyramdal cryatals of basic beryllium pivalate were obtamed melting at 169°.

X-ray Analysu

Basc Berylluum Actate.-The X-ray anslysis of the structure of basic beryllum acetate has been discussed elsewhere (boocn.), bat there are atill a few points that may be enumerated here The abnormal apanings observed ($(h k l\}$ halved if $(h+k),(k+l)$ or $l+h)$ is odd, and also $\{h k o\}$ quartered if ($h+k$) is odd but halved if even) correspond to eather of two oubic space groupe, $\mathrm{T}_{\boldsymbol{h}}{ }^{4}$ or $\mathrm{O}_{\mathrm{n}}{ }^{7}$. If the apace-group is $\mathrm{T}_{\mathrm{A}}{ }^{4}$, the crystale belong to the dyalisdodeoahedral class and the molecular symmetry (eight moleculea per cell) is that of the tetrahedral-pentagonal-dodeoshedron, four trad axes and three

[^116]dyad axes If the space-group is $\mathrm{O}_{\mathrm{A}}{ }^{7}$, the crystals are bolohedral, while the molecules have the symmetry of the regular tetrabedron In both apacegroups the molecular arrangement is simular to that of the carbon atoms in damond, but the molecular aymmetry in $T_{A}{ }^{4}$ is lower A Laue photograph, taken with X -rays perpendicular to the octahedron face, discrimmates at once between these two groups, for in $T_{h}{ }^{4}$ the duggonal planes of symmetry of the cube are absent, and simple threefold symmetry only is to be expected in the arrangement of the apots Such a Laue photograph is shown in Plate ib It induates clearly the lack of dagonal symmetry planes The space-group is therefore $T_{n}{ }^{4}$ This conclusion was confirmed by a photograph perpendicular to the cube face As was to be expected, this photugraph showed only symmetry planes parallel to the cube facces Such beng the case, the molecular aymmetry in only twelve-fold The unque oxygen atom hes at the centre of a regular tetrahedron of beryllium atoms, while

Fia 1. the six equivalent ar etate groups are associated with the six edges of this tetrahedron Each acetate group is symmetrical about a dyad axis, that is, its two oxygen atome are equivalent and the three-fold symmetry of the $\left(\mathrm{CH}_{3}\right)$ group in for some reason non-effective The plane of each acetate group, snece full tetrahedral symmetry dues not extend beyond the tetrahedron of beryllum stoms, must he oblique to the tetrahedron edge with which it is associated.

Basic Beryllum Puvalate-Crystals of baso beryllum pivalate are soft, colourless blpyramuds, frequently of pweudo-orthorhombio habit (fig 1). Their speocfic gravity by the suspension method was 105 . As the crystal faces did not reflect hight well, their gomometnc measurement was carried out entirely by X-ray reflections on the ionisation-spectrometer They proved to be monoclunic with the Bravais-lattice, $\Gamma_{m}{ }^{\prime}$ The bipyremidal habit of the oryatals is very marked, and to bring out this charactenstic a face-centred cell was chosen. This cell is nearly orthorhombic. its dimensions are

$$
a=19 \cdot 3, b=124, c=35 \cdot 4, \mathrm{~A} \mathrm{U} \quad \beta=91^{\circ} 21^{\prime}
$$

The hebit conssats therefore of the two forms (111) and \{IIl) only.

There are eight chemucal molecules in the oell and the abnormal spacings observed are. $\{h k l\}$ halved if $(h+k),(k+l)$ or $(l+h)$ is odd, and also (hol) quartered if $(h+l)$ is odd but halved if ($h+l$) is even. Thesr results correspond to two possible monochuce apace-groups, C_{9}^{4} if the crystals are monochnic domatic, (${ }_{2 n}{ }^{6}$ if they are prismatic * The dimerinions of the unit cell were confirmed by a series of rotation photographs

The following reflections were ubserved on the iomisation-spectrometer -

(400) v s	(044) \boldsymbol{v}^{w}	(804) n	(339) $v{ }^{\text {w }}$
(800) w	(024) >	(4016) v v	(11I) vos
(1200) $v w^{\prime}$	(048) v w	(8012) v.w	(222) m
(020) s	(026) m	(220) 8	(335) v w
(040) v w	(202) $v s$	(440) v w	(113) s
(060) w	(202) va	(240) v^{10}	(226) 0
(004) s	(404) v v	(420) w	(115) m
(008) w	(200) s	(111) v P	(224) m
(022) m.	(408) u	(222) m	(313) v w
			(242) v.w.

We notice at once a atriking sumularity between the structure of basic beryllium pivalate and that of the basic acetate. The habits are aimular, hipyramids for the pivalate and octahedra for the acetate, and this characteristic apnings from the resemblance between the arfangement of molecules in the unit cell. The acetate arrangement corresponds to the well-kwown "damond atructure" in which each molecule is at the $\mathrm{C} G$ of four others, while in the pivalate a closely related molecular distribution prevails. This may be understood from fig 2, which shows diagrammatically the arrangement of molecules in a face-centred cell of C_{4}^{4} This figure se a projection on (001) \dagger The molecules are located at four levels, $0, c / 4, c / 2,3 c / 4$, marked $0,1,2,3$ Molccules 1 and 3 arc reflecthons in the glade-plancs (shown dotted) of molecules 0 and 2 This structure has more degrees of freedom than the corresponding cubic arrangement. In the latter, molecules 0 and 9 define regular tetrahedra at the C.G.'s of which are located molecules 1 and 3 , but in the monoclinic system 0 and 2 define only an oblique bisphenoid and 1 and 3 may move along lines LM away from the central posision Such is the arrangement that holds for the molecules of basic

[^117]beryllum pivalate. As can be seen immediately from the cell dimensions, each molecule as located within (not necessarily at the CG) a quite irregular

Fio. 2
tetrahedron or bisphenord, and from this we are fored to the conclusion that any threefold influence, such as predominates in the structure of the basio acetate, either does not exist or is non-effective in the pivalate Strictly speakng, the hasic acetate cannot have four trigonal and three dyad axes it is only because the three hydrogen atoms in the (CH_{3}) group have, for some reason, no appreciable effect on the molecular aymmetry that the molecule functions in the crystal as it does And when we pass over to the pivalate, four triad axes are impossible unless the whole of the $\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)\right]$ group is atrung out into a hene (a dyad axis), which is not at all hekely Of course, it is conceivable that the molccular structure of the pivalate is not analogous to that of the acetate, in which case the divergence between the two cryatal types is at onoe explained but it is unnecessary to assume this The subatitution of the three methyl groups is quite sufficient to aocount for the change In the observed molecular distribution we can see a strinng after a tetrahedral arrangement, for in the pivalate we have still each molecule surrounded by an irregular tetrahedron of four other molecules, but the methyl groups have here achieved what the hydrogens in the acetate were unable to do The four tngonal axes have been destroyed, and the result is a compromise It in not possible at the present state of our knowledge to deduce anything further from the \mathbf{X}-ray results Only one other point needs disoussoon. As mentroned above, the spaco-group may either be C^{\prime} ' or $\mathrm{C}_{\mathrm{en}}{ }^{\circ}$. If the former, the moleoules are crystallographioally asymmetric, if the latter, they may be symmetrical about either a dyad
axis or a centre of symmetry With a molecule analogous to that of the basic acetate, both of these possibilities are obviously excluded We must conclude therefore that the crystals are monoclinic domatic, нpuce-group (${ }_{n}^{14}$, with eight asymmetric molecules in a face-centred cell If they are not of this class, then the molecule camnot be analogous to that of the busic acetate
Busic Beryllumm Isobutyrate - This aubstance forms soft, colourless crystals of the habit shown in fig 3 Their specihe gravity by the suspension method was 1-14 The cryatal faces do not reflect light well, but a gomometric measurement of the man angles gave -

$$
\begin{aligned}
& \mathrm{A}-\mathrm{H}=87^{\circ} \mathrm{D} 2^{\prime} \text { (meran of } 11 \text { readings) } \\
& \mathrm{A}-\mathrm{C}^{\prime \prime}-80^{\circ} 28^{\prime} \text { (maran of } 4 \text { readings) } \\
& \text { B (' }=70^{\circ} 30^{\prime} \text { (mean of } 0 \text { readingn) } \\
& \text { B } d=47^{\circ} 35^{\prime} \text { (mean of } 2 \text { readings) } \\
& \Lambda-\boldsymbol{\rho}-42^{\circ} 2 y^{\prime} \text { (one reading only) } \\
& \mathrm{A}-\mathrm{f}=633^{\circ} 25^{\prime} \text { (one reading only) }
\end{aligned}
$$

These measurements correspond to a trulime pimakordal unit, and sufficent X-ray observations were taken to confirm this conclusion It did not appear.

profitable, however, at this stage to pursue the investigations farther Owing to the complexity of the molecules, the unit cell 18 very large and a reliable determination of its orientation would have involved an ummerited amount of labour Apparently the cell corresponding to fig. 3 contans erght chemical molecules, the edge which is the zone axis of the faces A and B being 9.82 A.U long. It is clear that there has been a complete change of crystal type in passing from the acetate and pivalate to the isobutyrate, and nothing of any value can as yet be deduced about the atomic arrangement within the molecule

Basco Beryllum Normal Butyrate.-This substance can be crystallised only whth great difficulty The M P is so low that the crystals at ordinary temperatures quickly pass into a flud or semi-fluid state which renders them unsutable for X-ray investigation At the best they could be examined only by the powder
method, and this latter is quite inadequate for the detemmination of such a complex structure The crystals are undoubtedly of low symmetry, and in all probability the moleculen aro crystallographically asymmetric

The beryl employed in these experiments was obtaned by the aid of a grant from the Department of Scientific and Industrinl Research, the mineral was worked up into the purified organic rompounds with the assistance of Mesars T J Hedley and (' R Porter

The X-ray investigation described in this paper was carried out, by aid of a grant from the Departinent of scientibe and Industrial Research, in the Davy Faralay Jaboratory

The Structure and Isotrimorphism of the Tervalent Metallic Acetylucetones

By W T Asthury, B A , A Inst P

(Communicated by Sir Wilham Bragh, F RS —Recrived July 21, 1926)

Ineroduction

A report on the crystallographic characteristics of the acetylacetone dernvatives of aluminium, gallium, indium, scandium and iron has been contributed by T. V Barker to a paper by Morgan and Drew ('Trana Chem Soc,' vol, 110, P 1059 (1921)). For the aake of convenuence bis table is reproduced here

Table 1

(1) Aluminium , monochnic,
$a \quad b \quad c=1901: 1 \quad 1111, \beta=98^{\circ} 54^{\prime}$.
(2) Gallium (a-form), monoolimio, $a . b \quad c=1834 \quad 1 \quad 1069, \beta=99^{\circ} 12^{\prime}$.
(3) Gallum (β-form) , orthorhombic, $a \quad b \quad c=0$ 6314-1 1 259.
(4) Indium (β-form), orthorhombic, $a: b \quad c=06168.1 \quad 1 \cdot 291$,

Isomorphous.
(5) Indium (γ-form: Jaeger), orthorbombic, $a \quad b \quad c=05593: 1 . ?$
(6) Scandium (γ-form: Jaeger), orthorhombic, $a \cdot b . c=0 \cdot 5621 \cdot 1 . ?$
(7) Iron (γ-form • von Lang), orthorhombic, $a \cdot b \cdot c=0 \cdot 5689$ 1 $\quad 1 \cdot 222$

This table shows how the tervalent acetylacetones present collectively a remarkable case of isotrimorphasm With the object of revealing the nature of this 1sotrimorphasin and, if possible, of throwing light on the molecular structure of the acetylncetones, five of the crystuls mentioned above and five others have been submitted to an \mathbf{X}-ray examuation The results may first of all be tabulated after the manner of Barker's.

Table II

a Isomorphnus Momuclinc Acetylactones $C_{21}{ }^{\text {b }}$
(1) Aluminum $a=14 \cdot 1, b=742, c=165 \mathrm{AU} \beta=98^{\circ} 54^{\prime}$

$$
\text { Densit } y=127
$$

(2) Chromumal $\quad a=142, b=762, c=165 \mathrm{AU} \beta=99^{\circ} 8^{\prime}$

Density $=134$
(3) Mangunese $a=141, b=768, c=16$ 5A U $\beta=99^{\circ} 24^{\prime}$
(4) Cobalt
(5) Gallium. $\quad a=14 \cdot 0, b=7$ 63, $c=16$ a A U. $\beta=99^{\circ} 12^{\prime}$ Denarty $=142$

Four
molecules per cell
β Isomarphous Orthorhombnc Acetylacetones $C_{z v}{ }^{7}$ or Q^{11}.
(6) Scandium.
$b=13 \cdot 52, a=820, c=1615 \mathrm{~A} \mathrm{U}$
(7) Gallium
$b=13 \cdot 1, a=820, c=163 \mathrm{AU}$
Denarty $=141$
(8) Induum.

$$
\begin{aligned}
b= & 134, a=8 \cdot 24, c=165 \mathrm{AU} \\
& \text { Density }=151
\end{aligned}
$$

$$
\left\{\begin{array}{c}
\text { Four } \\
\text { molecules } \\
\text { per cell }
\end{array}\right.
$$

γ Isomorphous Orthorhombic Acetylareurnes $C_{g v^{0}}$ or $Q_{n}{ }^{10}$.
(9) Iron

$$
\begin{array}{ll}
\text { (9) Iron } & b=1368, a=1574, c=330 \mathrm{AU} \\
& \text { Density }=133 \\
\text { (10) Gallum. } & b=1374, a=-15 \cdot 71, c=3276 \mathrm{~A} \mathrm{U} .
\end{array}
$$

Sisteen
molecules
per cell.

For comparison purpuses, the " b " of the orthorhombic system 18 placed under the " a " of the monorlimic system The specific gravities mentioned were determined by the nuspension method

From these X -ray measurements it is clear that only in the case of the β-form does the unt cell chowen gonmometrically correspond to the structural unit cell. To oblan the true cell from the gonometnc cell we must, in the case of the α-acetylucetones, double the c-axis, while in the case of the
γ-acetylacetones, we have to double both the a-and c-ares If we allow for these doublings, we see a striking resemblance between the three struotural units The α - and β-cells are practically equivalent in dimensions, both being about one quarter the size of the γ-cell But between the three types there is a closer connection even than that impled by their dimensions, for in "habit" too, they are nearly allike, all three consisting essentially of a pseudo-hexagonal combination, $\{001\},\{100\}$ and $\{110\}$ for the α-form, $\{001\},\{010\}$ and $(110\}$ for the β-form, and $\{001\},\{010\}$ and $\{210\}$ for the γ-form It should be nuticed here that these indices refer to the true cells as determined by \mathbf{X}-rays, not to the cells chosen gonumetrically. The true indices will be used throughout thr rest of this paper Figs. 1A and ta are reproduced from Barker and fig ic from von Lang

Another remarkable point is this, that all throe forms of the gallium nompound have bern observed in one and the same crop of crystals from acetone It is not difficult to obtan a mirture of the α - and β-gallium compounds, but the γ-form had not hitherto been prepared Strange to say, a single crystal, about one millimetre across, was found among a mixture of the α - and β-gallium acetylacetones. In addition to the usual forms $\{001\},\{010\}$ and $\{210\}$, this crystal showed four amall (101) faces and a suggle small (011) face. It is on this as yet unique crystal that most of the \mathbf{X}-ray investagation of the γ-acetylacctones has been carried out. In a composite crop of crystals the three types are so alke that actual measurement is generally required to discrimmate between them, expecially between the two orthorhombic forms The specimen of manganese α-acetylacetone grown from beazene showed a tendenoy to be tabular on the (100) face Perfect \{001\} cleavage has been observed on the β-form and perfect $\{010\}$ on the γ-form. The optical properties also of these two forms are different

X-Ray Examination of the Monoclinic Acelylactones (α)

These were examined by the omsation-spectrometer, rotating crystal and Lave methods The halvings observed are $\{h o l\}$ when l is odd and $\{010\}$. The space-group is therefore the monocline pramatic apace-group $\mathrm{C}_{24}{ }^{5}{ }^{*}$ The following reflections were observed on the Bragg ionisation-spectrometer with molybdenum anticathode (see Table III). vi. $=$ very strong, $s=$ atrong, $m s=$ moderately strong, $m=$ moderate, $\quad w m_{1}=$ weak to moderate, $w=$ weak and $v w$. $=$ very weak.

Table III

Azral Plane	(0010) v w.	(024) vo	(208) ma	(604)	General Plana
(100) 2 mm		(044) 00	(402) m	(006) $\mathrm{v}, \underline{w}$	(112) 08
(200) 04	Priom Planes	(0312) v.w	(102) vm	(408) \cup vo	(112) m
(300)	\{0kl\}	(026) $v w$	(408) v m	(40[2)	(222) v
(400) ma	(012):		(204) w	(2010) 0	(113) v
(020): ${ }^{\text {(10 }}$	(022) ${ }^{\text {(022 }} \mathrm{ma}$	Priom Planes	(304) w		(442) ω
(040) 10 m	(016) m:	(102) A	(202) $\begin{aligned} & \text { cos. } \\ & \text { (308. }\end{aligned}$	Prism Planes	(114) $v w^{\text {w }}$
(060) \boldsymbol{v}	(013) mg	(302) ${ }^{\prime \prime}$	(807) w.	(110) 0 \%	(224) vo (335) v.w
(002) $\mathrm{D} \times 1$	(011) wm	(104)	(306) $\mathrm{v} \boldsymbol{v}$	(240) 4	
(004) ${ }^{10}$	(032) iom m	(302):	(202) v, w	(120) $v \omega$	
(006) ω	(042) 10 m	(205) \%	(404) \cup vo	(220) v w	
				(360) v	

The dimensions of the unit cell, which is of the simple monoclinge type, Γ_{m}, and which contains four molecules of

were confirmed by a series of rotation photographs about various crystallographic drections In a subsequent paragraph these photographs will be discussed further

X-Ray Examination of the Orthorhombrc Acetylacetones (β)

The β-acetylacetones were examuned by the spectrometer method and by Laue, rotation and oscillation photographs With such a large cell and with the necessaty of ascertainng the halvings in the three types of prism planes, it was found that successive "layer-lines" ("Schichthmen") of reflections were too close together to be separated without ambiguty on the spectrometer with

[^118]molybdenum rays A series of 10° oscillation photographs were therefore taken, using copper rays These oscillation photographs were analysed by means of a " rotation-chart " prepared by Mr J D. Bernal, to whom also I am mdebted for a number of rotation and osullation photographs The method of analysis will be described by Bernal in a forthcoming publication. Sufficient photographe were laken to fix the dimensions of the cell without any reasonable doubt It proved to be of the simple orthorhombic type, Γ_{0}, contannug, like the monoc linis crystals, four acetylacetone molecules The halvings observed were $\{$ hol $\}$ when $(h+l)$ is ofld and $\{010\}$, giving for the space-group $\mathrm{C}_{90}{ }^{7}$ or $Q_{h}{ }^{13}$, according as the crystals are pyramudal or bipyramidal Attention ${ }^{18}$ here directed to the "halving" of the form $\{010\}$, wheh does not occur in combination with the $\{$ hol $\}$ Lalvings in the ordinary scheme of orthorhombic apacings Yet there is no doubt that this is a genume halving, just as those of the (hol) forms, ance it was exumuned very carefully both photagraphically und by the epectrometer No trace of odd-order reflections appeared in either the scandium, gallium or indium crystals It will be areu later that the balving is very amply explained by the structure proposed for the β-acetylacrtones 'The following reflections were observed (Table IV) with gallium β-acetylacetone

Table IV.

Axal Planes	(002) :	(402) ${ }^{\text {d }}$	(920) ${ }^{107 m}$	(162) mis	(164) m
(210) m a	(004) 8	(103) ins	(3am) $w m$	(221) m,	(411) m
(400) $\omega \mathrm{m}$	(044) :	(303) ma	(210) v v	(222) ma	(415) m
(020) va	(033) ms	(208) ma	(240) v v	(224) ms	(424) m
(040) wo	(082) m a	(101) min	(180) vu'	(121) m	(433) m
(000) wm	(055) m	(208) m		(144) m	(1d1) 00 m
(002) es	(044) m	(301) m	Gereral Planes	(151) m	(141) wm
(004) wm	(020) cm	(404) m	(112) E	(I64) m	(162) wm
(006) mo	(038) $w m$ (061) $w m$	(107) ilm	(114) vs	(172) m	(171) $w m$
Priam Plaves	(0at5) $\mathbf{w m}$	Prusm Planes	(113)	(174) m	(214) wm
fokl\|	(006) wm (06) 4 mm	[hko]	(126) ${ }^{\text {(12 }}$	$\begin{aligned} & (211) m \\ & (215) m \end{aligned}$	
(014)s.	(0B4) wim	(110) e	(127) :	(21t) m	(925) vm
(022) *	(041) p .	(120) m	(137) :	(217) m	(331) wm
(023) ${ }^{\text {a }}$	(0ㅇN) v	(420) m	(154) ${ }^{\text {a }}$	(220) m	(332) wm
(024) ${ }^{\text {a }}$	(060) $v m$	(130) m	(156) ${ }^{\text {d }}$	(311) m	(4J1) u^{m}
(032)		(2w) m	(212) *	(313) m	(153) w
(034) :	Prism Planes	(150) 7 m	(312) ${ }^{\text {a }}$	(316) 7 m	(163) w
(042)	\{hol)	(170) m	(314):	(323) m	(414) w
(044)	(105) ${ }^{1 / 8}$	(430) m	(413) :	(324) m	(422) w
(046) :	(202) ${ }^{\text {d }}$	(220) wm	(136) m n	(334) m	$(189) v \text { vo }$ $(213) v v$

The dimensions of the cell were fixed by the oscallation photographe and a number of rotation photographs The latter will be duscussed later, under the heading "Localisation of the Molecules." A Laue photograph of the gallium
compound corresponded to orthorhombic symmetry It showed no trace of psetudo-heruyonal nature

X-Ray Esamuation of the Orthorhombre Acetylacetonis (γ)

A number of spectrometer and photographic observations were made on ferric acetylacetone, but most of the results for the γ-form were obtamed from the amall crystal of gallium γ-acetylacetone mentioned above The unt rell for the γ-ucetylacetones is so large (being $1571 \times 1374 \times 3276 \mathrm{~A} \mathrm{U}$ for the gallium compound) that spectrometer measurements with a molybdenum anticathode are not relable Moreover, with the amall quantity of ferric acetylacetone crystals available, the spectrometer gave only one reflection (104), which showed that the gomometric a-uxis must br doubled, while no reflections showing the true length of the c-axis were observed Even a rotation-photograph about the $c-n \times 18$ faled at hrst to revenl its great length The existence of very weak intermediate hyperbule was hrat detected on the c-axis oscillation photographs Afterwards, a long-exposure rotation photugraph was taken a.jout the c-uxis, and on this photograph the wrak intermedate hyperbolm can just be discerned It should be mentioned here that the madices of the X -ray reflections from the anetylacetones could be ascertaned with certanty only by means of a large number of oscillation photographs The cells are too large, and therefore overlapping of apote is too frequent to permit this being done by means of the simple rotation photographs For instance, with the γ-form, as many ay 126 planes ($o \mathrm{kl}$) are theoretically possible in the equatorial zoue of a rotation about the a-axis, if wo use opper rayn and a quarter plate at a distance of 4 cms from the crystal Of course, it would be impossible to resolve these planes except by rearrting to amall oscillations A simple method of crystal-setting for oscillation photographs appears to be worth mentioning hore It often happens, as in the case of the single orystal of gallum γ-acelylacetone used in these experiments, that the crystal is too small or too rough to be set by optical means ladeed, for good photographs, showiug spots which can be resolved without ambiguity, amall cryatals aro essential Jf now the pointa of two needles, supported by adjustable (and, if necessary, detachable) arms from the slit-head, be brought into alignment with the X -ray bram by looking through the alit, the line joinng the two needle-points is a base-line from which beariags may be taken This is easily accomplished by means of a tele-microscope of about one centimetre field and contaning a cross-wire in the eye-pieve The cross-wire is set so as to join the needle-ponts, and the amall face or edgo of the
cryatal, which requires aetting at a known angle to the \mathbf{X}-ray beam, is then adjusted to lie in the required drection with respect to the cross-wire. Fig 2 (representing a view looking down the microscope) makes this clear By takng the average of a number of readings, sufficient accuracy as easuly attannable.

Fig. 2

The following reflections were observed from gallium γ-acetylacetone (Table V). They show the halvings $\left\{\begin{array}{l}\text { h } \\ 0\end{array}\right\}$ when $h 18$ odd and $\{o k l\}$ when $(k+l)$ is odd, the corresponding space-group being either $\mathrm{C}_{20}{ }^{9}$ or $\mathrm{Q}_{n}{ }^{10}$, according as the crystals are pyramidal or bipyramidal There are suxteen ohemical moleculea per cell, that 18, either four tumes or twice the number of asymmetric molecules required to show the cryatal symmetry A Laue photograph of ferric γ-acetylacetone corresponded to orthorhombic symmetry Luke that of the β-acetylacetones, this photograph showed no trace of pseudo-hexagonal nature, even though the (210)(210) is $59^{\circ} 16^{\circ}$.

Table V.

Asal Plames.	(4014) ma	(814) s	(2610) \%.a	(058) m	(443) 0
(200) m	(408) m.	(6112):	(278) ma	(274) m	(542) w
(COD) te.m.	(504) m.	(1210) ${ }^{\text {d }}$	(467) mad	(8110) m.	(044) 0
$(000) 0$.	(401) 00 mm	(2214) ${ }^{\text {a }}$	(469) m.d.	(898) ma	(640) 4
(020) 0.a.	(207) 6	(394):	(4610) manc	(198) 10 mm	(049) 0
(040) v.w.	(300) 0	(429) 0.	(126) m.	(190) mom.	(256) 40.
(004) 0.9.	(400) 0	(412)	$(2110) \mathrm{m}$	(418) 10 mm	(2010)
(008) mi	(608) $ص$	(684) ${ }^{\text {a }}$	(2213) m.	(1110) m0.m	(811) mo
(0019) w		(234) ${ }^{\text {a }}$	(315) m	(4112) 6 mm	(652) 0
	Prom Planes	(432) 8.	(316) m,	(4113) 6 mb	(656)
Priam Planes	(2100]	(485)	(329) m	(5119) 60 mm	$\text { (264) } \omega \text {. }$
[안). (024) ${ }^{\circ}$	(210) ${ }^{\text {(220) }}$	(4310) :	(325) m (326) m -	$(137) 6 \mathrm{~m}$ $(1311) \mathrm{mm}$	(275) \boldsymbol{v} (854) 40
(010) ${ }^{\text {a }}$	(480) :	(884):	(411) m	(438) vm	(17) v w
(0212) -	(620) ${ }^{\text {d }}$	(638)	(6111) m	(689) 10 mm .	(8110) v 0.
(044)	(230) ${ }^{\text {d }}$	(442) ${ }^{\text {a }}$	(429) m	(732) 00 m	(513) 0.6
(068) ${ }^{\text {a }}$	(440) ${ }^{\text {a }}$	(444):	(484) m	(818) mm m .	(619) 0
(0812) :	(640) ${ }^{\text {a }}$	(418) :	(b12) m	(318) 0	(714) v $\frac{\square}{}$
(026) ma	(650) :	(412):	(6111) m	(5110) 0	(3210) บ ๒.
(028) me	(460) a	(258)	(521) m	(1211) m .	(상) ut
(022) m.	(410) m a	(2012):	(528) m	(1212) \%	(899) $\mathrm{v} \boldsymbol{\omega}$
(048) m	(610) ma	(354) ${ }^{\text {a }}$	(018) m	(222) 0	(8311) v
(0412) m	(430) ms	(4510) s	(621) m	(223)	(43i) v v
(0414) m	(630) ma	(482)	(622) m .	(226) w	(4912) 0 w
(0416) m	(400) ma	(44).	(628) m	(423) w	(531) 0
(0610) m	(830) m	(468) :	(6212) m	(429) ω.	(532) v v
(017) 6 m	(240) w.	(488) ${ }^{1}$	(139) m	(724) 10	(635) U 0
(037) vm		(117) ma	(232) m.	(188) 0	(737) $v \sim$
(0410) m m	General Planes	(127) ma	(233) m	(1312) 0.	(242) $v *$
(013) w	(118) v	(1214) mo	(2910) m	(1313) 0	(244) $\cup \sim$
(099) v	(214) $v 8$	(229) m:	(246) m	(238) m	$(641) \cup 0$
(046) \square	(218) 0	(323) ma	(434) m	(2313) w	(6411) ow.
(0214)	$\begin{gathered} (2112) \text { va } \\ (314) \mathrm{va} \end{gathered}$	$\begin{aligned} & (410) \mathrm{ma} \\ & (410) \mathrm{m} a \end{aligned}$	$\begin{aligned} & (486) \mathrm{m} \\ & (445) \mathrm{mm} \end{aligned}$	$\begin{aligned} & (391) \text { to } \\ & (332) \text { w. } \end{aligned}$	$\begin{aligned} (1514) & v \omega \\ (254) & \cup v \end{aligned}$
Pruan Planes	(226) 08	(522) m:	(446) m	(333) 0	(467) v 0
\|hal!	(2910) $v a$	(614) mo	(447) m	$\text { (336) } v$	(655) vo
(108) 0	(238) va	(2316) ms	(4410) m	(9914) v	(456) vo
(109) ${ }^{\text {a }}$	(2312) vo	(2410) ma	(452) $=1$	(431) v	(0010) 0,0
(304)	(1110):	(2414) ma	(454) m	(633) w	(651) 0
(404):	(1111) ${ }^{\text {a }}$	(4314) ma.	(458) m	(530) $ص$	(262) v
(406) ${ }^{\text {c }}$	(217):	(456) ma	(535) m	(611) w	(472) $v v$
(4012) ${ }^{\text {a }}$	(2111):	(8312) mi	(5310) m	(6910) ω	(822) v vov
(808) ${ }^{\text {d }}$	(2113) s	(644) ms	(648) m	(6111) w	(889) $v \sim$
(106) ras	(412) s ,	(648) ma	(838) m	(1412) v	(834) vo
$\begin{aligned} & (2012) \mathrm{ma} \\ & (4018) \mathrm{ma} \end{aligned}$	$\begin{array}{r} (418): \\ (4114): \end{array}$	$\begin{aligned} & (681) m a \\ & (268) m a n \end{aligned}$	$\begin{array}{r} (638) \mathrm{m} \\ (8410) \mathrm{m} \end{array}$	$\begin{gathered} (1419) w \\ (346) w \end{gathered}$	

Locahsatwo of the Molecules.

The great simularity between the respective habits of the three forms of the tervalent acetylecetones has been mentioned above. They have in the man a simple paeudo-heragonal appearance, due to the predominance of the three forms $\{001\}$, (010) or $\{100\}$, , 110$\}$ or $\{210\}$. Other forms are either very anall or qute sbeent. The unfailug predommance of the three forms mentioned, considered with regard to the close resemblance between the dimensions of all
three unit cells, points unmistakably to the relative distribution of the molecules in the oells. From these two facts alune there can be little doubt where the molecules lie, but the general appearance of the rotation photographs settles the matter It is clear from the combined evidence that the approxamate arraugement of molecules is as in figs. 3a, s and c, for the α-, β - and γ-forms respeotively. (The dumeusions indicated are those of the gallum compounds)

Fra 9.
As a prehminary to this localisation of the molecules by rotation photographs, two photographa were taken, one of naphthalene about the direction [110] as rotation-aris and one of hydrated oralio acid about the direction [111]. In both these cases the molecules (two per cell) are quite large and their relative positions are fixed by space-group considerations, the second moleoule of naphthalene being at the middle of the (001) face and of oxalic acid at the middle of the cell Sinoe, in a rotation photograph about the ans [uvro], the refleotion from a plane ($h k l$) hee on the nth hyperbola when $h u+k v+h v=n$, it is olear that certain reflections will vanush from the odd hyperbolse of these two rotation photographa simply on account of the ordmary apaoe-group halvinge. This orroumstanee naturally makes the odd hyperbolew weaker than the even, bat the observed weakening is greater than can be asoribed to this cause alone

There is a furthor general weakening of the odd hyperbolas with rospect to the even on account of the primitive translation parallel to the rotation-arus being apprommately halved by the second molecule of the cell This effect is only appronmate because of the different orientations of the two molecules, but it often affords a convement method for making a rapid survey of the relative positions of complex organic molecules in a crystallographic unit The more the molecule which subdivides the primitive-translation parallel to the rotationams resembles the two molecules which are connected by the primitive translation, the more complete is the obliteration of certan hyperbole From thes point of new we can atate a sumple principle which can be of use for determmeng the approzimate symmetry of an asymmetric organio molecule When a moleoule alvnost oompletely subdivides the primitive translation parallel to the rotation-ans, it posseases approminately that element of symmetry which is involved on derving it from the molecules at the ends of the primitive translation For instance, in a monoclinic cell, we might find the c-anis almost completely halved by a "reflection-molcrule" ($2 e$ the odd hyperbolw almost completely obliterated), in which case we may conclude that the molecules are approrimately aymmetrical about the (010) plane.

The acetylacetones afford very good examples of this weakening of certan hyperbols by molecules actually or approximately in special positious The following rotation-photographs were taken'- α-acetylacetones -1 a-nxusnormal 2. b-axis-normal 3 o-axis-marked weakening of odd hyperbole 4 [I10]-slight weakening of odd hyperbolw 5. [11 $\frac{1}{2}$]-odd hyperbole very wask ; of the even hyperbolw, the fourth and eaghth are rather atronger than the secoud and surth. β-acelylacehnes.-1. a-axis-normal 2 b-anisnormal. 3 c-axis-marked weakenng of odd hyperbolm. 4. [110]-weakening of odd hyperbol: 5. [011]-normal. 6 [101]-normal. 7. [111]-weakening of odd hyperbols γ-acetylacetones.-1. a-sins-very pronounced weakenung of odd hyperbola. 2 b-axis-normal $3 c$-axus-odd hyperbola almost completely obliterated, second, sirth and tenth hyperbola weak, fourth enghth and twelfth hyperbolw atrong 4 [$\frac{1}{2} 10$]-aimular features to 3 b. [10t]-fourth and elghth, eto., hyperbolm strong, others weak except tenth.

It cap be readily seen from these results how the general arrangement of molecules in the three types of tervalent metallio scetylacetones must conform apprommately to figs 34, e and 0 . As mentroned above, these observations are in agreement with the conclusions to be drawn from the habit of the crystals, Simular conclusions may also be drawn, of course, from the liste of refleotions
observed on the oscillation photograph. For inatance, we nothoe for the γ-acotylacetones that (a) there are 58 0.8. and s. planes whoh interseot the a-aris; of these 37 have $l a$ multiple of 4,14 have $l a$ multaple of 2 but not of 4 , whule only 7 have l odd, and (b) not oounting the planes (hko), whoh ave neturally halved when h is odd, there are $51 v \mathrm{~s}$. and o planes which intersect the $a-a n s$, and of these 41 have h even end 10 hove h odd. In other words, the γ-struoture behavea approximately as though the cell were one-aghth its actual ane

It is an intereating point that the relative intensities of reflection are practically the same for different members of the same group. For instance, a rotation photograph of alumimum α-acetylacetone ahowed no marked differenoes from a corresponding photograph of gallium α-acetylacetone The reason for this appears to lie in the faot that the molecular weights of these compounds are so high that the effect of the central metallic atom, even though in the case cited we pass from $\mathrm{Al}(27)$ to $\mathrm{Ga}(70)$, is a relatively subsidiary one.

Crystal Class

There 18 considerable difficulty in adducing drect evidenoe for the respective crystal classes of the acetylacetones Only indurect or negative arguments can be used, but on the whole these support the weightiest conaderation, that there is an overwhelming mass of chemical evidence that compounds of the sixfold co-ordination type are based on ootahedral symmetry. Those containing three chelate groups, being degenerated to the sixfold symmetry of the quartz class, must also be enantiomorphous.
α-acetylacetones -The X-ray halvinge indicate holohedral aymmetry, spacegroup $\mathrm{C}_{24}{ }^{\text {b }}$ This agrees with the etched figures produced by the action of acetone on the (001) face of alummum α-acetylacetone (fig. 4a). These consist of triangular pyramidal pits with a plane of aymmetry parallel to the (010) fece. The crystal habit is not in disagreement, and no optical activity has been observed in solutions of single crystals. Neither was any pyro-eleotric effect observed with sulphur and red lead. We may farrly conclude, then, that the α-acetylacetones are monodinic prismatic, apace-group $\mathrm{C}_{\boldsymbol{u}}{ }^{6}$.
β-acetylacetones -The X-ray halvings indicate either rhombic pyramdal symmetry, apace-group $\mathrm{C}_{\mathrm{kj}}{ }^{7}$, (100) plane of aymmetry absent, or rhombio bipyramidal aymmetry, apace-group \mathbf{Q}^{18} The habit is non-committal. The etched figures, too, produced by acetone on $\{001\}$ of induum β-ecetylecetone, are indecisive (fig. 4B), being greatly elongated parallel to $\{010\}$. It is duficult to esy whether the two ends are really alle, though, with regard to angles the
fignree appeered to correapond to the natural habtt, $\{010\}+(110\}$ Neither optical activity nor pyro-electricity was deteoted If the space-group were

Q $_{n}{ }^{\text {ts }}$, the observed positions of the molecules would require them to be symmetrical about (100). In view of the absence of really conclusive evidence that the orystals are bipyramidal, chemistry demands that we should reject this possibulity and conclude that the β-acetylacetones are rhombio-pyremidal, apace-group $\mathrm{C}_{\mathrm{n}}{ }^{7}$, (100) plane of aymmetry absent
γ-acetylacetones -The X-ray halvings correspond to eather rhombic pyramidal symmetry, space-group $\mathrm{C}_{8,}{ }^{\circ}$, (010) plane of symmetry absent, or to rhombic brpyramidal symmetry, space-group $Q^{1}{ }^{10}$. The habit again 18 non-committal. On the other hand, etched figures were obtained by the action of acetone on \{001\} of the oryatal of gallium γ-acetylacetone mentioned above. These (Gig. 4c) were definitely unsymmetrical about the plane (010) Pyro-electrioty was not detected in the few small crystals of ferric γ-acetylacetono available, but we must conclude that, like the β-acetylacetones, the γ-acetylacetones are also rhombic pyramidal, though of space-group $\mathrm{C}_{\mathrm{st}}{ }^{9}$, with the (010) plane of aymmetry absent. If $\mathbf{Q}_{\mathbf{A}}{ }^{16}$ were the true space-group, the molecules, in order to lie in the positions observed, would each have to be symmetrical about the plane (010).

The difficulty of determining by ordinary crystallographic methods the true crystal classes of the acetylacetones recalls a simalar phenoinenon encountered by Jaeger,* also with compounds contanning three ahelate groups Though many of the crystals described by Jaeger give intensely optically active solutions, yet to ordinary orystallographic teats they appear perfectly holosymmetne, It is possible that both has orystals and those described in this paper would

[^119]yreld evidence of pyro- and piezo-electric properties if they were tested by means of amplifying valves *

Crystal Structure

From the combined crystallographic and X-ray evidence we have concluded above that all three types of tervalent acetylacetones are built up of closely related unit cells with a aimilar molecular distribution The α-cell is practically a monoclinic distortion of the β-cell, which in turn 18 about one quarter of the γ-cell The molecules in the α-and β-units he at or near the centres of the (001) faces and the mid-ponta of the c-edges, whle from thas arrangement the γ-form 18 obtanned amply by doubling the a - and c-cdges. The difference between the three forms thus hes in a dufference of molecular orientation Apparently the molecules are effectively asymmetric in all three forma, ance none of the axfold symmetry of the "free" molecule 18 used in the cryatal atructure. Hence, referring once more to fige $3 \boldsymbol{\lambda}$, s and c , we have for the a.form (fig. 3s) - Molecule 2 is obtained from 1 by reflection in the aymmetry plane (010) followed by a translation of $c / 2,3$ (or 4) is obtamed from 1 by rotation about a dyad axis parallel to b followed by a translation of $b / 2$, while 4 (or 3) follows from 3 (or 4) as does 2 from 1. For the β-form (fig. 3y), we have :-2 2 obtanned from 1 by reflection in a plane parallel to (001), 4 from 1 by reflection in a plane parallel to (010) followed by a tranalation of ($a / 2+c / 2$), while 3 follows from 4 as does 2 from 1. (N.B.-Since the observed " halvings" may be considered etther as $(h+l)$ odd or $(l+h)$ odd, there are two waya of settong up $\mathrm{C}_{\mathrm{no}}{ }^{3}$. One of them (aymmetry plane parallel to (001) absent) ia not possible with the observed distribution of molecules, unless these latter are plano-symmetrical and "associated" in parrs. For the γ-form (fig. 3c), we have:-Either 11 or 15 is denved from 1 by reflection in a plane parallel to (100) followed by a translation of $(b / 2+c / 2$), one of the molecules $\bar{b}, 6,7$ or 8 is derived from 1 by reflection in a plane parallel to (001) followed by a translation of $a / 2$, while a ammar operation connects 11 or 15 with another molecule inside the cell. There stull remann twelve molecules in excess of the four requred to produce the class aymmetry These twelve must be considered to be amsocusted with the other four so as to complete four sets, each set consisting of four chemical molecules and being relsted to the other three sets by the aymmetry operations outhned above for the γ-form. In other words, the "crystal molecule," matead of corresponding to one chemical molecule (as in the α - and β-acetylacetones and, indeed, in most other cuses that have been

[^120]unvestigated), corresponds in the γ-acetylacetones to four "associated" chemical molecules The distribution of molecules and aymmetry elements in the apace-groups $\mathrm{C}_{21}{ }^{8}, \mathrm{C}_{20}{ }^{7}$ and $\mathrm{C}_{\mathbf{2 0}}{ }^{8}$ may be seen at a glance in figs, 14, 22 and 24 of the space-group dıagrams mentioned above (Astbury and Yardley)

From these considerations we may now proceed to a more detailed discusaon of the three structures This is rather a forbidding task in view of the complonty of the molecules, but it will be scen that a certan amount of information can still be gleaned from a critical exammation of the experimental data. For instance, though the centres of the molecules are arranged on a pseudo-hexagonal bass, it is clear from the Laue photographs that the aımularity extends no farther and that the structures as a whole are not in the least of a hexagonal or a trigonal nature. This means that the triad anse (and a aimular remarly apphes to the three dyad axes), which one might expect in the " free" molecule, has been rejccted in building up the crystal symmetry The moleculea are orientated in auch a way as to render meffective the pseudo-hezagonal arrangement of their centres Again, if we look at the respective dumensions of the three cells ahown in fig. 3, we see that the molecules are spaced along the c-area all at the same distanoe, about $815 \mathrm{~A} . \mathrm{U}$ or a little over, a dumension which occurs again in the a-axis of the β-form. Thrs, then, 18 approximately the maximum "diameter" of the molecule • in fact, the general imprenaion we gain from these dumensions 18 of a molecule which may be rotated about ita manamum diameter into vanous positions and yet alwaya requres a "domain" of apece of about the same size and shape when packed in a ammlar manner with other molecules of its hind. In other words, the structures are built up of rounded molecules, without projecting arms, which mught interlace. In support of this inference, we may also cite the very good cleavage which occurs in the β - and γ-forme and the ease with which all three forms may be crumbled.

A molecule which will eatisfy these conditions is at once afforded by the ordinary chemical conception of three chelate groupa arranged octahedrally around a central atom Such an arrangement would have a manmum diameter of the order observed (82 A U), with the same dumension occurring in a durection at right angles to it (cf β-form, fig. 38), and with other equatorial dumensions not very much different, when we allow for the fact that it is only the linear skeleton of the molecule which has more or less true octahedral dimensons, and that there are forty-two atoms atrung, so to speak, on this framework. Thus molecule is represented diagrammatically in fig 5 It fits in very well indeed with the results of X -ray and crystallographic observation, and, as we aball see
below, serves to explain and oo-ordinate the man features of thu remarkable case of isotrimorphian The three forms will be dealt with in turn.

Fia. 5
α-form.-It 18 not possible to form any prease ideas about this atructure. One of the manmum diameters (AB, hy. 5) is apparently dureoted along the o-ans, while the b-aus is occupied by one of the smaller dimensions such as CD or DF. It is probable that the molecules 3 and 4 (fig 34) are not eractly at the centres of the (001) face and coll respeotively, but are displaced something lese than one-quarter the height of the cell Thas conclusion is denved from the feots that (a) there is no cleavage and (b) the rotation photographs about the ares [110] and [11 ${ }^{1}$] mdicate a displacement of between 0 and $\mathrm{c} / 4$ from the

Fro. 6.
aymmetrical poantions The aspeot of the (010) face of such a structure is shown diegrammatically in fig 6 The two molecules in the body of the cell lie in a plane $b / 2$ above or below the plane of the other molecules It should be remembered that the moleoules in these diagrams are, for convenence, drawn with the full symmetry of the chemical molecule outhed in fig 5. Actually, they must not be quite so symmetrical as that or even quite so aymmetrically disposed as the diagrams represent, but the dastortions involved are not large
β-form - The nature of this structure appears to be quite clear. We have now a manmum diameter lying along both the a-and σ axes, with the moleculen approximately in aymmetrical positions Fige 7a and B show the anpect of the (001) face, a representing the upper layer (molecules 1 and 3, fig 3n), and a the lower layer (moleculea 2 and 4). Between these two layera we should expect a good cleavage, and, in fact, experiment shows that this good cleavage aotually exista But the moat remarkable confirmation of this structure arises out of the socidental halving of the form \{010\}. We can see at once from fig 7 how thss halving sa brought about We know that the rotation of a molecule about an axns of aymmetry followed by a translation along that axis causes an abnormal opacing to be observed by X-rays for the plane perpendacular to the axus In the β-acetylacetones, molecule 3 can be obtanned from 1 (and molecule 4 from 2) by a rotation about a dyad-axis parallel to a, followed by a translation of $a / 2$; but because the molecule conssots of three equvalent chelate groups, the same transformation can be achieved by a rotation through 90° about the $b-a m e$, followed by a translation of $b / 2$ Thas operation will halve the apscing of (010) Experiment shows that, in addition to the usual halvings of $\mathrm{C}_{\mathrm{g}}{ }^{7}$, the spacing of the form $\{010\}$ is completely halved in the β-acetylaoetones. It ahould be noted, too, that the atruoture proposed agrees with the Laue photograph in that it is not peeudo-hexagonal

Fio. 78
γ-form.-The γ-form 18 closely related to the β-form described above Whle we have once more a maximum diameter lying along the o-axis, the a-axis is now occupied by one of the smaller dameters This gives rise to some arrangement such as 18 abown in fig 8, which representa dagrammatically the aspect of the (001) face In this figure it is assumed that molecules 8 and 15 are obtaned from 1 by reflection and molecule 10 by rotation, that is, four levele are shown in the same diagram Of course, as mentioned above, this is only one possble arrangement, but all illustrate the points that now, since the molecules have been rotated through 90° from the β-position, the α-dımension is less and a good cleavage on (010) is possible. This cleavage actually exats in the γ-form The (001) cleavage is also still possble, but for some reason it does not occur. Possibly, thes absence is connected with the "associstion" of the molecules In any case, it 18 not remarkable, sance cleavage is in general a relative property, occurring only at the weakest junction. It is not possible to asy anything very relable sbout the orientations of the remaining twelve molecules of the cell. They are "associated" wath the other four so as to form four sets, and their relative poantions appear to be quite definite, but of the nature of the fourfold association we can as yet say nothing Possibly, ance the (001) cleavage 18 absent, the sets of four lie each in planes parallel to (010), which is a good cleavage. One expenmental observation is worthy of emphasin, and that is that the (001) spacing 18 not merely halved, as the spaco-group requires, bat actually quartered, without any trace of intermediste orders. Thin suggests that the arrangement ahown in 6g. 8 is the right one, for inspection of that figure reveals a charsoteristic simular to the one already observed for the

β-form. Owing to the pecular shape of the molocule we see that moleoule 10 can be obtaned from 1 not only by a rotation about a dyad-anus parallel to b, followed by a translation of $b / 2$, but also by a rotation about a dyad-aris parallel to c, followed by a translation of $c / 4$--Such a combination would undoubtedly quarter the ($\mathbf{0} \mathbf{0 1}$) apacing, for a ammiar eflect will also be produced by molecule 8 , which is the reflection of 1 in a plane parallel to (001) This agreement seems to be more then accidental It in a durect inference from (1) the observed molecular distribution and (2) the chelate groupung deduced from chemical conalderations that a true quartering of the (001) apacing may be erpected from certain structural combinations of the molecules, and, as in the β-acetylacetones, experiment showa this abnormal apacing actually to exist. There seems lattle doubt that the main charactenstics of the isotnmorphism of the tervalent metalic acetylacetones are substantially in accordance with the scheme outhned above

Addendum.

By Gilaert T. Morgan.

In an investigation of the co-ordination compounds of vanaduum publahed thurtean years ago (Morgan and Moss, 'Trans. Chem Soo,' vol 103, p. 81, (1919)), stress was ladd on the relationship between the number and spatial destribution of associating units round a central metallic atom and the formation of a atable co-ordination complex.
The case of metallo- β-diketones was examuned from this view-pount and several new vanadum compounds of tha type were then described. This study was extended as occasion offered to acetylacetones of other tervalent metala, and the remarkable stability of scandum acetylacetone at high temperatures was demonstrated by distilling the compound unchanged under reduced pressure (' Trans. Chem. Soc ,' vol. 105, p. 197, (1914))
More recently gallum acetylacetone has been deecribed (Morgan and Drew, loo ct.) and compared with the acetylacetones of aluminam and indium Here agann the three compounds showed conaderable atabilty, although the tendency to decompose on sublimation nocreased with the rise in atomic weight of the central metallic atom
The non-1onised character of the metallo- β-diketones and their solubluty in organic medsa indicate plainly that these substances are not be be regarded simply as metallic salts of organo acids On the contrary, they are internal metallic complexes of untary type with the central metallic atom so alosely
imphoated in the organio radicals of the moleoule that the metallio atom no longer has those properties of its ion whioh are employed for the deteotion of the $10 n$ in qualitative analysis. Moreover, in the asse of metale having coloured compounds, the oolours of the soetylacetone denvatives are oftea quite different from those of the ordinary salts of these metals.

In order to sccount for the exceptional properties of the acetyleoetones of the metals other than alkal, metals, it wes assumed that the univilent ecetyleoetone radical, $\mathrm{C}_{1} \mathrm{H}_{7} \mathrm{O}_{\mathbf{3}}$, was a chelate group funotioning in co-orduation complexes as 4 twofold associsting unit (I)

I
This formula was, however, regarded as a dynamic one aumlar to the Kakul6 conception of the benzene ring, so that in the heterocyolic rung completed by implication of the central metallic atom (M) there was an oscullation between the two extreme positions II and III.

As a result of this rearrangement the two lumbs of the ohelate group beoome identical and the ring aystem has a plane of symmetry which oan be teasted for by X -ray analyain

Moreover, the stability of these metallic acetylsoetones of tervalent motals has been asoribed to the outahedral dastribution of the three chelate groupe (sir associating unts) round the central metallic atom (Morgan and Mons, loc.oul)

These two assumptions in regard to the structure of the acetylacetone radnal and to the aymmetrical arrangement of three of these ohelate groups round a central tervalent metallic atom have now been confirmed by the detaled X-ray analysie described in the present communioation.

Summary.

1. Ten tervalent metallic acetylacetones have been examined by \mathbf{X}-rays with a niew to determining ther crystal structures and the nature of the remarkable isotrumorphism which they collectively exhbit. Of the α-(monoolinio) form were eramined the acetylacetones of alomnium, ohromium, manganese, cobalt
and galliom, of the β-(orthorhombic) form, scandium, gallium and indium, of the γ-(orthorhombio) form, uron and gallum. A suagle cryatal of gallium γ-ecetylacetone hes been observed for the firat tume.
2. By means of the spectrometer and photographe methods it has been shown that the a-acetylacetones are monoclinic-prismatio, space-group $\mathrm{C}_{2}{ }^{\text {d }}$, the β-aoetylacetones are rhombio-pyramidal, space-group $\mathrm{C}_{8}{ }^{7}$, and the γ-acetylacetones are rhombic-pyramial, space-group $\mathrm{C}_{4} 0^{\circ}$ The α-form contains four ahemical molecules per unit cell, the β-form four, and the γ-form ansteen. In the γ-form the molecules appear to be associated in four groups of four ohemical molecules each.
3. The positions of the moleoules in the three forms have been determined by a study of the intenaity distribution in a series of rotation photographe about various cryatallographo axes

4 Several of the cryatals have been examined for etched figures, pyroelectroity and optical activity.
6. In apite of external appearance, none of the three forms is pseudo-hezagonal
6. By means of the molecule that has been deduced from ohemical considerations, the relation between the three forms and the nature of the isotrimorphism is erplanned and the mann outlines of the three structures aketched.

7 An addendum, from the chemycal point of view, has been contributed by Professor G T Morgan

The writer wishes once more to thank Sur William Bragg for his untailing kindness and encouragement and the Managers of the Davy Faraday Laboratory for affording the facilities for carrying out the work. This was made posaible by a grant from the Department of Scientific and Industrial Research He is andebted also to Prof. G T. Morgan for supplying the cryatals used and for much chemical information, and to Mr J D. Bernal, of this laboratory, for the use (before publication) of his rotation-chert and the caloulations connected with it.

Change of Crystal Structure of Some Salts when Crystallised from Sulucic Acud Gel-The Structure of Sulucic Acid Gel

By H. A. Felle, B Sc, AIC, and J B Firth, D Nc, FIC

(Communicated by Prof F S Kipping, F R S -Ruceived Mby 17, 1926)
(Plates 10 and 17)
In a paper, " Liquid Diffurion Applied to Analysis," read before the Royal Society in 1861, Graham degeribes the diffusion of salts through membranes and gels Crystallisation from gels has, however, only been developed withia reoent years

The growth of "Rhythmic Bands," so extensively studird by Liesegang," has been suggested as no explanation of many natural formations in the earth's crast, whist Hatschek \dagger and othera \ddagger apphed the resulta of Lesegang to explan gel structure Hatschek and Simons§ showed that gold could be obtained in crystal form, when gold chloride 18 reduced in the presence of allicic acid gel, the gold being deposited oither in the gel, at the surface of the gel, or in both positions, according to the osmotic relationship of the solution and the gel

For certuin expenments in another research the authors desired to prepare sulicic and gels impregnated with various substances. These subatances are introduced in many cases as soluble compounds by dissolving the deaired substande in either the sodium silicate solution or the acid, prior to mixing. The added aubstance decomposes on strongly heating, leaving the deared residue evenly distributed throughout the gel. Under such circumstances, owing to the solubility of the added substance, it was mpossible to follow the usual procedure of washing out the sodnum chloride before heating Gels were therefore prepared and carefully dried without previous extraction of the sodum salt In carrying out thes process the sodium chloride separated out at the surface of the gel, and it was found that the crystal habit was materially changed In order to determine to what extent thes phenomenon was characteristic of crystal formation from sulicic acid gel, the experiments were

[^121]extended to other salts, and the results are desoribed in the present communication

Frperimental

Specially and freshly prepared sodum slicute was used, free from tron and carbon dioxide The composition of the sodium allcate was approximately one part of $\mathrm{Na}_{\mathbf{g}} \mathrm{O}$ to two parts $\mathrm{HiO}_{\mathrm{e}}$ Pure acids were used throughout, and the acids used were hydrochloric, hydrobromic, hydriodic, and nutric acids respectively Gels were prepared at $18^{\circ} \mathrm{C}$. by miring equal volumes of 3 N acid and sodium silucate solution of density $1-15$. A portion of the resulting gel was then transferred to a watch glass and slowly dried in vacuo, in a desiccator contaming calcium chloride As the gel dried, the surface of the gel became covered with a mass of very fine crystal-like needles, whuch, as the drying procceded, increased in size until eventually the product resembled a ball of fluff with a haril silica core
The needles thus obtaned were then subjected to microscopic examanation and the features observed are hercm described

The Chlorude and Nutrate of Sodium

The general appearance of the sodum chloride needles is shown in the merophotograph, fig. 1 Fig 2 shows the ordinary cubic form obtamed from a solution of the needles with one or two needles Fig 3 is a mivro-photograph of the sodium nitrate needles.

Thesc two salta need not be separately considered since they possess the asme general characters Ordinarily sodnum chloride crystallises in oubes, though sometimes in the octahedral form, whilst soduum nitrate crystalises in rhombohedra
Habrt --The crystals are all fibrous in haint and most of them are blades. The variation in aize is considerable, those being formed first baving an average width of 025 mm , the later ones are much finer, having an average width of 0.01 mm or less Generally the fibres are atraght, but they are ferible, since they can be bent in mounting, they are alao aomewhat elastic In some cases ($\mathrm{fig}_{\mathrm{g}}^{\mathrm{9a} \text {) they show abrupt bends, but these are not produced mechancally and }}$ show no sign of stras. They seem to be due to changes in the direction of growth owing to changes in the surface of the gel in drying, and the inability of the fibres to adapt themsolves to it owing to overcrowding

Optcal Propertes.-The crystals are sll sensibly isotropio and indicate cubio crystals Inducations of very fant double refraction are met with in some
acoen, giving very low groy ocloars. The doable refrection is se earell, howrwar, that it is diffioult to deternine, cometimes even with a cosaitive violet pleta.

Fia. 0

An X-ray examination of the sodium chloride needjes showed an internal struoture of the oubsc aystem. The crystala show cleavages both longitudunally and tranaversely, but the former is more commonly visble This oleavage is parallel to the cube and indicates that the needles are elongatod parallel to the cubio axis. (Cleavages are shown in fig. 9b) The transverse atrie are lines of induaions, doubtless arranged on the lines of the transverse cleavage Theme minute inclusions appear to be bubbles (fig. 00).
The longitadinal atructare presents no difficulty. They olearly resolve themselves into "negative orystals." The larger are due to coalescence of the smaller; or in some cases at least to the development of a very large negative cryatal. The general conditions are abown in the enlarged diagram (fig. 9d). The capilary, of whioh only a portion in ahown at " α," runs about half the length of the fibre. It is flled with liquid and contains ges bubblea. Bmaller negative crystals are shown at " β," and some of these contain ges bubbles. Theso smaller negative orystals are the same shape at the fibres. This is, of courso, a general end familuar phenomenon in crystala, such as quarts in graniter and pegmatiten. In the oase of the fibrel, we have not a true capillary in the sense of a fine tube-there is notubular growth, The caritien are bounded by oryotal facter, and never pesestrate to the exterior.

Filt 1 (20 (limin)

114. 4 -(15 ham)

Pia 7
20 dam)

lit. 1 (2 (latio)

Sodiun Bromude.

The general appearance of the crystals is shown in microphotographs, fige. 4, 5 and 6 Figs 4 and 5 show clenr needles and apparent caprlary structure respectively The forms are exrerilingly unstable, a shght alteration of temperature or even application of pressure being sufficient to change the glass-clear crystal into a mass of minutely crystalline nuterial, causing the crystal to lose its transparency This change is shown in hy 6

Habrt ---Besides a fibre-like habit resembling the chlonde and mitrate just deseribed, the sodium bromide has more commonly a stout prismatic habit, occasionally shouing abrupt changer in cross-sectional dimensions (fig. 9e).

Optroal Properties -The crystals show a moderate refungence and a weak burefringenoe Partal uniavial interference figures ware oblamed in mome prisms, very oblique to the optic axis The prisms appeared to be six-sided, and the evidence favours the heragonal system Urdinary sodium bromide belonge to the rhombic system. The prisms are elongated parallel to the principal aris and show a pericot basal cleavago, which appears as transvarse atriations on the faces of the larger prisms Inclusions are much less common than in the chloride or nitrate, but negative crystals (fig. 9e) are present sometnmes, giving an appearance of a capillary structure when much elongated.

Sodrum Iodude.

Sumilar in general appearance to the fibres previously described, but changed to an opaque form too rapidly to allow mictoscopic investigations.

Further Experiments.

(a) A purified sulicice acid gel contaning 7 per cent. water was mpregated with a strong solution of potassium iodide and the resultang gel dried as before. After several days, the gel was convered with tine silky fibres very much dotorted (fig 7), but otherwise very simular to the fibres previously describel.
(b) 10 oc . of wolurine was just dissolved in concentrated bydrochlonc acid aud added to 50 ct of 3 N hydroohloric acid. To the resulting solution, 50 c.c. of the sodium sillcate sulution was added. The gel obtained was then dried en before. Tho first crystals to form on the surface were the oedinary plate cryatels of toluidine hydrochloride, as the drying continued the platea were Giftad from the surfeom gel, and needle-like formstion appearad. Analysis of these needles at various stages of the drying of the gel showed that the needles Arst formed were manly toluidine hydrochloride associated with a lattle vol. OXII-A. 21
sodum chloride, whilas finally the needles were manaly sudum , hloride. This 1s illustrated by the following resulta --
(1) Furat crop of needles . $85-5$ per cent toludine hydruchloride, 145 per cent sodium chloride
(1) Sec ond crop of needles
(iii) Thurd crop of needles

747 per cent toludue hydrochluride, $25 \cdot 3 \mathrm{p}^{\mathrm{nr}}$ cent nodhum chloride
JJ 7 per int toludine hydrochloride 67 3per cent sodium chloride

The formation is shown in microphotognuph fig y Anilue hydrochloride gave a simular result,
(c) A 0 a N solution of tartaric acid was mixed with an equinl volume of a aolution of sodum sulcate ($\Delta 1$ 17) aud allowed to set The resulting gel mas then allowed to stand exposed to the utmosphere at room temperature after four days amiall regular prisms of sodum tartrate separated out in the body of the gel No distortion of (rvetal halint wiat diferetrel

Drscusslon

In our opmon the fundamental inportance of the resulter of the expert-ment- herem drescribeul depes not he so murh with the new fentures of crystal habit of the various maltes desenbed, bui with the reason that the salts all tend to change ther habit and assume a now one, common to all of them

Generally speaking, no mattor what the cryutal hahit may ho under ordinaty conditions - cubie in the case of sodium chlorule, rhombin' in the case of sodum bromide and mitrate, or distorted plates in the cases of andine and toluine hydrochloride-all the substances assume a blade-like or fibre-like structure. The photographe and dagrams all nhow sindar features for the various aubstances, and we are of the opumon that the man features of the chenges are duo to the same causes-the influence of the gelation of the silu ir acid, and the structure of the gel so formed.

Thir crystallisation of a substance from solution involves the concentration of the molecules about certain points or centres of crystallisation, and in the cares consulered in this paper these centres appear to be at the surface of the gel lt has been suggeated by the authors in a prevous paper* that these centres of cryatallisation are at the open ends of capillanics or pores of the gel. It wus suggested that the solation exudes from the pores of the gel, evaporation of the water takes place ammediately, causing the salt to crystallise just at the * 'J Phys.'C'hem.,' vol 261, p. 241 (1025).
open end of the pore. As the gel further dred it contracted, with the result that a continuous deposition of alt tonk place from the pore, lenving a long fibre-like structure protruding from thr gel surface This view is further supported by the fact that the later formed "crystals" are much theer or smaller in cross-section than those hrst formed, the pores themselves bring much smaller owing to contraction of the gel.
Arsen* in a contribution on gel structure states that if the conditions favourable to proper cryatallisation are departed from, there is a tendency towards irregular arrangements forming the lattice, and irregular-shaped crytala result Often mother liquor is included The inclusion of water in a crystal is some ovidence of departure from the regular, close-packed arrangement of atoms, which is characteristic of a normal lattice A crystal contaming included liqued may contain a certain proportion of gel stricture

Tabor, \dagger in attempting to account for the cross-fibre veins of fibrous minerals, expresses the view that the orgmal fineness of the fibre 28 dependent on the porespacing of the country rock and that cryatalisation commences at cach pore, the fibres elongating therefrom in the direction from which materal is accessible He also states that tho growth of the filies follows the movement of the aurface from which they protrude Sudden changes in the direction of the fibres and gradual bending are thus a record of the movement of thas surface
It will be ubserved that the above view is in accordance with our resulta, the idea of pore atructure being responsible for the chango of crystal habit is mantained, and, further, the view that bent cryatals are due to movement of the surface of cryatal growth is also substantiated
Again, Kraus, \ddagger referring to the Bechhold capillary phenomenon, atates that salta concentrate at the surface of porous bodies when evaporation is allowed to take place, and the dissolved suhstance tends to move towards the end of a capillary wheh 18 losing solvent

In our experiments (with the exception of the internal crystallisation of sodum tartrato) crystallisation was associated with loss of solvent No crystallisation took place when the gel wus allowed to stand in a moist atmosphere, even though under such conditions the firmuess of the gel maternally increased-ie, the crystallisation was associated with loss of solvent. The loss of solvent took place at definite points on the surfice-mamely, the open

> * 'J. Phys ('hem,' vol 30, p. 306 (1020)
> \dagger 'Proc Nat Acad Sol,' vol 2, p 050 (1016).
> \ddagger ' Koll. Z.,' vol 28, p 101 (1921).

VOL. OXII -A,
end of porcs-which resulted in a concentration of the salt at these pointa followed by crystallisation,

In conclusion, the authors are of the opinion that the results recorded in the present contribution lend support (a) to the new of capllary structure of alheic acad gel, (b) that the change of crystal habit, whereby fibre-lake crystals are produced, udicates salt concentration at the pores, the pores become centres of crystal growth, and the growth of the crystal 18 controlled by the continuous accumulation of salt at the pore

The authora are indobted to Sur W Bragg, F.R S, for making an X-ray examination of the sodium chloride crystals, and to Dr W A Richardson for his assistance in the microscopical examination of the orystals, One of us (H A.F.) is also indebted to the Department of Scientific and Industrial Rescarch for a grant which enobled him to take part in this worls

Studies upon Catalytuc Combustron.--Part III The Influence of Steam upon the Catalytuc Combustıon of Carboma Oxvde
 By William a Bonif, DSc, FRS

(Received July 23, 1926)

Ineroluction

In connoction with the researches upon catalytic combusion conducted in my luboratories for some years past, a great deal of attonhon has been padd to the experimental investigation of the important question of whether or no the presence of moisture has any specific influence upon the catalytic combustion of carbonc oxale The present paper enbodies the principal resulte of our investigations up to date They were bugun m 1908 at the Unversity of Leeds, in collaboration with the two Gas Research I'rllowy-Mr A Forshaw, M Sc, and I $\mathrm{H}_{\mathrm{r}} \mathrm{H}$ IIartley-ba well as with Mr Λ. Appleyard, B.Be, and have been completed at the Imperial C'ollege of Scrence and Technology, London, with the collaboration of the late W. A Haward, M.Sc, Mr. S Robson, B.Sc, A. Whitaker, B.Sc, and Prof D s Chamberlin, of Lehigh Unvereity, USA, who recently spent a " sabbatical year" workng with us

The difficult nature of the experimental work involved operations demanding
the utmost care, great attention to details, and unusual skill on the part of my collaborators The surfaces expermented with were porous porcelain, the oudes of copper and nackel, gold and salver And, in view of the mportance of the results in connection with the theoretical nspecte of the subject, many independent repetitions of the experimenta were made at various imes to pnsure their complete confirmation In tho casc of a very porous surface, such as fireclay or porous porcelain, it was ultmately found necessary to extend a given experiment unnterruptedly day and mght over three months, in order to ensure complete dryness of the system larlecd, not until the later atages of the reararch was it possble to view correctly and reconcile all the results

To recount all the detala and rameheations of the work would far outrun the limuts of a aingle paper, and therefore no more than a general description of the experimental procedure and results wall be attempted, except where detala are eseential to the understanding of them

It may assist the reader to follow the atory if at the outset it is explaned that the results of the inventigation as a whole have shown that the progressive drying out to completion of a system in which a muxture of carbonic oxide and oxygen as undergoing catalytic combustion at temperatures up to $500^{\circ} \mathrm{C}$ (and perhaps higher) unay have three different consequences, one or more of which may be observed in the case of any given surface, according to circumstances The immedate result of such a drying operation is to remove from the surface the film of $\mathrm{H}_{\mathbf{z}} \mathrm{O}$ molecules which normally lage it to a greater or less extent, according to the physical conditions The removal of this "laggiug," which hy mechanical obstruction normally linders the gases reaching the catalyang surface, increases its "effective arca" and thereby ats apparent catalyang power at a given temperature Such immediate result was most casily seen and demonstrated in the care of a very porous surface like purcelann, or of the oxides of copper and mickel, when the mosture film is very adherent and the removal of it " by drying " comparatively slow Indeed, unless an expenment extends over a lung tume, it is often the only effect of drying observable in such cases, and so is apt to br mistaken for what is the real effect of " dryness" upon the catalytio combustion, which becomes observable only during the last stages of the drying, when the amount of mosture remanung in the syatem has been reduced almost to vanishing point We ourselves were so maled dunng the earlier part of the research, when we found that the immediate effect of "drying out" such surfaces was to double thpir apparent catalyang power; and it was not untal its later stages, after we had examined metal surfaces,
that the truth of the matter was revealed It then became clear that the real offect of drying is to stop the catalytic combustion altogether, which was so surprising that it took many repetitions of the experiments to convince us of ita reality
The real effect of extreme drying upon the catalytic combustion was more easily proved with a mital surface such as gold or alver, where the aforesald " moisture film " ${ }^{14}$ apparently very much more attenuated and less adherent than in the caye of more porous surfaces Indeed, with such metal surfaces, the greater difficulty was to demonstrate the immednate rather than the real effect of drying, no atternuated normally is the hindering moisture film Such an experiment requires methculous rare and attention to detal, especially in its penultimate stages, but, provided the drying arrangements are satisfactory, and the operation puahed far enough, the final and real effect of extreme dryness, wheh is to stop the catalytuc combustion completely, can be demonatrated
The criterion of such being the genume effect is the fart that, after the reactivity of such a completely dried system at a given temperature bas become zero, or nearly so, the re-introduction of a small amount of moisture not only immedaately restarts the catalytic comhustion, but in course of time completely restores its uormal intensity. Moreover, a subsequent second complete drying out of the system will reduce things to a standstill again. We have satisfied ourselves that the alternating operations of renderng such a system unreactive by completely drying 1 t, and restonng its normal activity by reintroducing moisture, can be repeated several times

Heardes the aforpsald two effects, in the case of a purous porcclann we have observed another one, namely, that a very prolonged drying apparently brings about a permanent disabling of the surface na a catalyat, presumably because of some atructural change having been induced in it. In order to demonatrate such effect, lowever, the experiment had to he carried on uninterruptedly for three months, so slowly are the final atages of the drying accomphshed, but when nothing untoward occurred, the following series of changes in the system were dempnstrated, namely - (1) a gradual nucrease, up to a certain maximum, in the reactivity, due to the diapersal of the aloresaid noisture film from the surface, followed by (11) a continuous but very gradual decrease in the reactivity, which after some months was reduced to a relatively low value. At first we thought this denoted a suppression of reactivity of the system, by reason of its drynpas merely, simular to that which we bad observed in expenmenta with gold and ajlver surfaces, when reatoration bad quickly followed the renstroduction of water. But this did not prove to be the case with the porcelay surface,
because, on remerolucing water into the system, not only ind no resturatiou of its reactivity occur but all subsequent attempts to affect it by other special treatments were entirely unavging It therefore seemed as though some structural change had occurred in the surface of the catalyst with the drying out of the system wheb had permanently mpared its activity 'This, however, is a point for further investigation, which we propose returming to when circumbtaners permit

Expehimfntal

A -Experimbnts showing the Immedlate Effect of Drying Out a Systrm upon the Catalytic C'ombustion

The immediate effect of drying out a system is, as we have found, to remove from the catalysing surfuce the film of mosture which uormally lags it, more or less according to the hygroscopic conditions This was discovered at an early stage of the rescarch, when we were expenmenting with such highly porous surfaces as fireclay or the granular oxides of copper and nekel, which retan last traces of moisture so tenaciously that it requires n very prolonged and efficient drying operation to render them anythug lihe completely dry These experiments, most of which were carried out at the University of Leede during the years 1908-10, will now be briefly descmbed
The "circulation method" introduced by Bone and Wheeler and deacribed in Part I hereof ($q v$) was employed, suitable auxilary apphances being included in the circuit an and when regured (without altering the total volume of gas in the apparatus) for drymg out the systen The gencral urrangement of the apparatuy is ahown in fig I The surface, S , was contamed in the hardglass reaction tube, AA, which was mantamed at a constant terperature in a gas furnace, BH, the gay supply of whach was so controlled by a thermostatic arrangement (not rhown) that any fuctuation of temperature of s in the reaction tube did not exceed $3^{\circ} \mathrm{C}$ on rither side of the deased maran The ends of AA were drawn out and connected by special hard-to-soft fused glass joints, C_{1} and C_{2}, and through the mercury-sealed tajs, D_{1} and D_{2}, with the reat of the circuit This comprised (1) suitable CO_{2} absorption vessels, E_{1}, contaning a solution of baryta water, which in the "dry" expenments were replaced by similar vessels, $\mathrm{E}_{\mathbf{q}}$, containng pure conecntrated sulphuric acid*,

[^122]
Fre. 1.
(L) an automatic Sprengel circulating pump, F, duly protected from extraneous moisture by means of efficlent drying trains; (ul) a mercury manometar, G, (iv) a side-tube, H , leadung (through stop-cock, K) to an outside gas-holder, contaning the expenmental $2 \mathrm{CO}+\mathrm{O}_{\mathbf{2}}$ muxture, and (v) the aphencal capacity vessel, M

For the "dry" experiments small vessels, N_{1} and N_{i} (inset), immersed in luquid air, were inserted in the circuit near the entrance and exit, respectively, of the reaction vessel, AA, as also was a tube, O, filled with well-ignted calcium chlonde, between the pump, F , and the manometer, G . The carbon dioxide formed during the catalytic combustion condensed in N_{g} In the "moist" experiments a few cubic centimatres of distilled water were kept in the capacity vessel, M, the temprrature of which was kept as nesrly constant as possable ; in the "dry" experimenta this water was replaced by an equal volume of pure concentrated sulphuric acd

The sequence of the experiments was as follows First of all a series of " monst" experiments were carried out with the particular surface under examunation, in which a $2 \mathrm{CO}+\mathrm{O}_{8}$ mixture, satursted with water vapour at enther $0^{\circ} \mathrm{C}$ or the room temperature (18° to $20^{\circ} \mathrm{C}$.), was curculated over the aurface, which was mantaned at a auitable constant reaction temperature, the carbon dioxide produced being absorbed by the baryta solution in $\mathbf{E}_{\mathbf{1}}$. The experiments were contsnued until an absolutely steady rate of combination was established, as ahown by the actual constancy of the velocity constant $k_{1}\left(k_{1}=\frac{1}{\ell} \log \frac{p_{0}}{p_{t}}\right)$. Preparations were then immediately made for a sernes of "dry" experiments All the glass parta of the apparatus were separately dried out in a current of a ulphuric-acid-dried hot arr, the aurface in the reaction vessel being also similarly dried out (at the experimental tempersture) for 72 hours continuously. The hquid sir-cooled tubes N_{1} and N_{s} were inserted, $\mathrm{E}_{\mathbf{a}}$ substituted for E_{1}, and other necessary alterations made in the circut, after which sulphurie-acid-dned aur was curculated through the whole syatem for about another day The whole apparatus was then rapplly evacuated through H by meana of a Geryk pump; a series of sulphanc-aodddried $2 \mathrm{CO}+\mathrm{O}_{\mathbf{a}}$ mixture were then successively introduced, and the rate of combination for the "dry" series re-determined, tubes N_{1} and N_{s} being kept immersed in liquid aur throughout each suocessive experiment. The carbon dionde formed in the reaction all condensed in N_{2} and at the end of esch experiment it was got rid of by removing the liquidear bath, closing tap D_{p} and opening a side-tube sealed in the connection near N_{g}. Finally, after the conclumon
of the "dry" series, the apparatus was restored to its onginal form, and a second series of " most" experimenta run, so as to show that the onginsl rate of combination for the undried aystem was restorad Such an slternsting series of " moist" and "dry" experments were sometimes repested several times, so as to place the results beyond all possable doubt

The carbon monoxide uned throughout the research was prepared by dropping pure atrong sulphuric acid into warin formic acid, and bubbling the gas evolved through a atrong aolution of caustic potash. the oxygen was prepared by heating recrystallised potasaum permanganate, and was smmarly washed The experimental mixtures were made in glass gas-holders over euther (a) a mixture of equal volumes of water and glycenne, for the " mosst " experiments, or (b) pure strong sulphuric autd for the " dry" ones Ther compositions were always venfied by analyses and adjusted so sa to correspond exactly to $2 \mathrm{CO}+\mathrm{O}_{2}$

The expenmental results for the thrce surfaces under consideration (fireclay, and the granular oxides of copper and nuckel) will now be tabulated, each experiment being numbered and dated in chronological order In the tables-
$\mathbf{T}=$ the reaction temperature in degrecs Centigrade
$\theta=-$ temperature of the gaseous mixture in the capacity vessel
$p=$ partial pressure in millimetres of water vapour in the reacting mixture
$P=$ prossure of the dry $2 C O+0_{1}$ muxture.
$t=$ time in hours from the conmencement of each experiment.
$k_{1}=$ the velocity constant $=\frac{1}{t} \log P_{0} / P_{1}$

1. Wuth a Refractory Fircbrack Surface ($T=500^{\circ} \mathrm{C}$).

The results of the following series of ten experiments with a surface composed of small, uregular pipces of a broken "Glenboig" firebriok may be taken as typical of the behaviour of a non-reducible porous refractory surface under the " monst" and "dry" conditions, respectively, slready described The first two experimonts (I and II) were made with a " inoist" system ($p=15$ and 16 mm . respectively), and showed a mean velocity constant of $k_{1}=0098$ Then followed a group of "dry" experimente (III to V), in which $k_{1}=0 \cdot 19$. A second group of two " moist" experiments (VI and VII) gave $k_{1}=0 \cdot 10$ A second group of two "dry "experimenta (VIII and IX) gave $k_{1}=0 \cdot 175$. and a final " moist" experiment (X) geve as nesrly as posesble the same \boldsymbol{k}_{1}
value (0.098) as was observed in the first expenment, showing that the real catalyang power of the surface had remained constant throughout the series From analyses of the readual muxture at the end of earl experiment, it was eatablished that no hydrogen had been liberated (eg, by possible $\mathrm{CO}+\mathrm{OH}_{3}=\mathrm{CO}_{\mathrm{a}}+\mathrm{H}_{2}$ interaction) durng its course, so that it may be taken for granted that only the ontalytic combination $2 \mathrm{CO}+\mathrm{O}_{2}=2 \mathrm{CO}_{2}$ had occurred

Furst Group of "Monst" E'rperments ($T=500^{\circ} . \quad \theta=18$ to $19^{n} \mathrm{C}$).
Heacting Mixture, saturated with Monture at $18^{\circ} \mathrm{C}$

The surface, as well as the whole apparatus, was thereupon subjected to a prolonged drying out, as already described

Water was now reintroduced into the capacity vessel, M,

Scoond Group of "Mosst" Expertments ($T=500^{\circ}$. $\quad 0=20$ to $22^{\circ} C$) Reacting Mixture saturated with Moisture at 20 to $22^{\circ} \mathrm{C}$.

System again dried out, as deacribed.

	$\underset{30.510}{\text { Experiment V11I }}$		$\begin{aligned} & \text { Erpanmant IX. } \\ & \$ 11_{\text {S.10 }} \end{aligned}$		
1	P	k_{1}	t	P.	k_{1}.
${ }_{0}^{\mathrm{Hr}}$	mim_{300}	--	Hra_{0}	$\mathrm{mmm}_{\text {max }}$	
1	1967	0184	1	1815	0194
2	1802	0171	2	193.6	0180

Mean $k_{1}=0178$
Water was again reintroduced into the capacity vessel, M.

Frnal "Morst " Expervment, 14/6/10 ($T=500^{\circ} \quad 0=207^{\circ} . \quad p=18 \mathrm{~mm}$					
Time	0	1	J	${ }^{6}$	Hr.
$\stackrel{T}{4}$	44.4	$\begin{array}{r} 3528 \\ 0 \\ 0.083 \end{array}$	$\begin{array}{r} 2240 \\ 00085 \end{array}$	1189 00097	二

Mean k_{1} th the 5 " "mouts " expermentan $\rightarrow 0100$

Comfirmatory Experments $\left(T^{\prime}=500^{\circ} \mathrm{C}\right.$.)
Another serics of 13 expenments made independently by Mr. A. Forshaw, with a sumlar fireclay suriace at $600^{\circ} \mathrm{C}$., ahowed a atill greater dffierence between
the apparent catalysing powers under "moist" and "dry" conditions, respeotively. Moreover, under " moist" conditions, a perceptible difference in the k_{1} values was usually observed according as the reacting $2 \mathrm{CO}+\mathrm{O}_{\mathbf{2}}$ muxture was saturated with water vapour (a) at 17° to $21^{\circ}\left({ }^{\prime}(p=14 \cdot 6\right.$ to 185 mm$)$ or (b) at $0^{\circ} \mathrm{C} .(p=4.6 \mathrm{~mm})$, respectively, as the following summarised results indicate.-

N.B -The Roman numerals give the order in which the expenmenta were made.
II. Expertments wuth Granular Nuckel Oxde ($T=210^{\circ}$).

Simular effects of drying were observed when a $2 \mathrm{CO}+\mathrm{O}_{\mathrm{g}}$ marture was circulated over a surface of granular mekel oxide at a temperature of $210^{\circ} \mathrm{C}$, under which condition no permanent reduction of the surface occurred (vide Bone and Andrew, Part Il hereof ${ }^{*}$) In these experiments, which were made by the Late Mr. W A. Haward at the Impersal College of Scence and Technology, London, during 1918-19, the general arrangements of the apparatus were similar to those previously adopted with the fireclay surface ($q . v$), except that (i) a misture of 1 part soda-lime with 3 parts quictime, made into a paste with water and then dried, was substituted for the banum hydroinde solution as the CO_{1} absorbent in the " moisl" experments, and (1) tubes containng pure redistilled phosphoric anhydnde were ancluded in the carcuit in the "dry"

[^123]expriments The following summarised statement will sufficiently indicste the general character of the results obtained --

Mean values of k_{1} obtained in

Mout'" lixperiments.			" Dry " Experiments.		
$\theta=17^{\circ} \mathrm{C} \quad p=145 \mathrm{~mm}$					
I		00088	II		00119
VIII		$0 \cdot 0075$	111		00118
			IV		00124
			V		00125
			VI		00125
		-	VII		0.0118
Mean		00070	Mean	$=$	0.0120

III Espermments woth Granular Copper Onde ($T=210^{\circ} C$)
Sumilar resulte to the foregoing were obtained by Dr. Hartley with granular copper oxde at $210^{\circ} \mathrm{C}$, though in order to demonstrate most clearly the effect of drying-out surfaces it was found necessary to exclude mitrogen (which is strongly adsorbed by such a surface) from the system, and to dry it out in a current of dry oxygen at the expermental temperature Also, in order best to ensure otherwise perfectly comparable conditions as between the "moist" and " dry" systems, immediately before each actual experment the surface was heated in the reaction tube for three hours to $480^{\circ} \mathrm{C}$. in a atream of dry oxygen, after which the temperature was lowered to 210° for the expenment. In such circumstances the following three typical experiments were made, in the order givon -
(1) $T=210^{\circ} \mathrm{C}$. working with a " moist" $2 \mathrm{CO}-1 . \mathrm{O}_{\mathrm{a}}$ mixture and system saturated at $20^{\circ} \mathrm{C} \quad k=0.0215$.
(9) $T=210^{\circ} \mathrm{C}$. working with a $\mathrm{CaCl}_{\mathrm{a}}$-dred $2 \mathrm{CO}+\mathrm{O}_{\mathrm{g}}$ mixture efter drying out the systerm as already described. $k=0 \cdot 100$.
(3) $T=210^{\circ} \mathrm{C}$. with a " moist" $2 \mathrm{CO}+\mathrm{O}_{2}$ maxture sfter rentroducing moisture into the capacity vessel, M, of the system, $k=00004$.
It is thus spen that, with such porous surfaces as those descnbed, the ammediale effect of drying out the aystem was to inorease considerably their apparent catalysing powers. this, however, was an indired effect, due to the removal of the moisture film which ordinarily "lags" the surface more or leas.

B.-Experimenty ghowing the Ultimate Effecte of Drying Oct a Eybtrm upon the Catalytic Combubtion with a Metal Surface.

In the experiments now to be described it was proved that with a gold or sulver surface the ultimate effect of drying out the system is very greatly to reduce the catalytic combustion or even to stop it altogether They were all carried out at thr Imperial College of Science and Technology, Loudon, in collaboration with the late W A. Haward, s Robson and A Whitaker, during the years 1910-16 Later on, the results with alver were independently confirmed by Prof D S C'hamberlin in the year 1922-23

As the object now almed at was the complete drying out of the system the experimental procedure described in the previous section had to be modified. in new of the longer tume requred, and the neceratty of following more closely the effects of the gradual elimination of moisture The plan adopted in mont of the experments was pasentially the following a mixture of purficd carbon monozude and oxygen in their combining proportiona, aaturated with moisture at the laboratory temperature, was circulated over the metal surface, which was kept in the reaction tube at a suitable temperature ($\mathbf{T}=2 \cdot 20^{\prime \prime} C^{\prime}$ for gold and $960^{\circ} \mathrm{C}$. for alver) untul a perfectly steady rate of combination was establushed This having been reached the apparatus (except the reaction tubo with the metal aurfuce, which was kept at the reaction temperature and shut off from the anr) was taken down, thoroughly cleaned and dried nut, and then set up again, but with tubes oontaining pure redistilled phosphoric anbydride in circuit, care being taken that the total volume arcessable to the $2 \mathrm{CO}+\mathrm{O}_{4}$ mixture remained unaltered The apparatus, thus reconstructed, is shown in fig 2 , where (using the samue lettering as in fig 1) $\mathrm{K}_{1}, \mathrm{~K}_{\mathbf{2}}, \mathrm{K}_{\mathbf{a}}$ and K_{4} are the $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{6}$ drying tubes, and $\mathbf{N}_{\mathbf{1}}, \mathbf{N}_{\mathbf{2}}$, the spiral and tube, respectively, which towards the end of the drying operation were bept immersed in hquid air To ensure absorption of the reaction produot (when the liquid air cooled tube N_{2} was not maction), the upper parta of the absorption towers, $\mathrm{E}_{\mathbf{1}}, \mathrm{E}_{\mathbf{2}}$, were filled with a specially prepared maxture of soda-lime with three times its weight of quicklime, whioh was found to absurb carbon dioxide with great rapudty, without showing any aggn of absorbing carbon monoxide, and in orice to counteract the very small water-vepour tension of the muxture, the lower parts of these towers were filled with quicklime. In this way, the carbon diozude was rapidly and completely absorbed without any matenal amount of moisture being acquired by the gaseous mixture during its passage through the sald towers.

The apparatus having thus been dricd out, and re-set for the series of "dry" expenments, it was ihoroughly evacuated, after which an accurately made $2 \mathrm{CO}+\mathrm{O}_{\mathrm{a}}$ mixture was introduced, from a gas holder through an efficient $\mathrm{P}_{\mathbf{a}} \mathrm{O}_{\mathrm{a}}$ drying train, and kept continuously circulating round the system, fresh portions of the mixture being added from time to time as requred By continuing such procedure over many successive days (or wecks), and periodically obscrving the rate of combination of the gases as they passed over the heated metal surface, the efferts of gradually drying out the system almost to completion could be studted Towards the end of the operation, the further effects of immersing the spiral N_{1} and the tube N_{2} in hquid air were observed

Finally, having pushed the aforesaid drying operation to its fartheat himit possible under the experimental conditions, all the drying arrangementa indicated in fig 2 were removed from the circut (without altering its volume) and water reintroduced into the syatem at the capacity vessel, M Another simular serics of experiments were then made in order to observe the effects of the moisture addition, until another steady state for the " moist " mizture was attained. It will be seen that it always returned, more or less quickly, to the original steady state for the " moist" gases, showing that the metal surface itself had undergone no appreciable alteration from first to last of the long series of operations just described The following are the details of our expenmenta with gold and alver, reapectively --

I. With a Gold G uze Surface.

The gold gauze used was a prece (weighting 31 grms) of that prevously employed an Bone and Androw's expermenta (Yart I hereof, loc at), it had 22 strande (each 015 mm , in dameter) per centmetre, having been woven out of the purest wire obtanable by Messrs Johnson and Matthey, to whom our beat thanks are due It was introduced into the reaction tube of the circulation apparatus as a roll about 6 incles long and of such diameter as just fitted that of the tube The temperature chosen for the experimenta was $240^{\circ} \mathrm{C}$
(1) Preliminary Experiments wuth a Monst $2 \mathrm{CO}+\mathrm{O}$, Maxture.-The ciroulation apparatus having been arranged for a "morst" senes of expcriments, $2 \mathrm{CO}+\mathrm{O}_{\mathrm{g}}$ mirtures, saturated with moisture at the laboratory temperature, were continuously croculated over the eurface at $240^{\circ} \mathrm{C}$. for three weeks (January 26 to February 14, 1916) until a perfeotly ateady rate of combination
was attanned; the value of " k " thus eatablashed 18 indicated by the following observations extending over the last two daya --

t	\mathbf{P} Hrg	$2 \mathrm{CO}+\mathrm{O}_{2}$ m min
	$647-5$	
0	3330	-
19	2650	00152
25	1372	00155
43		00157

Therefore, mean " k " value for a molat $2 \mathrm{CO}+\mathrm{O}_{2}$ mirture $=00155$
(11) Effects of Drying Out the System -The apparatus was now re-arranged (as already described) for a "dry" вerice of experiments, which extended altogether over 8 days (February 16 to 23,1916), the temperature of the gold gauze being kept at $235-240^{\circ} \mathrm{C}$. all the time, with the [ollowing summarised resulta .--

Dryng Agent in Cireurt	1)rying Period from beginming	λ value for $d r y 2 C O+O_{a}$ mixture at
$\mathrm{P}_{2} \mathrm{O}_{5}$ only	Hrs	end thereof
	${ }^{24}$	0.0148
	$\{42$	00118
	451	0.0045
$\mathbf{P}_{\mathbf{z}} \mathrm{O}_{6}$ plus liquid air	${ }^{66}$	$0 \cdot 0004$
	\{ 91	00004
	114	0.00045

It is thus seen that the effects of the "drying-out" operation were hardly noticeable during the first 24 hours, after 42, however, they were diatinctly felt, but it was not untul the period 42-451 hours that anything like the full effects were obtained. From 45 hours onwards the rate of combination of the gases rapidly dimmaked, untal during the period 66 to 114 hours, with hquid air cooling in carcuit, it had becomo almost neghgible Indeed, dunng one particular 25 hours (66 to 91 hours from the beginning) the pressure of the dry $2 \mathrm{CO}+\mathrm{O}_{1}$ masture fell by $15 \cdot 8 \mathrm{~mm}$ (2 e. from 6208 to 605 mm .) only, as compared with a fall of no lens than $182 \cdot 5 \mathrm{~mm}$. for the morst gases during the same period in prehmunary "moist" experiments ($q v$). The "dryness" of the aystem apparently reached a maximum during tha period, because subsequently the rate of combination of the gases slightly increased, k rising from 0.0004 (its minunum during the series) to 0.00045 during the next 48 hours.

At no time during the whole pariod was the oombination observed to stop altogether, although at lumes it was hardly discernible. There can be little doubt but that, had complefe dryness been attaned, the combination would have atopped altogether, as andeed was the case in our subsequent experiments with alver The sttannent of complete dryness in such a syatem in но extraordmarily uncertain and difficult that, however careful may be the conduct of the experiments, it is always largely a matter of chance whether complete aurcers finally results
(ni) Effects of reintroducing Mosture into the System-At the conclusion of the foregoing aeries (n), the drying agents were removed from the curcut, and water reintroduced into the capacity vessel, M, " moist " $2 \mathrm{CO}+\mathrm{O}_{\mathbf{2}}$ muxtures were then kept continuoualy circulating over the surface dunng the next 17 days (February 24 to March 11, 1016, inclusive), and observation of the rate of combination made every day or two. The followng summarised results, givug the observed k values, show that the offect of reintroducing the moisture was to increase very gradually the reactivity of the syatem, until it was at length completely restored to its formor steady condition as observed for the " moist " $2 \mathrm{CO}+\mathrm{O}_{\mathrm{g}}$ maxtures in series (1) \cdot -

Observed k_{1} Values

(iv) Confirmutory Experiments re Effects of Drynng --Without going into detals, it may be sand that immedately after the conclusion of the foregoing expenments, the system was once more dried out over a period of 26 daya (March 13 to April 7, 1916) in the manaer alresdy described. Its reactivity again decreased gradually to a very low value, attaining a minimum ($h=0.00043$) on the eighth day, as the following observations show -

Finally, on agein rentroducing moisture into the system (Apri 11, 1016), the values of " k " gradually rose in 3 days to the "normal" for the " mosst" gases, as follows.-

				k
2	hours after reintroducing moisture	\ldots	00096	
20	$"$	$"$	$"$.
24	$"$	$"$	00064	
48	$"$	$"$		00103
72	$"$	$"$		00143
		$"$		00150

It was thus proved (a) that the effect of drying out the system was gradually to reduce its reactivity from "normal" almost to zero, and (b) that complete restoration of normality gradually resulted from the remtroduction of monsture. Attention is specially directed to the fact that (b) was very gradual, becauso of its important bearing on the theory of catalytic combustion, being very difficult to reconcile with the langmurr conception of the action being confined to a monomolecular layer of adsorbed gases, but quite explicable on the suppositiou of its extending also to deeply occluded gases

II Wuth a Silver Surface

A long series of experiments were also made with a pure salver-foul surface at a temperature of $360^{\circ} \mathrm{C}$, the resulta of which were extremely interesting, because they brought out very clearly (a) the immpdiate effect of removing the film of monsture which normally "lagy" such a surface when " moist" gases are circulated over it, and (b) the ultimate total paralyass of a completely dnedout aystem The following summarised results will enable rearlers to appreciate therr agguficance :-
(1) Furst Group Wuth a "Moust" $2 \mathrm{CO}+\mathrm{O}_{\mathrm{g}}$ Muxture $\left(T=360^{\circ} \mathrm{C}\right.$, $\theta=15$ to $20^{\circ} C$)-This consusted of five successive experiments in which a muxture of $2 \mathrm{CO}+\mathrm{O}_{\mathbf{2}}$ saturated with moisture at the laboratory temperature (15 to $20^{\circ} \mathrm{C}$) was circulated over the surface at $960^{\circ} \mathrm{C}$, and the rate of combination determined, as follows .-

Experiment.			k for "Moust" System.		
1	.		.	.	0.0682
2	.		.	.	0.0697
3	.	.		.	0.0703
4	0.0694
5	0.0661

Therefore mean " k " value for " moist" $2 \mathrm{CO}+\mathrm{O}_{\mathrm{A}}$ mixture $=$ oirca 0.067 .
(11) Second Group. With $\mathrm{CaCl}_{\mathrm{z}}$-drued System and $2 \mathrm{CO}+\mathrm{O}_{2}$ Mirture ($T=360^{\circ} \mathrm{C}$.) -Then followed a group of seven experiments, extending over a week, in which, after removing water ns much as possible, tubes parked with well-ignited oalcium chloride (instead of $\mathrm{P}_{9} \mathrm{O}_{5}$-drying tubes) were inserted into the curcuit so as to reduce quickly the tension of aqueous vapour in the system down to a comparatively low point The effect of this was to increase conarderably the apparent reactivity of the system, as the following anccessive daily observations showed -

Experiment.	k for CaCl_{2}-dred Syatem. $\mathrm{T}=360^{\circ} \mathrm{C}$.	
6	01590	
7	01184	
8	01412	
9	0.1469	
10	01463	
11	01373	
12	0.1483	

Therefore mean " k " for CaCl_{g}-dried system $=$ merca $0 \cdot 1400$
(iu) Thurd Group Shourng Effects of Iatulud Avr Dryang $\left(T=360^{\circ} \mathrm{C}\right)$ In order to push the drying still farther, the glass spiral, N_{1}, and tube, N_{2} (fig 2), were both immersed in liquid air, so that the tension of aqucous vapour of the $\mathrm{CaCl}_{\mathbf{2}}$-dried $2 \mathrm{CO}+\mathrm{O}_{\mathbf{2}}$ mixture passing into the reaction tube would be reduced to that corresponding with a temperature of about $-185^{\circ} \mathrm{C}$., and those passing out of it would be similarly cooled, a procedure calculated to reduce the amount of water vapour in the reaction zona to a neghgible point. The effect of this was immediately seen in a reduction of the " k " values to (in four successive dauly experiments) a very low point, as follows .-

Experiment		k for Liquid Arr Dred System		
13	.		\cdot	0.0462
14		.	.	.
15	.			0458
16	.	..		

Total Arreatment of the Catalytio Combustion after Continued Liquad Aır Drying of the Syatem ($T=360^{\circ} \mathrm{C}$.). - At this stage the system seemed rapidly to dry out, and with the glass apiral, N_{1}, and tabe, N_{g}, both kept well unmersed in hquid air, a point evas eventually reached when the combination of the liquid anr drsed $2 \mathrm{CO}+\mathrm{O}_{2}$ maxture completely ceased, the pressure remanning quite stationary
at 589.7 mm for half an hour. On allowing part of the liquid air aurrounding the spural, N_{1}, to evaporate, so as to uncover the toprost turn thereof, thus allowing the gases to take up a minute quantaty of water vapour, their combination was restored

The foregoing observation was confirmed in three subsequent experimente in which the cutalytic combustion was completely arrested for perwods varynng between 30 and 60 minutes by keeping the spiral, N_{1}, completely immersed in liquid air for some time previously, whilat a $\mathrm{P}_{9} \mathrm{O}_{5}$-dried $2 \mathrm{CO}+\mathrm{O}_{2}$ mixture was kept curculating in the system And in each casc, the combination was re-started amply by allowing the level of the liquid air to aink by evaporation below the uppermost turn of the spiral.
(iv) Fourth Group Shounng Fifect of reantroducing Water anto the System ($T=360^{\circ} \mathrm{C}$) - Finally, the drying arrangementa were removed from the system, a few cubio centumetres of water reintroduced into the capacity vessel, M, and a moist $2 \mathrm{CO}+\mathrm{O}_{2}$ mixture circulated over the surface (at 360°) The effect of thes procedure was a gradual restoration (in successive days) of the reactivity of the syatem until reaction constant " k " finally reached a steady value slightly higher than that onginally observed for the " moist" system in experiments 1 to 3 (First Group), as follows -

Experiment	k for Moist Systern		
28		00164 rising to 0.0393 in	
29		00399	
30		00465	
31		0.0530	
32		0.0610	
33		0.0612	
94		0.0870	
35		00871	

Confirmatory Serves of Experiments with Sulver Forl

As it seemed important to have the foregoing results independently confirmed, Prof D. S. Chamberln, of Lehigh University, who spent the sesson 1922 workng with me at the lmperial College, kadly undertook to carry out an enturely new series of experiments both with silver and porous porcelain. The procedure was modified from that previously described, in the following particulars, namely :-(1) the experimental 2CO $+\mathrm{O}_{4}$ maxtures used bad previoualy been dried for about any months by contact in a large globe (fig. 3) with redistilled
phosphoric anhydnde before being introduced into the circulation apparatus; (ii) the drying out of the apparatus was chielly effected by keeping $\mathrm{P}_{5} \mathrm{O}_{5}$-dned nitrogen continuously circulating day and nught through the system, with $\mathrm{P}_{2} \mathrm{O}_{6}$ tubes inserted, (iil) at regular intervals of 10 to 14 days, the apparatus being evacuated 20 hours prenously, making a determination of the catalyang power of the surface towards the aforesad $\mathrm{P}_{2} \mathrm{O}_{5}$-dried $2 \mathrm{CO}+\mathrm{O}_{2}$ muxture, (iv) the soda-lime tubes previously used for absorbing the CO_{2} produced were now omitted, because (v) dunng each $2 \mathrm{CO}+\mathrm{O}_{2}$ experiment the spiral. N_{1}, and tube, N_{8}, were keptimmersed in liquid air, so that the CO_{2} produced duriug the ostalytic combustion was completely condensed in N_{g} The temperature of the reaction tube contaning the silver-forl surface was mantanned at $250^{\circ} \mathrm{C}$ throughout the whole six months' period (commencing September 15, 1922) covered by the series of experiments.

Fio 3
Inmediately before commencing the series of experments, the sulver forl used (whose catalysing power towards a molst $2 \mathrm{CO}+\mathrm{O}_{2}$ ruxture at $350^{\circ} \mathrm{C}$ had been previously ascertained) had been kept in vacuo for some days in a desiceator over redistilled $\mathrm{P}_{2} \mathrm{O}_{6}$, po that its surface had been to some extent dred before being introduced into the reaction tube of the circulation apparatus

Moreover, after completing the series, the catalysing power of the foll towards a molst $2 \mathrm{CO}+\mathrm{O}_{\mathrm{g}}$ mixture at $950^{\circ} \mathrm{C}$ was redetermined, whereby it was found to be the same as at the beginning.
Experimental Resulls -The experimental results are summarised below \cdot it should be undergtood that durng the intervals between each determanation of the " k " value for the elix months $\mathrm{P}_{\mathbf{3}} \mathrm{O}_{\mathbf{3}}$-dred $2 \mathrm{CO}+\mathrm{O}_{\mathrm{g}}$ muxture, $\mathrm{P}_{\mathrm{B}} \mathrm{O}_{3}$-dned ntrogen was kept continnoualy circulating through the system, with the
$\mathrm{P}_{\mathrm{t}} \mathrm{O}_{\mathrm{s}}$ drying tubes inserted (the alver fol being maintained at 250° all the tame), so that the following data show the effecta of a five months' progresaive drying of the system upon the catalysung power of the metal ---

	Dete.	Obsorved Velocity Constant K, with Dry $2 \mathrm{CO}+\mathrm{O}_{\mathbf{2}}$ Mirture.
Determinstion No		$\mathbf{T}=250^{\circ} \mathrm{C}$.
1	41029	01208
2	1510.23	0.1639
3	1.1123	00159
4	13.1123	00067
5	231129	00047
6	61223	00050
7	12224	0.0104
8	29.2 .24	0.0039

These resulta, which are plotted on the accompanying ourve (fig 4, 1) confirm the previous conclusion that, whereas the immedrate effect of drying is to increase

Fra 4.
the apparent catalyaing power of the aurface, prenumably by remoning the film of monsture which normally lags $2 t$, the real and final effect is well-migh to suppress it altogether Thus, the surface was actually at ats maximum actinty about a month after the senes of expenmenta in question had begun ($k=0$ 1639), when no less than 30 per cent of the $2 \mathrm{CO}+\mathrm{O}_{\mathbf{2}}$ muxture disappeared duning the first hour ; after this its catalysing power rapidly dumimahed, untal it finally reached a fauly ateady minmum ($k=00039$), when only 1 por cent. of the $2 \mathrm{CO}+\mathrm{O}_{\mathrm{a}}$ mixture combined during the first hour It 1s, of course, extraordinarly defficult to achieve complete dryness in such experiments, but it can hardly be doubted that, had auch conditions actually been attanned in this case, the catalytic combustion would have ceased altogether. In this connection it is also important again to observe that, on re-mntroducing moisture into the system, its original reactivity was completely reatored, thus pronng that the catalyaing power of the surface had not been permanently umpared at all by the prolonged drynag to which it had been subjected.

C-A Final Skries of Experimente with Poroub Porcmhan at $500^{\circ} \mathrm{C}$

Prof Chamberlin also carried out a simlar long series of experiments with a surface of porous porcelann, which Mr W C Hancock had knodly prepared for us from pure china clay. The material had been moulded into bars, each of 1 om. ${ }^{\text {P }}$ croas-section, and about 15 cm in length, which were then fired at 1200° for some days, and afterwards kept in a vacuous desiccator untal required. Immediately before use the particular bar selected for the experiment was "condtioned " in the following manner, namely --
(1) First of all, it was completely evacuated in a silios tube for four hours at full red heat.
(2) Next, dry oxygen was admitted to the red-hot surface which, aftar a sutable interval, was re-exhauated.
(3) Finally, dry arr was admatted to the red hot surface, which was subsequently once more exhausted, and then allowed to cool in vaow down to room temperature before being transferred to the reaction tube of the creculation apparatus
Expermental Procedure - Throughout the whole of the four montha' period covered by the experiment, $\mathrm{P}_{\mathbf{3}} \mathrm{O}_{\mathrm{b}}$-dried ntrogen was kept circulating through the aystem, with $\mathrm{P}_{1} \mathrm{O}_{\mathrm{s}}$ drying tubes in crrcuit, oxoept during the partioular days, at conaderable intervals apert, when the oatalyang power of the aurfece
(at $800^{\circ} \mathrm{C}$) towards an wix-months $\mathrm{P}_{2} \mathrm{O}_{\mathrm{s}}$-dned $2 \mathrm{CO}+\mathrm{O}_{\mathrm{g}}$ mixture was beang determined The surface itself was kept at 400° durng all the long "drying periods' ; during the 20 hours preceding each succoserve determinstion of its oatalyaing power towards the sald mixture, bowever, the apparatus was thoroughly exhausted, and the temperature of the reaction tube was raised to $600^{\circ} \mathrm{C}$, after which the sald mixture was slowly admitted, and the tubes, N_{1} and N_{3}, immersed in baths of liquid air, in which they remaned untal the determanation of the velocity constant " k " was completed Thereupon, the liquid air bathe were removed, the apparatus re-exhausted, another charge of $\mathrm{P}_{2} \mathrm{O}_{\mathrm{s}}$-dried mitrogen re-admitted, and the drying-out operation resumed
Experimental Resulles -The whole "drying-out" operation extended over a period of three monthe (January 1 to April 4, 1923) continuounly day and might, and determinations of " k " value were made at successive intervale as follows -

Determination No	Date	Observed Velocity Constant k_{1}, with a $2 \mathrm{CO}+\mathrm{O}_{2}$ Mixture $\mathrm{T}=500^{\circ} \mathrm{C}$
1	14123	$0 \cdot 3405$
2 ..	25.123	0.3081
3	13223	02711
4	292.23	$0 \cdot 2561$
σ	12.323	0-1997
6	19323	01559
7	24.23	01106

These results, which are plotted on the accompanying curve (ig 4, 日) ahowed unmstakably that (1) whule the immedrate effect of the drying was to increase considerably the apparent catalyang power of the surface, which reached a manmum after about a month's drying, (i) more prolonged drying caused it steadily to dumunish, until after three months' drying it had fallen to about 44 per cent of its orignal value, thus, the respective relative values were as follown --

At commencement of the experiment	$\mathbf{1 . 0 0}$
After one month drying	112
At end of the experiment (3 montha)	0.44

So far, then, everything seemod to have happened substantially in accordance with antucipations based on our previous experiments with gold and ailver, although tho nataral expectation that the "drying out" would be a much
slower operation than was the case with the two metal surfaces Accordingly, on Aprl 2, 1923, alter the experiments had been in progress for three monthe, it was decided to try the effeot of re-introducing moisture into the syatem The $\mathbf{P}_{\mathbf{9}} \mathrm{O}_{5}$ drying tubes were therefore removed from the circuit, water was mitroduced into the capacity vessel, M , and a $2 \mathrm{CO}+\mathrm{O}_{\mathrm{g}}$ mixture, saturated with moisture at room temperature, admutted Contrary to our expectnition, however, the catalysing power of the aurface was now found to have again diminshed as the results of the Iollowing two expenments, made with a five days' iuterval between, showed

Determination	Observed " k " Value for "Moist" $2 C O$	Relative Catalysing No.
	$+0_{2}$ Mixture.	

Such resulta suggested that the great diminution of the catalysug power of the surface during the aforesad three montbs' drying had beea due to some permanent structural change, produced in the surface atself by the drying, which the re-introduction of moisture, so far from reversing, actually accentuated, because of its " lagging " effect

To teat this view of the matter, calcium chlonde drying tubes were subsequently inserted in the corcuit, and a week's dryng-out of the ayatem (by CaC).dred nitrogen circulation) carried out, as antacipated, this had the effect of "unlagging" the surface, and materially increasing ita apparent catalyang power, as compared with that observed in No. 9 (q, v).

Determination No.	Observed " k " Values for CaCl_{2}-dried $2 \mathrm{CO}+\mathrm{O}_{2}$ Mixture	Relative Catalyaing Power of Surface.
10	$00293\}$	$0 \cdot 12$
11	00281	

Some time after the conclusion of the experiments, thin sections of the catalyst were cut and sumtably mounted for macroscopic examination, but although oaraful comparisons were made (abing a Zelss apochrornatic oil-immerion N.A. 1.4 objective in conjunotion with a Swift ol-iramersion achromatic condenser N.A. $1 \cdot 4$, with transmitted ordmary and polansed light) between the ongmal (unused) maternal and that whoh had been used in the erpenment, no sign of crystallisation in the latter could be detected, nor could the two materisls
be differentisted. Therefore, it can be sald that any atruotural change which the surface had undergone, as the result of the prolonged drying operation, was undetectable by microscopic examination referred to

Conoluding Remarks.

The experiments described herein have established the following facta with regard to the progressive removal of moisture from a aystem in which carbonic oxide aud oxygen are undergoing catalytic combination in contact with the surfaces referred to, and under the conditions studied, namely -
(1) That the immedrate effect is alwaya to u crecase the apparent catalyang power of the surface, presumably by removing from th the film of $\mathrm{H}_{2} \mathrm{O}$ molecules which normally lage it, more or less according to the physical condtion
(2) That the ultumate effect, whoch, however, is usually observed only after a prolonged drying, is to diminish greatly, or even to stop completely, the catalytuc combustion
(3) That in the case of each of the two metal surfaces (gold and silver) examined, tho ulemate cffect of drying was practically to stop the catalytio comburtion altogether ; but on re-introducing monsture into the system, its reactivity was in time completely restored.
(4) That in the case of the porous porcelain surface, the ulimate effict of drying was to dunumsh greatly its catalyang power, which, however, was not regained on re-mntroducing monsture into the aystem.

It seems dfficult to reconcle the new facts observed in the case of the two metal surfaces referred to with the Langmur " adsorption " theory of catalyas, or, andeed, with any modufidation of it which has yet been auggested. For if, as all such theorios suppose, the oatalytic combustion of carbonc oxide is conditioned merely by the formation at the surface of a unmolecular layer of the reacting gases definitely orientated, it is not easy to understand why the complete removal of weter from the aystem ahould stop at altogether. On the contrary, if, as as now showa, the oatalytuc combuation at auch tomperatures as have been employed in these experments is conditioned by the presenoe of moisture in the system, the fashionable doctrine of its being primarily due to the formation of such specially orientated unumolecular gas layers at the surface seemsincapsble of explaning the new fact confronting it If, however, the prime function of the surface in suoh catalytic combustion is to ionse the reacting gases, which in a neutral state are incapsble of combining, then the obeerved influenoe of
moisture could be explsined, because it would prevent " ionsed" molecules from reverting to a neutral state, and so aid the combustion And, if auoh be the case, it is conceivable that at atill higher temperatures than those cmployed in the experiments described herein, the surfaces in question would not require the sid of moisture at all. This is a point which, however, it is desired to reserve for future investigation

In conolusion, the author deares to thank the Government Grants Committce of the Society for grants which have partly defrayed the erpenses of the experiments.

Effects of Thermal Treatment on Glass as shown by Precise Viscometry. By Vaugaran H. Stott, M.sc , D. Turner, B.So. (Tech), and H A Sloman, M.A., B.Sc , A I C , National Physical Laboratory, Teddington
(Communcstad by Dr W Rosenhan, F.R B-Recerved June 8, 1926)
[Plates 18 and 19]
Viscometors which have previously been described by verious authors* for use with molten glass have suffered from a common defect, namely, the impoesability of following any changes which might occur in the viscosity due to prolonged thermal treatment of various kinds Thas defect can only be overcome by the use of apparstus which is practically insoluble in molten glass, and which permits the glass to be cooled to room temperatures and reheatad. In the present state of our knowledge auch apparatus must be oonstructed of a platinam alloy, the high cost of which tends to restrict the weight of the portions of the apparatus in contact with glass In the present apparatus visoosity is messured by a determunation of the thicknces of the film of glass which adheres to a thin wire of 10 per cent iridio-platinum which is withdrawn at a lomown velooity from the molten glass oontaned in a amall crucible of the same material. The glass is hested in a vertical oylindrical platinum resistance furnace having two concentric windings of platinum foll 1 inch wide by 0.002 inch thick. The inner tube of the furnace, which 18 of alundum, has an internal diameter of $1 \downarrow$ inches, and is 24 inohes long. The glass is contained in an iridio-platinum arucible of $1 \neq$ inches dismeter at the top, and 2 inches high,

[^124]which is supported in the centre of the furnace The furnace stands on three adjustable legs carried by a table, which can be awung to one ade of ite normal position so as to allow of convenient acceas to the various parts of the apparatus. Such a furnace 19 capable of withstauding high temperatures afor prolonged periods. During viscosity determinations, the furnace was run continuously at workug temperatures when not otheraise mentsonpll in the text The weighed iridno-platinum wire, which is to be lowered into the glass and thence rased, is tied to platinum wires fixed in slots in the cut-away portion of an aluadum tube, as shown in fig 1 The upper end of the alundum tube is fixed to the lower end of a counterpoised nteel tube which can be rasend or lowered in gudes by mrans of an electric mutor. Fig 2 ahows the general arrangement with the tube at the bottom of its stroke The useful speeds of the mutor can be varied in the ratio of tuenty-five to one, and two gears are avalable in the ratio of four to one, the available hapar velocities of the tube varying from 001 to $1 \mathrm{~cm} / \mathrm{arec}$ The sterl tube A is actuated by means of a rack and pimion through the agency of a toothed clutoh operated by the expenmenter The motor carries a flyuhel of auch mertia that the drop in speed of the motor on letting in the rlutch is innppreciable The apeed of withdrawal of the wire is measured by an electric chronograph which makes contact with successive tenth of the rack The chronograph is accurate to about $1 / 100$ yec The temperatures are measured with a specially designed disappearing filament pyrumeter capable of a precision of ons or two degrees between 800° and 1600° The pyrometer 1 s sighted on the glass through a totally reflecting prism \mathbf{B} mounted above the stcel tube. When the tube rises in the course of an experiment, the prism swings away from it on pivots

The condurt of an experiment is very simple The weighed wire having been placed in poeition, the hd of the furnace is removed, and the furnace swung againat a slop into prosition below the wire (The lid of the furnace conasts of a brick under which is fixed an alummum plate to prevent any foreign matter dropping into the glass) The wire is then lowered by means of the motor at a suitahle velocity The speed at the beginmug of the motion is only limited by the thermal endurance of the refractory materials When, however, the end of the wire rpaches the glase, it is necessary that the apeed should not be greater than that subsequently to be employed for the withdrawal Neglect of this precaution may result in bending the wire, pepecially at the lower termperatures When the steel tube renches the bottom of its travel, the driving clutch, which, of course, as travelling backwards, comes out of engagement through ratchet action. Upward motion is also automatically

Vill I

HIII.

Thermal Treatment on Glass shown by Precise Viscometry. 501

stopped at the requred point by means of a cam which withdraws the dutch and applies a brake The wire having been lowercd, a period of ten minutes 18 allowed to elapse before readings are taken with the pyrometer The alundum tube by this time has practically reached temperature equibilum

The furnace used in this manner does not lobave as a black body, and the true temperature of the plass can only be obtaned by comparing, in a reparate experimest, the readings of the optical pyrometer with those of a thrimocouple derectly immersed in the gluss, the thermocouple bemg read mmediately after the optical pyrometer readings, ao as lo correspond in time with an artual vacosity determination The comparison by this mothod showed a very slow upward creep of the furnace after the first ten minutes, but the diffrence between the pyrometer and the thermocouple rendings was strictly constant In this connection a platinum-rhorloplatinum couple was usrrl, and a alight depoast of platinum sponge was alwags found afterwards in the glass This would probably be avoided by the substatution of iridio-platinum for rhodopplanum

To return to the description of the normal experiment, when the temperature has been mensured with the opicial pyrometer, the wire wis withdrawn at a suitable rale, and its weight determined As the wire used has a diameter of only $\frac{\mathrm{mm}}{\mathrm{m}}$, the normal deposit of glass weighs about 10 mgs , and requires weighing very carefully if an ordinary chemical balance be used This was the case in most of the work to be described, although a microbalance accurate to $1 / 100 \mathrm{mg}$ was used for the last thenty measurements. After weighing, the wire is copprer plated morder to difterentiate betucen the bare wire and the parts covered with glass In the absencr of some such method it is impossible to ace exactly where the glase ends After copper ilating, it is found that in general theie is a small coppered length of wire at the bottom, which is due to the effect of surface tension cuusing a longitudimal contractiou of the glass fim A simular effect occure at the upper end of the dim, and therefore the true effective depth of mameraion of the wire is equal to the measured length of glass plus tuice the length of the coppered portion at the bottom This deduction has been shown by experiment to be valad Fig 3 shown the appearance of a wire after withdrawal The gathering of the glass into droplets is due to the well-known instability of long cylindrical filma, and takes place after the furmation of the him

The values of the viscosily at different temperatures are given in terms of the observed quantities t^{\prime} and v, by the formula, derived in the appendix,

$$
\log \left(k_{\eta}\right)=\log \left(\frac{t^{\prime}}{a} \gamma+\frac{n}{v}\right)+\mathrm{C}\left(0 \cdot 8-\frac{t^{\prime}}{a}\right),
$$

where η is the viscosity of the glans, t^{\prime} the thickness of the glass deposit, a the raduus of the wire, vita velocity of withdrawal, γ the surface tension of the glase, and n is a quantity, small compared with γ, expresang the influence of gravity.
In carrying out the experiments the value of v is selected so that $t^{\prime} \mid a$ differs little from $0 \cdot 8$, in order that the last term be small

It has been found experimentally that

$$
\begin{aligned}
& k=2 \cdot 8 . \\
& \mathbf{C}=0 \quad 10
\end{aligned}
$$

The values of γ were obtamed from Washburn and Libman's* measurementa for a glass havng the same percentages of soda and silica as the glass NPL 15, on which tho present measurements have been made A linear relation hus been assumed for the variation of γ with temperature. (For glassen not withn the series investigated by Washburn and Libman, our viscometer could be readily adapted for the measurement of surface tension) The values of n depend upon $t^{\prime} / a, a$, and the constant h The variation of n with t^{\prime} / a, when a ${ }_{18}$ equal to 00001695 , and k is equal to 28 , is shown in Table I. For other values of a or k, recourse may be had to the relation

$$
u \not \subset k ; a^{2} .
$$

Table I

t / a	n	19f	t / a	n	Diff
0.1	0.6		1.0	04	
		07			13
02	13	07	11	107	14
03	20		12	121	
04	28	0.8	13	136	1.5
		00			1.5
0.5	37	10	14	161	16
06	47		10	107	
07	68	11	18	183	1.6
		$1 \cdot 1$			17
	6 D	12		200	18
00	A. 1		1.8	918	
10	84				

[^125]Owing to the dufficulties, discussed later, of assigning an exact value to k, the results of the present measurements have been plotted in terms of $k \gamma_{1}$ instead of in terins of η, ao as to avoid the recalculations which might be necessary if k were subsequently found to be in error Strictly speakung, n and $($ ' also depend on λ, but a large change in k would be required to produce an apprectable change in η due to neglecting to allow for the varistion of n and C
The viscosity measurements which have been made in the manner described have all been carried out on glass of approximately the compoastion of N.PL 15* In some cases the glasses were made from batch, and in the last series cullet was used on which viscosity measurements had previously been made by another mothod. Preliminary measurements with glasses made from batch showed the necessity for taking great care to ensure homogenerty of the glass before making determinations This is not surprising when it is reabsed that the average thickness of the glass film is only 01 mm Although from sume points of view the extreme senativity of the apparatus to slight heterogencity is disadvantageous, it will be seen later that by thes means phrnomena have been observed which might readnly be overlooked if a more conventional type of apparatus were used.
The measurements on glass E ahown in fig 4 were made manly to see whether coohng a glass to room temperatures and reheating would modify its viscosity. The glass, initially melted from batch in an irido-platinum crucible at a temperature of appronimately 1450°, was stirred for a short time by hand with a platinum atirrer, and cooled comparatively quickly. An annlysis of the glass was made after the viscosity measurements and gave the following composition.--

$\mathrm{SHO}_{\mathbf{2}} \cdots$	7342
$\mathrm{Al}_{\mathrm{g}} \mathrm{O}_{3}$	032
$\mathrm{Fe}_{2} \mathrm{O}_{3}$.	$0 \cdot 16$
CaO	6.90
MgO ..	$0 \cdot 28$
$\mathrm{Na}_{2} \mathrm{O}$	18.98
	100-06

The first measurements were made at about 1570° and are shown by crosses. These points are unreliable, as the maximum speed of the motor was too low.

[^126]V. H. Stott, D. Turner and H. A. Slomen.

so that the amount of glass adhenng to the wire was insufficient for accurate weighing. The speed of the motor has since been increased. Four measure-

Fia. 4
mentif, also shown by crosses, were then made at sbout 1390°, after which the furnace was switched off.

On reheating, the furusce burnt out at the working temperature before further measurements could be made. The furnace was reconstructed, and the glass again heated to about 1000°, whon the furnace had unfortanately to be turned out. The glass was agsin heated to about 1390° and several measurements made (shown by heavy dots) before switohing off the furnace and allowing the glass to cool to room temperatures The last procedure was twioe repeated, but on the second occassion the general shspe of the $\log \eta$-temperature ourve whas obtained before cooling to room temparatures from 1040°. The points - (heavy dots) determined by these mesaurementa ware urregular in their order
with respect to temperature. On rehesting the glass to 1390°, the five points shown by circles were obtained. It will at once be noticed that these points, whilst agreeing excellently amongst each other, are some 10 per cent hagher in viscoasty than would be anticipated from consideration of the other pointa. This effect has been found in later work, and appears to be due to shutting off the furnace at a low temperature prior to reheating and making the measurements.
The effect of awitching off the furnace at 1040° instead of 1390° would be to cool the glass somewhat more slowly through the temperatures a hittle below 1040°. In this connection we may note that the devitrification temperature of the glass should be, from the work of Murey and Howen, about 950° The rise in niscosity, even if due to alow cooling through a critical range, is not necessarily connected with dentrification, as another curious effect exists in the glass at temperatures below about 1200° In the present case this as shown by a loss of precision in the meusurements made below 1200°, and it will be seen that this offeot has been repeated soverul times in other experiments, although in certan circumstances the normal precision is obtamable The resulta of the \mathbf{E} series of experiments suggested that the viscosity of the glass between 1200° and 1500° ${ }_{18}$ perfectly definte so long as the glass has first been properly stirred, and so long as it has not been held too long in some temperature range below 1200°.
These considerations further suggested the possiblity of calibrating the new method of measurement by means of the glass N P L. 1b, of which the nisoosity had proviously been measured by the falling ball method* Cullet from the falling ball method was available which probably fulthled the neceseary conditions with sufficient accuracy It had been cooled to room temperatures from 1044°, but had been cooled much more quickly than occura with the present furnace. The " F " serics of measurements shown in fig 5 was acoordingly carried out on some of this cullet. No preluminary atirring was performed, as the cullet appeared homogeneous As was expected, en extremely concordent series of readings was obtained in an irregular order between about 1200° and 1470°. The readnge are shown in the figure as heavy dote close to the lower line. At temperatures near 1160°, however, the points are very scattered, although their geometrical oentre hes on a prolongation of the amooth curve pasang through points obtajned at higher temperatures. This as an important fact In connection with any explanation of the phenomenon, aince it ellminatea s number of poesibilities After obtainng the scattered points below 1200°, the temperature was rased to just about 1200°, and the urual precision of ± 9 per - 'Irens. Soc Glan Teoh.,' vol. 日, p. 220 (1920).
cent was regained (A variation of 3 per cent in η is ronghly equavalent to a temperature varistion of 3°) The tempersture wes subsequently rased to

Fio 8
1460°, and a point on the curve obtained. The following day the optical pyrometer was compared with a thermocouple immersed in the glass at 1420°, the day after, this operation was repented at 1170°, siter which the furnace was cooled to room temperatures On reheating the glass to 1380°, the viscoaity wes found to be some 15 per cent. higher than before This phenomenon had previously been observed in the case of the glass E.

Measurementa were then made over a large range of temperature, the resulta being ahown as crosses on the dagram. From 1200° to 1470° the viacosity was consistently 15 per cent, higher than had prevnously been found. At higher temperatures the incresse was only about 5 per oent., although subsequent measurements aboat 1240° showed the full 15 per cent. rise. The precision of thin senses of measurementa is distinctly lawer than the normal Below 1200° erratic results were agan obtaned, and, as beiore, varied abont a mean point in the anticipated ponition At the end of thes series, a number of measurements were made about 1475°, where a slight discontinuty seemed apparent. (A transformation in silice is known to oocur sbout this temperature.) The
further measuremente did not confirm this idea, although they did not definitely disprove it At this stage the temperature was mantained for 24 hours at 1624 ${ }^{\circ}$, and thereafter a new series of points was obtained, shown in the figure by curcles Subsequent analysis showed that the glass lost sode at the high temperature, and the new scries showed a marked increase of nacosaty (Up to this pont the consistency of the various measurements negatives the possibility of appraciable change of composition of the glass with time) The original precision was completely regained in the new senes and a curve was obtained substantially parallel to the first curve (The differences in $\log \mathrm{k} \eta$ are 0167 at $1200^{\circ}, 0170$ at 1300°, and $0-164$ at 1400°) In this series, however, acourate readings were obtained down to a temperature of 1066°.

At this point the outer minding of the furnace broke, necessitating various repars. The glass was then rebeated to 1440° Mcasurements at this temperature were vitiated by leakage in the potentiometer owing to damp weather Subsequently, however, a series of measurements was obtained, indicated on the diagram by crussed circles These resulta are very close to the previous ones, but owing to the repair to the furnace it was not possible to detormine whether a alight shift had taken place or not, since the optical pyrometer readings can be influenced by small changes in the temperature gradients The customary variations were observed below 1200° From these resulta, and those of the " C " series described below, it is concluded that below 1200° a change normally occurs in the glass which had previously been homogeneous at higher temperatures, but that in some circumstances this change may not occur, the glass being then metastable, and ynelding a definite visoosity-temperature ourve continuoua with that obtaned at higher temperatures. The nature of the change below 1200° is not known, but it 18 interesting to note that if the furnace, at a tempersture above 1200°, is turned down in the evening, uregular resulte are found the next morning at a temperature below 1200°. (Measurements at a new temperature cannot be made sooner than thas, owing to the neoesaty for reaching temperature equilsbrium in the furnsce) Further, maintaining the glass for a week at about 1130°, making frequent meanurements, faled to reveal any tendency towards a new equlibrium on the one hand, or towarda greater irregularity on the other The anslyses of the glass F before and after heating to 1624° are given below:-

The " C' expenments, to which reference has been made, were done, before the othera, on a glass of the following compostion -

$\mathrm{SlO}_{\mathbf{2}}$	$\mathbf{7 2 \cdot 8 0}$
$\mathrm{Al}_{2} \mathrm{O}_{\mathbf{2}}+\mathrm{Fe}_{\mathbf{2}} \mathrm{O}_{\mathbf{3}}$	$0 \cdot 84$
CaO	$\mathbf{7 \cdot 1 3}$
MgO	02.2
$\mathrm{Na}_{\mathbf{2}} \mathrm{O}$	$\mathbf{1 8 \cdot 9 6}$
	$99 \cdot 95$
	\ldots

The glass was melted from batch at about 1450°, but was not stirred It was cooled to room temperature comparatively quiclly before niscosity measurements were made The depths of immersion used in the calculations were not corrected for the longtudinal contraction of the glass at the upper end of the deposit. The contraction may also have been somewhat variable owing to a slight difference in technique as compared with the later work Neglect of this correction tends to raise alughtly the apparent viscosaty at the higher temperatures Fig 6 shows the results obtained, the first series of measurements bejng indicated by crosses Since the glass was not sturred, it was probably not quite homogeneous, and therefore the measurements were less concordant than in later work. In sprte of this, the scattering of the pointa below 1200° is very noticeable After these measurements, the temperature of the glass was raised to about 1450° in the hope of producing complete homogeneity The points shown as curoles were then obtained, and it is intereating to note that the usual effect below 1200° was not apparent, the glass being presumably in a metastable state. This series was terminated by cooling the glase to room temperature from 1339°, after whoh the ponnts indicated by
heavy dots were obtained. The expenmenta were ended at a temperature of 1088°, as traces of platinum sponge due to the thermocouplo ware observed in the glass.

Glass C
(Depths of immerisen uncorracted)

From the forcgoing it will be seen that the present npparatus shows a considerable advance over previous viscometers for molten glass, both from the point of view of precision (± 3 per cent of the viseosity) and also because of the possibility of prolonged experiments on the same specimen of glass, which, ff required, may be cooled to room temperatures and reheated an indefinte number of tumes In the cese of the particular glass expenmented upon, it has been shown that, once homogenety has been altainad at a high temperature, ita viscoasty at temperatures above 1200° is repeatsble to ± 3 per cent Ths holds so long as the compostion of the glass has not been changed by volatilusstion, and this in inapprecisble except at extremely hagh temperatures. The viscossty at temperatures above $1200^{\circ} 18$ unaffected by cooling the glass to room temperature and reheating, provided that the glase be not held too long whthun a certan oritical temperature range which is below 1200°.

At temperatures below 1200° it appears that the glass is capable of erosting in at least two states, resulting in considerable variations of viscoasty. The mean viscosity in this case is that which would be anticipated from an extrapolation of the curve from temperatures above 1200°. In certain ourcumatances it is posable to obtain the glass at temperatures below 1200° in a metastable state sumilar to its state at high temperatures In thus case the viscosity-temperature curve 18 contanuous, and of the same preosenon throughout

Thesc observations may bave an mportant bearing on certan phenomens which are well known to the glass maker. Numerous observations have been made which show that many properties of glass, ancluding brittleness, and more particularly the complex factors which govern its mechanical behaviour during working, are influenced by variations in the conditions of lounding whech are without effect on the final chemical composition Such variations may be, for example, changes in the moisture content of the batch, dufferences of heat treatment, or variations in the proportion of cullet, ie e previously melted glass, added to the batch * Sunce it has been shown that a glass, homogeneous at high temperatures, may exist in more than one state when cooled below a certain temperature, it is no longer surprising that the working properties should be influenced by variations in the melting procedure The vanations of viscosity, which may be present in glass below a certann temperature, indicate some degree of heterogeneity which may be a cause both of unsatisfactory workang properties when hot and of brittleness when cold

Appendix.

Theory of the New $\nabla_{1 r o 0 m e t e r . ~}^{\text {. }}$

Experment ahows that the thickness of the deposit on the wre very quickly approaches a limuting value on withdrawal at a uniform velocity.

$$
\text { Let } \begin{aligned}
t^{\prime} & =\text { mean thickness of deposit. } \\
a & =\text { raduus of the wire. } \\
\eta & =\text { necoarty of glass. } \\
p & =\text { density of glass. } \\
Y & =\text { aurface temaion of glass. } \\
g & =\text { aoceleration due to gravity. } \\
v & =\text { velocity of ware. } \\
l & =\text { depth of immersion of wire. }
\end{aligned}
$$

[^127]Then, ance t^{\prime} / a is dimensionless, we muat have

$$
\frac{t^{\prime}}{a}=f\left(\frac{l}{a}, \frac{\eta v}{\gamma}, \frac{\eta v}{g \rho a^{2}}, \frac{a v p}{\eta}\right),
$$

the function on the right including all possible independent dimensionless combinations of the variables presumed to be involved in determining the course of the phenomenon.

It is also known from experiment that the value of t^{\prime} / a is independent of l / a unless the latter be very small As regards the second term, expenment shows that, between certann limits of $t^{\prime} \mid a$,

$$
\frac{t^{\prime}}{a}=\frac{x \eta v}{\gamma},
$$

where, as 18 shown later, x has a value varying slightly with t^{\prime} / a
An approximation to the effect of the third term can be calculated by regarding it as a correction to be applied to allow for the effect of gravity In the present experiments the value of this correction has only rarely exceeded 10 per cent, in the cnas of the " (1 " series In later experiments it has always boen well below 10 per cent, sunce t^{\prime} / a has not been allowed to differ greatly from the value $0 \cdot 8$, which has been adopted as the most convensent The fourth term obviously expresses a pure inertsa effect It is not possible to calculate the whole work done in accelerating the various portions of the liquid disturbed, but we can calculate the work done in accelerating the liquid which adheres to the wire, and this work must be an apprecisble fraction of the whole work in question
Let $\mathrm{M}=$ total mass of glass lifted Then the work done in changing its velocity from 0 to $v_{0}, 1 s \frac{1}{2} \mathrm{Mv}_{0}$

The work done aganst gravity is $\left\langle M l_{0} g\right.$ where $L_{0} 1 s$ the length of immersion The greatest value of $v_{0}{ }^{2}$ in our experiments is $0 \cdot 64$, whereas $h_{\text {ag }}$ has the

Be. 7.
value 2943. The ratio of these hgures is auffioient to show that the fourth term is small compared with the third, and may therefore be neglected.

Let us now calculate the effect of gravity. We shall suppose that a wire of radur $a{ }_{18}$ pulled out of a hquid of zero surfaoe tension. (See fig. 7)
Following the mothod of the Research Staff of the Gencral Electno Company,* we write

$$
\frac{d}{d r}\left(\eta r \frac{d v}{d r}\right)=\rho g r,
$$

therefore

$$
\eta \int^{\rho} d\left(r \frac{d v}{d r}\right)=\int^{t+\varkappa} \rho g r d r,
$$

therefore

$$
-\eta r \frac{d v}{d r}=\frac{\rho g}{2}\left[(t+a)^{2}-r^{2}\right],
$$

therefore

$$
\int_{n}^{r o} d r=-\frac{e g}{2 r_{1}} \int_{r}^{n}\left[\frac{(t+a)^{2}}{r}-r\right] d r_{1}
$$

therefore

$$
v_{0}-v=\frac{-\rho q}{2 r_{0}}\left[(t+a)^{2} \log \frac{a}{r}-\frac{a^{2}-r^{2}}{2}\right],
$$

or

$$
\begin{equation*}
v=v_{0}-\frac{p g}{2 \eta}\left[\frac{a^{2}-r^{\mathrm{E}}}{2}+(t+a)^{2} \log \frac{r}{a}\right] \tag{1}
\end{equation*}
$$

Now when $r=a+t, \quad v=0$, whence

$$
\begin{equation*}
v_{0}=\frac{\rho g}{2 \eta}\left\lfloor(t+a)^{2} \log \left(1+\frac{t}{a}\right)-\frac{t^{2}+2 a t}{2}\right\rfloor \tag{2}
\end{equation*}
$$

If we now take $t=3 a$ as a particular case, we have from (1)

$$
v=v_{0}-\frac{\rho g}{2 \eta}\left[16 \pi^{2} \log \frac{r}{a}-\frac{r^{2}-a^{2}}{2}\right],
$$

and since the upward flow of glass at \mathbf{A} must be equal to that at \mathbf{B},

$$
v_{0} \pi\left(2 a t^{\prime}+t^{\prime 2}\right)=\int_{a}^{+a} v(2 \pi r) d r,
$$

therefore

$$
\begin{aligned}
v_{0}^{\prime}\left(2 a u^{\prime}+t^{\prime 2}\right) & =2 \int_{a}^{4 a}\left[v_{0} r-\frac{\rho g}{2 \eta}\left(16 a^{2} r \log \frac{r}{a}-\frac{r^{3}}{2}+\frac{a^{2} r}{2}\right)\right] d r \\
& =2\left[\frac{v_{0} r^{3}}{2}-\frac{\rho g}{2 \eta}\left(16 a^{2}\left(\frac{r^{2}}{2} \log r-\frac{r^{2}}{4}-\frac{r^{2}}{2} \log a\right)-\frac{r^{4}}{8}+\frac{a^{2} \gamma^{2}}{4}\right)\right]_{0}^{r a} \\
& =15 v_{0} a^{4}-\frac{\rho g a^{4}}{\eta}(89 \cdot 9),
\end{aligned}
$$

* " A Problem in Visoosity," ' Pbul. Mag ;' val 44, p. 1008 (1929).
therefore

$$
v_{0} t^{\prime 2}+2 v_{0} a t^{\prime}+\left(\frac{893_{e g a^{4}}}{\eta}-15 v_{0} a^{4}\right)=0 .
$$

whence

$$
t^{\prime}=-a+\sqrt{10 a^{2}-\frac{893 p g a^{4}}{v_{0} \eta}}
$$

Now the value of $\mathrm{pg} / \mathrm{v}_{\mathrm{o}} \eta$ must satisfy equation (2). Whence

$$
\begin{aligned}
p g / v_{0} \eta & =2 /\left[16 a^{2} \log 4-\frac{1}{2}\left(15 a^{2}\right)\right] \\
& =1 / 7338 a^{2} .
\end{aligned}
$$

therefore

$$
\begin{aligned}
t^{\prime} & =-a+\sqrt{16 a^{2}-\frac{893}{73338} a^{2}} \\
& =0 \cdot 96 a
\end{aligned}
$$

Returning to equation (2) and aubstituting theren $t=3 a$, we obtain

$$
\begin{equation*}
v_{0}=\frac{\rho q a^{\prime}}{2 \eta}(14 \cdot 68) \tag{3}
\end{equation*}
$$

Wr are now in a position to find what value g would have to take in order that for the value of v_{0} which gives $t^{\prime}=096 a$ when surface tension is alone operating, t ' for the purely gravitational case would have the same value, namely, $096 a$

For the surface tension case we have sufficiently nearly

$$
t^{\prime} / a=2.8 \eta v_{0} / \gamma
$$

(The derivation of thus relation from experiment appears later)
Therefore

$$
0 \theta \theta=2 \mathrm{k} \mathrm{n}_{0} / \gamma,
$$

therefore

$$
\gamma_{0}=0.342 R_{\gamma} .
$$

Now from (3) we have

$$
g^{\prime}=\frac{2 \eta v_{0}}{14 \cdot 68 p a^{2}}=\frac{0685 G \gamma}{1468 p n^{4}}
$$

(where g^{\prime} is the sought fictitious value of q) Whence, finally, aince $g=981$,

$$
\frac{q}{g^{\prime}}=\frac{8.91}{Y} .
$$

These caloulations have been repeatod for various values of ℓ as ahown in the table below. -

Table II

t / a	t^{\prime} / a	σ / σ^{\prime}
0	0	0
1	0	33
3	0	94
1	84	0

From these resalts Table I, in the text, was derived by interpolation, the quantity n being defined by the relation

$$
n=\gamma g / g^{\prime}
$$

It will be seen that the imphicit assumption has been made that if g^{\prime} be a supposititious value of g which, in the absence of aurface tension, would give a value of t^{\prime} equul to that given by a surface tension γ in the absence of gravity, then the effect of γ and g acting simultaneously ss equivalent to a surface tensson γ^{\prime} acting alone, where

$$
\gamma^{\prime}=\gamma+\gamma g / g^{\prime}
$$

In the way we are now able to write our fundamental equation

$$
t^{\prime} \left\lvert\, a=f\left(\frac{\eta p}{\gamma^{\prime}}\right) .\right.
$$

This equation may be written

$$
t^{\prime} / a=x \eta v / \gamma^{\prime},
$$

where x is a function of t / a.
By sutably choosing the values of v in the verious experiments we can arrange for t^{\prime} / a, and therefore x, to be constant (The value 0.8 has been selected as the best value to take for $t^{\prime}(a)$
Writing k for the constant value of x, we have, finally,

$$
\begin{equation*}
t^{\prime} / a=0.8=k \eta 0 / \gamma^{\prime} . \tag{4}
\end{equation*}
$$

As it is not practicable to withdraw the wire at the precise value of v requred to make t^{\prime} / a equal to $0 \cdot 8$, the varistion of x with t / a was determined by experment, keeping the temperature approxumately constant, and correctung the results to the mean temperature of 1990°. Fig. 8 showa \log in (η being conatant) plotted against t / a in the case of glasa \mathbf{E}. A atraght line represents the relationshup obtained with sufficient accuracy. From the slope of thin line (denoted on page 4 by " \mathbf{C} "), experimental results can be corrected to the standard value of $t / a=0 \cdot 8$, thus permitting the use of equation (4). The
assumption is here made that the correction is independent of viscosity As this assumption is not likely to be strictly correct, the expenments should be conducted so that the correction is small.

Fig. 8.
The concordance of the results obtained in the " E " and " F " series of measurements shows that errora due to insccuracy of this correction are small compared with errors due to other causes It will be seen later that this correction probably represents chuefly an effect due to the influence of the rate of ahear on the apparent value of η, a phenomenon which could not be taken into account in the dimensional anslysis. If this be really the case, " x " has a constant value in the case of an ideal liquid, and the emprical correction which we are considering must bo regarded as applying only to the particular glass on which it was determuned
Let us now turn our attention to the experimental determination of the constant k Thus determinstion depends upon the measuremente, to which reference has already been made, on the glass N.P.L. 16 .

It has previously been suggested* that the variation of the calibration factor with η of the falling platinum ball apparatus used for the measurementa in question is due to a variation with rate of ahear of the apparent viscosity

[^128]of the syrup used far calibration. Careful consideration of our own and Waghburn's mosarements lends colour to this hypothesis, and our own measurements have now been corrected in the following manner -

For the large ball the average velocity of fall determining the calibration factor may be taken as $4 \mathrm{cms} / \mathrm{sce}$ Now the calibration factor is obtained from the ratio of viscosity determined by the falling of the large ball to that determined by the falling of a vary amall ball If the calibration be performed at such a viscosity that the ratios of the velocities of the large and amall balls are in the ratio of their radin, the motion wall be similar in the two cases, and the true calibration factor will be obtaned
The ratio of the radii being $1 / 01189$ the velocity of the small balls must be

$$
v=4\left(\begin{array}{ll}
0 & 1189
\end{array}\right)
$$

We have alao, for the particular amall balla used,

Whence

$$
v=4 / \eta
$$

therefure

$$
4(01189)=4 / \eta
$$

$$
\eta=8.41
$$

and

$$
\log \eta=0934
$$

The true calibration factor should therefore be obtaned when $\log \eta=0.934$ The curve* showing the values of the calibration factor plotted against log η dors not extend far enough, but by extrapolation the valuo of the callbration factor is found to be 220 . Fig 9 shows the onginal $\log \eta$ - temperature curve A, of glasa N P L 15, togother with the revised curve, B, calculated from a constant calibration factor of $22 \cdot 0$. (As a result of munor corrections, the expenmental points shown he somewhat nearer to the curve than in the previous publication, but the line itself 18 unchanged) Comparison of the $\log \eta$ - temperature curve, $\mathrm{B}_{\text {, of }}$ the glass N PL 15, with the measurements made on glass F_{1} (taken from the centre of the pot on which the mensurements were made on glass N.P.L. 15) showed at once a conaderable variation whth viscosity of the factor k, which was much greater than the corresponding apparent variation of the calibration factor of the platinum ball apparatus when uang ayrup.

Snince dumenszonal analygis fails to acoount for such a variation of k, it is reasonable to enquire whether the viscosity of glase is really independent of the rate of shear, as was necessanly asaumed for the purpose of analysis. Should

[^129]Thermal Treatment on Glass shown by Precise Viscometry. 517
this not be the case, it $3 s$ intercsting to note that the variation of x with velocity would be due to this phenomenon rather than to the normal hydrodynamical

Fig. 9
bebaviour of a perfect fluid defined by ρ, η, and γ only. This is shown by the following caloulation:-

From flg 8 when

$$
\left.\begin{array}{rl}
\left(t^{\prime} \mid u\right)_{1} & =0.40 \\
\operatorname{og}_{10} x_{1} \eta & =2.310
\end{array}\right\}
$$

When

$$
\left.\begin{array}{rl}
\left(t^{\prime} / a\right)_{2} & =1 \cdot 20 \\
\operatorname{og}_{10} x_{2} \eta & =2 \cdot 990
\end{array}\right\}
$$

V. H. Stott, D. Turner and H. A. Sloman.

Now

$$
v_{1}=\left(\frac{t^{\prime}}{a}\right)_{1} \frac{\gamma+\mathrm{B}_{1}}{x_{1} \eta}=\frac{(0 \cdot 40)(152 \cdot 5+2 \cdot 8)}{10^{2810}}
$$

and

$$
1_{2}=\left(\frac{l^{\prime}}{a}\right)_{2} \frac{\gamma+n_{2}}{x_{1} \eta}=\frac{(1 \cdot 20)(1525+121)}{10^{2 ~ 360}},
$$

therefore

$$
v_{2} / v_{1}=2645
$$

Hence, when v varies in the ratio $2 \cdot 64 / 5,1, \log x$ varies by $0 \cdot 080$, or x varnes by 20 per cent
Further, $\log 2645=0422$, and $\log \eta$ for N PL 15 (fig 9, curve B) varies by this amount from 1400° to 1202° Over the same temperature range $\log k$ varies from 0454 to $0 \cdot 545$, that $14, k$ varies by 23 per cent The concordance of measurementa made over a considerable range of values of 0 at various temperatures shows that the varistion of x with v does not depend very greatly on temperature The approximate equality of the figures calculated above may therefore be regarded as evidence that the change of x with v is maiuly due to the influence of rate of shear.

We are now in some difficulty with regard to the value of k. If we rejeot the idea that the viscosity of glass is mfluenced by the rate of shear, we can only ascribe the variation of k to experimental error If, as 18 more reasonsble, we aocept the ides, k should be determined at a viscosity such that the effect of rate of ahear is the same in the two types of viscometer The value of k thas determined would be the true value applicable to a perfect liquid. Unfortunately we are unable to make such a determination. Actually we have adopted for k a value of 2.8 This is derived from observations made above 1400°, where the effect on the epparent viscosity of dufferent rates of shear would presumably be less than st lower temperstures By the use of this value for k approsimate valnes of η may be calculated which may not be quite comparable with values derived from another apparstus owing to differences between the functional relationshyps of the mean rates of ahear to the viscosities moasured. In the cass of the wire viscometer the mean rate of shear is inversely proportional to η. In the aase of our older method, and that of Washburn, the rate of shear is independent of η, and 18 roughly constant. Owing to these defficulties, we have plotted our results in terms of $k \eta$ rather than in terma of η. It may also be noted thet the value of the gravity correction n depends on k A change in the calculated value of η of 1 per cent, may ocour for thes reason, if we vary \boldsymbol{k} by the amount found in the calibration
over the whole range of our experiments. A further amall source of error ta involved in the assumption of lincarity for the vanation of the surface tension of the glass with temperature. Judging from an exact curve given by Washburn for a somewhat different glase, the error due to this cause may amount to ± 2 or 3 per oent
Turning again to fig 9 , an unteresting comparison can be made between the slopes of the $\log \eta$-temperature curves of the glass N.P.L. 15 obtaned in vanous ways Curve A represents the reaults of the platinum ball determinations as oalculated in the orignal manner Curve \mathbf{B} represents the same roaulta

Table III

Expt	t'la	v	$\boldsymbol{\gamma}$	n	$\boldsymbol{\gamma}+\boldsymbol{n}$	Log 27	$\left(\begin{array}{cc}0 & 10 \\ 8-\frac{t}{n}\end{array}\right)$	Log $k \eta$	Tomp.	Dato
IF	07123	0) 603	1624	$0 \cdot 9$	1083	2326	0000	2334	1391 5	712.25
2	06180	04908	1518	$4 \cdot 9$	1588	2288	0018	23013	14004	81225
3	06816	0 008\%	1523	54	1577	2317	0 014	2331	13030	
4	086483	0508	1522	04	1570	2315	0013	2328	13041	
0	00116	006460	1648	48	1897	3.270	0010	3208	1172 6	012 IJ
6	08085	009106	1604	70	1724	3188	-0001	3257	11640	
7	08388	0.04885	168 8	$\pi 1$	170	8355	0018	3871	11562	
8	07144	00634	1685	60	1788	3230	$0 \cdot 009$	1 298	11448	
0	06005	0595	148 I	38	1510	2114	0 029	2148	$1465 \cdot 5$	101295
10	08365	0640	1482	$4 \cdot 1$	1623	2106	0028	2132	14690	
11	05011	06876	1490	46	168	2154	0.021	2175	1450	
12	0 6586	0.206	1677	4-3	1620	2645	0084	2-669	12903	1112.25
18	0.8046	0262	1681	70	1651	2705	-0 1000	2705	12908	
14	08127	0288	1881	71	1652	2-710	-0001	2 709	12906	
15	$0 \cdot 6205$	00616	1086	40	1705	5938	0018	d 218	1161 5	141225
16	08489	007456	1680	87	1747	3346	-0 014	381	1153	
18	1 U5C4	0 06es	1045	101	1756	3440	-0 02t	3420	11610	15.12.25
19	10006	00689	1682	0	1750	3508	-1) 020	3.492	11507	
80	07139	00563	1684	$t 0$	1724	8347	0000	3358	11478	
21	06878	00578	1605	6.7	1722	3 311	0011	3.329	11446	
22	07028	01243	181.8	8.8	1670	2076	0.010	2.986	$11290 \cdot 8$	10 18,25
28	08183	01988	162-5	71	1696	8048	-0 001	3048	1215.8	
24	06891	010006	168.5	57	1682	3026	0011	3.087	12142	
26	07881	$0 \cdot 1124$	1628	6.7	1695	3072	0002	3074	1208-2	
26	05082	0674	1484	4.6	1530	2129	() 021	2100	1460-5	171225
88	08400	0486	1630	71	1601	2483	-0004	2429	13810	4188
34	07628	0497	1596	62	1587	2387	0004	${ }^{2} 991$	13887	6.188
30	0.8118	0.485	1525	08	1893	2417	-0001	2416	13894	
86	0-9849	0406	1632	74	1006	9448	-0.006	2.448	1377.1	
37	08054	0280	158.2	0.1	161.3	2488	0014	2640	13845	61.26
88	08365	0279	1071	71	1648	2402	-0.004	- 688	1307.9	
89	03884	0.647	1485	4.1	189.6	2.190	0024	2814	$1480 \cdot 4$	71.96
40	$0 \cdot 7898$	0806	1476	6.5	1541	2128	0001	2189	1475.8	
41	07896	0 010	1470	6.0	153.6	8194	0000	2. 124	1494.1	81.26
48	05776	0898	1442	4.8	1488	1-881	0.042	9.003	15838	
48	07715	0. 1386	1605	6.8	168.8	9868	0.003	9.971	18484	11186
4	07475	$0 \cdot 184$	1606	6.1	168.7	2.088	0005	9.975	1247.2	
45	$0 \cdot 6211$	01875	1613	$8 \cdot 1$	1694	3086	-0 019	3.049	12980	
46	0 apol	00895	1690	67	168.7	3. 203	-0000	3803	12063	18.1.26
4	08805	00977	1884	71	$170 \cdot 0$	8.164	$\cdots 0004$	8-160	11907	

Table III--(continued).

Expt	I'/a	v	$\boldsymbol{\gamma}$	n	n	$\log z_{\eta}$	$\left\lvert\,\left(\begin{array}{ll}0 & 10 \\ 8 & -t^{\prime} \\ & \end{array}\right)\right.$	$\underline{L o g} k$	Temp	Date
48 F	12410	0117	169. 6	122	1757	3270	-0 044	g 228	11871	
40	09180	00493	1670	80	1750	3509	-0012	g 497	1186	13124
50	08858	00413	1681	7.6	1757	3576	-0009	${ }^{3} 567$	11161	
61	0.6280	00401	1668	48	1716	3439	0017	3447	1189.7	14128
52	07268	00428	1680	00	1728	3188	0007	J 475	11391	
63	08810	00478	187-4	74	1748	3-600	-0000	3 494	11293	
54	18643	00489	167.2	12 J	1798	76059	-0.046	3613	11987	151.26
65	07367	00449	1070	10	1780	J. 463	0006	J 459	1135 \%	
58	1.0704	00470	167.2	D 0	177 I	36606	--0 027	3679	11332	
57	00781	004435	1667	88	1755	3588	-0 018	3 670	11416	10.126
58	0.7413	0 0488	1616	60	1720	8417	0.006	g 423	11530	18.1.26
60	10848	00457	168.6	08	178	3-614	$\underline{0} 028$	3588	11436	
60	0 8283	01540	160.0	0 O	106 日	2882	-0009	8948	1268 \%	18.128
61	07764	01396	1606	64	1870	2087	0002	2068	18462	
68	07407	01365	1605	60	1665	2808	0008	2 983	12497	
63	07876	01387	1608	65	1873	2878	0001	2879	12418	
64	07918	$0 \cdot 701$	1475	50	183.4	2175	0007	2182	14758	20.126
65	06713	0748	1476	63	152 O	2137	0013	2150	1474.1	
60	07127	07375	1477	5.7	1634	2171	0000	2180	14780	
67	06889	0743	$147 \cdot 6$	5-4	1530	2151	0011	$2 \cdot 162$	14757	
68	06822	$0 \cdot 7075$	1467	64	1521	2114	0012	$2 \cdot 124$	14897	21186
70	12111	025052	1681	118	1098	2800	-0041	2-805	12907	25126
71	10031	02031	1584	01	1675	2 P18	-0020	2808	12862	
72	08873	0-1784	1086	7 f	1882	2917	-1009	2. 908	1283 ¢	
78	08487	04305	1524	72	1690	2498	- -1000	2409	1390.5	26126
74	07670	0375	1526	63	1589	2512	0003	2515	1387 日	
75	0.7302	0.343	1630	50	1589	2629	0-007	2536	13812	
76	07457	0 128I	1598	61	1680	2085	0) 005	2090	12627	27128
77	00581	01510	1606	44	1690	3000	-0016	3075	12477	
78	08817	01247	160	7.6	1082	3075	-0008	3067	12464	
79	06072	000008	1638	8.2	1685	3268	0018	${ }^{\text {J }} 281$	12008	28120
80	0.7368	00507	1638	10	1898	8321	0000	3387	1101.2	
81	$0 \cdot 6380$	004070	1672	83	$175 \cdot 5$	3. 000	-0 014	3. 698	11816	291.26
82	0.6805	0.01388	1706	52	1758	3 980	0014	3 943	10787	1920
89	0.7217	001461	170 0	58	1767	3861	0008	8.048	10674	
84	072 Hs	001493	1710	58	1788	8834	0007	3. 942	10692	22.20
88	07807	0.2102	1594	${ }^{6} 9$	1623	2781	0007	9.768	1321.3	11228
60	07642	02015	150.7	03	1630	2791	0004	$2 \cdot 705$	13160	
80	08471	0208	1570	72	1642	8825	-0 005	2.820	$1808 \cdot 7$	
01	09481	007206	1633	83	171.6	8351	$\bigcirc 014$	3. 387	18006	12286
$\theta 2$	07775	00615	183.4	04	169.8	3332	0.002	3.894	11084	
98	08860	00888	1620	$4-4$	166.4	8153	0021	$3 \cdot 174$	1291.8	198.25
94	08181	0.0683	$162 \cdot 4$	47	187.1	3176	0019	3188	19168	
95	07288	00708	1624	5.9	1883	8802	0.007	9.809	18165	16996
96	06862	00886	1128	54	1042	8228	0011	3237	12086	
87	0 8098	00841	165.0	7.9	1709	3267	-0 011	3258	1205.8	
98	0.8063	0008285	1643	67	171-0	3341	-0.001	5340	11885	16.2.96
99	08584	00530	1660	78	1723	3440	-0 006	3. 440	11710	
100	0.9201	00644	1650	80	178 0	8.488	-0 012	4454	11709	
101	1-0085	00527	1054	01	1745	3021	-0 090	3801	11641	182.26
102	0.0477	00478	1057	84	1741	5838	-0015	3. 523	1158.7	
109	08485	0048015	1858	71	172.0	8477	-0 004	3473	11881	
104	11836	00471	1670	11.0	178.0	3838	-0.085	3.604	11308	18.2.26
105	$0 \cdot 6011$	008143	167.2	4.6	171.8	8.517	0.020	3. 8.87	1132.7	
108	00405	008988	160	83	174.9	8-619	-0-014	8.605	1143.5	29.898
107	0.7670	003116	1671	8.3	178	8.850	0.008	8. 683	1184. 3	
108	07888	0485	$150 \cdot 4$	65	1860	8.404	0008	2406	$1495 \cdot 6$	93.8.096
109	07859	0.486	100.4	65	106-9	2404	0001	2.405	1429.1	

Abstract

Gulated with a constant calibration factor of $22-0$ For sumular reasons to those given with regard to our own experiments, it would appesr that a constant calibration factor should be used for Wrashburn's experiments Two curves are therefore shown representing the results of the alternative calculations apphed to Washbura's resulta Finally, the curve X represents the measurements on glass F_{1} (the same as N P.L. 15) calculated on the hasis of $h=2$ \& All the curves cxcept A and B have been displaced vertically by arbitrary amounts so as to show more convemiently the differences of alope It will be quite clear, from a consideration of fig. 9 and the preceding deweussion, that no method has yet been devised of determinug the viscous properties of glass at hagh temperatures in a manner which is entirely independent of the type of apparatus used, and perhaps also of the properties of other liquids employed for calibration. Accordingly, for the possible convenienco of other workers, Table III (pp. 519-520) contains the cesential figures from which the results of the F series of mesasurements have been calculated

Remarks relatang to Table III
$\left.\begin{array}{ll}\text { For Expta. IF to 26F indusive ... } a^{2}=0.0001695 \\ \text { For Expts. 33F to the end } & a^{2}=0.0001629\end{array}\right\} p=2 \cdot 50$.
After Expt 26F a cheok aganst a thermocouple was performed at a tempersture of 1460°; on the following day a further check was carried out at 1170°, at which temperature the furnace was switched off.

On reheating to a temperature of about 1390°, a fow experiments were nitiated by the uaus presence of platinum sponge in the glass due to the thermocouple This sponge was all removed in the glass adhering to the wires in Expts. 27 F to 32F,

After Expt. 68F the furnace was taken to 1624° and held there for 24 hours before reducing the temperature to 3290° for Expt 69F.

After Expt. 84F the outer winding of the furnace faled On completion of the reparr, the glass was reheated to 1440°, but Expts 85 F to 87 F at thes temperature were vitiated by leakage in the potentiometer owing to damp westher

Amplitude of Sound Waves in Pipes.

By E G. Hichardion, B A , M Sc , Ph D. (Unversity College, London).
(Communicated by Prof. A W Porter, F R \& -Received April 10, 1926)

Introduction.

There has always existed considerable doubt as to the magnitude of the periodic preasure changes, and the concomitant velocity and temperature changes which the air in a sounding organ pipe undergoes The difficulty of following these rapid chauges bas prevented the success of many attempts, and resulta obtained by a few successful experimenters have not been in agreement Kundt,* and, later, Dvorak, \dagger using a manometer provided with a valve, which opened and shut with the frequency of the air oscllations in the pree, measured the cumulative pressure of the condensations. Topler and Holtzinann \ddagger used an optical method That part of a atopped pipe close to the node was fitted wath glase windows and placed between the plates of a Jamn interferometer, so that part of the light which produced the interference bands in the instrument passed through and part outade the pipe The interference bailds nppeared to be broadened when the pipe was sounded, from the extent of the broadenng, the change of density or of pressure at the node due to the vibration was calculated Rapa§ obtained actual photographs of the oscllating hands, which the optical fatigue of the eye made to appear widened in the eariner experiments A summary of their results is given in Table I

Table I

Wind preanure (inohen of water)	235	31	38	47	86	04	140
Pressure nlange at nodo (atmosplerea)	0-0064	00117	00143	00193	0 02L	0027	0085

Of course, the oscillatory change of pressure will depend on the form of the pipe and the pressure at which it 18 blown, but with the average stopped

$$
\begin{aligned}
& \text { - 'Ann. d Phynk,' vol. 128, p } 397 \text { (1866). } \\
& \dagger \text { 'Ann d Phyalk,' rol. 150, p. } 410 \text { (1873) } \\
& \ddagger \text { 'Ann d. Phyilk,' vol 141, p. } 321 \text { (1870) } \\
& 8 \text { 'Ann d. Phyuily,' vol. 50, p- } 103 \text { (1801) }
\end{aligned}
$$

diapason, blown at a few inches of water, the discrepancy between the results by different methods is atill too great Againat the valve-manometer the criticiam may be levelled that the motion of the arr in the pipe is serioualy affected by the motion of the valve pallet, which will cause additional vanations of pressure in the pupe. Kundt's values are the hughest (his maxumum recorded amplitude was $1 / 16$ atmosphere) ; Töpler and Boltzmann recorded 1/60, Raps 1/22. Interference methods have the alvantage of leaving the arr entirely undsturbed, but are troublesome both in their adaptation to existing pipes and in their interpretation, while slight vibration of the wall under the action of the sound waves or the blast produces shfts of the bands of the same order as those sought for in the arr motion.
The recent devclopment of the hot-wire anemometer auggeated the adaptation of thas instrument to measuring the average velucily at duferent points in the organ pipe, as the displacement amplitude can be calculated from this. At the outset the object was to evolve a method by which, with a angle apparatus, velocity dastribution in the usual form of pipe at any blowingpressure could be found, the instrument being of such form as not to affect apprecaably the movement of the aur, either by causing a leak of pressare or by obstructing the flow. By using a oalibrated hot-wire, each velooity is read as the resistance in a Post Office box required to reduce a galvanometer deflection to zero, and a complete velocity distribution curve for the pipe, blown at a constant pressure, can be obtained in less than an hour.

Measurements with Hot-Wire Grds

The idea of this method came after reading a paper by Richards.* This author placed the grid of a Tucker-Paris hot-wire mucrophone on one prong of a vibrating tuning-fork, and measured the steady drop of resistance produced whon the merophone was rocked through varous amplatudes By comparing thas with the resistance drop produced when the gnd was used as an anemometer in a steady wind, he found that the effect of the osollating draught was the same as that of a steady wind, whose velocity was equal to the maxmum velocity in the period of oscillation. When the aur surrounding the wire is exeouting S.H.M. with an instantaneous displacement given by $y=a \sin 2 \pi n t$, a being the amplitude of the vibration, the maximum velocity $=2 \pi n a$. Measurement of the steady resistance drop of a hot-wiry placed at any point in a pupe, containing particles of arr exeoutung \& H.M., will therefore enable
us to determine the amplatude of the vibration at this point, if the hot-wire is calibrated in a steady draught.

Fra 1
The grid used consisted of $0001-$ nch platinum wire wound criss-cross fashion on a thin square mica frame, supported by thin oopper wires attached to an ebonite frame ($2 t$ inches square) made to fit a wooden diapason of the same section (fig. 1) Both frames were derigned to obstruct tho movement of the aur as little as possible, but, as will be shown later, this was not entirely avolded The grid, together with an ammeter, formed one arm of a Post Office box, in which ratio coils of 100 ohms were employed The belancing arm of the box was extended by a slding resistance of 1 obm, consisting of a meter wire, enabling adjustments to be made to 001 ohm (fig. 1). It was neoessary that the slider should always make contact during the balanoing, for, if this faled, the nocreased current through the hot-wire was sufficient to burn it out. The current through the grid kept it just at red heat in the absence of ar movements, by balancing the altered resistance in the air current on the Poat Office Box, the grid was employed at constant heating current. The grid was first calibrated in the steady draught produced in a horizontal wooden tube, by running water in and out of a reservoir to whoh it was connected. From the rate of rise or fall of water measured on a glass gauge the velocity of the ateady draught was obtained. On the firat grid used, the wire lay alternately on each face of the mica frame. Calibration curves of this grid for negative and positive velocities (sucked and blown sir) showed asymmetry about an axis corresponding to $V=0$; that is to say, the greatesit reastance wes found when V had a small value in one direotion, and fell off on both
pasitive and negative sides of this value. This occurred whether the grid wres were horizontal or vertical. A oorresponding asymmetry was observed by Tucker and Paris* when they calibrated then hot-wire microphone, and is probably due to interference of the oonveotion currents from individual wires, the resistance hanng its greatest value when the indindual wires are expenenoing the greatest "assistance" from the rest. In an endeavour to make a grid whose ressistance ahould be andependent of the direction of the draught, the wire was wound so that the exposed portions lay all on the same face of the mica frame, and therefore all in one plane When this was placed with the strands horizontal in the tube, the convection interference was a maximum when no draught was present, and its ressatance fell symmetrically in nearly parabolic form, when an incrensing wind from etther direction played on the grid At about 4 cm per second a point of inflexion occurs (fig. 2) The first part of this nurve corresponds to that obtaned by Tucker and Paria

As soon as the investigation in the organ pipe was oommenced, it was found that the resistance-drope near the mouth of the pipe were much beyond those whioh could be obtauned with the tube and water tank. Accordingly, a $50-\mathrm{cm}$. wind channel was orected in the Carey Foster Iaboratory, capable of producing velocities up to 500 cm per scoond wnth its $\underline{\underline{1}} \mathrm{~h} \mathrm{p}$ fan In the erperimental portion of the channel there was a "static hole" so that the pressure difference between the outade atmosphere and that caused by suction over the hole could be read on a Chattock tilting manometer The atatio hole was firat standardised lyy comparing readungs taken on it with those from a Pitot pair placed in the centre of the ohannel, the calibration of the grid was then completed in the channel The complete curve is shown in fig 3, when V exceeds 40, the relation between V and $d \mathrm{R}$ beoomes linear King,* who worked with a single hot-wire in these high velocty winds, found a linear relation to hold. The actual calibration ourve therefore incorporates the low-speed relation of Tucker and Paria with King's law at high speeds.

Before using the calibrated grid in the organ pipe, one more expenment was necessary The relation found by Ruchards that the steady drop in a

[^130]SH alternating draught was proportional to the maxmum velocity in the \& H.M. required estending to the linear part of the $\mathbf{R} \mathbf{V}$ curve, as his results cover the curvilinear part only That the relation holds over the entire portion of the curve required in these experiments (up to $V=100$) wns verified by oscillating the grid in a direction at right angles to the plane of the frame on the piston of a reciprocating ongine, at large amplitudes and frequencies Values of the maximum velocities calculated from the formula $\mathrm{V}=2 \pi n a$ appear as crosses on the steady draught curve of fig 3 As the motion in the organ pipe is not always even approxumately sumple harmonc, but is represented by a Fourier serics of decreasing amplitude and increasing frequency, it may be inquired what is the equalibrium vrlocity which the grid regieters under such conditions A few results were obtaned when the grid was rocked by moans of a double cam at a large amphtude of frequency n, superposed on an osculation of frequeucy $2 n$ and amaller ampltude, imitating an open plpe with fundamental and first harmome The ressatance attaned by the grid represented that due to the fundamental, slightly reduced by the pregrnce of the overtone, but no sumple relation could be found, consequrntly the calculations of amplitude made are confined to the pure tone of the stopped wooden dıapason

The grid was now ready for use in the atopped organ pipe, which was of square section $\overline{\mathrm{cm}}$. wide and 75 cm . from upper hp to atop, the mouth being 6 by 2.25 cm , high; the material, pune (A section across the mouth of the pipe is ahown in fig 7) The grid wus supported by two thin conuecting wires at opposite cornera, let anto the pipe to the requisite distance The pipe was supported horizontally (though it was tound that it made very little difference If it was vertical), the heating current adjuated to give a reastance correaponding to $\mathrm{V}=0$ on the calibration ourve, the pipe blown at cunstant presaure (assured by an adjustable valve between the wind chamber and the mouth), and, ufter a few seconds, the new resistance found on the Post Office box. From this resistance the corresponding V, and from the known frequency the amplitude of the vibration was calculated A series of readings, taken when tho pupe was sounding its fundamental, as shown in Table II

The alight drop in aroplitude roupd about $x=50$ saems to indicate a trace of the second harmonic, though this could not be detected by ear Fig. 4 showa the variation of ampltude along the pipe at various blowing pressures, in the form of $V: x$ curves. At 5 inohes pressure both fundamental and seoond harmonce were sounding well; st 10 mohes only the latter could be heard, so that this curve representa the "overblown" state.

Table II.-Blowing Pressure $1 \cdot 8$ inohes* Water. Frequency 105

Dustance x Contimetres from Etop	Zero Reciatanon	Blown Realintance	V.	a in Mulhmatres.
3	8588	8588	0	0
6	85 5	854	002	00003
0	B8 48	85	01	$0 \cdot 0015$
12	855	854	18	00278
15	85 ¢	8517	228	00348
18	855	881	235	0 0986
21	805	8495	250	(1) 0388
24	855	818	2.75	00416
27	85	8472	285	00431
30	865	84.98	2.5n	1) 0388
38	85	847	20	0043
36	86	845	${ }^{3}$	00459
39	R5 5	8438	31	0047
42	85 5	844	3015	00465
45	S5 5	8405	325	() 049
48	85-6	84.77	28	00425
61	855	8440	3	00456
54	858	845	3	00465
67	835	840	26	00385
60	858	828	48	0072
63	85	8085	10	0116
6 A	855	70	16	() 242
68	85.5	78	08	103
72	865	7265	76	1.15

* In common with current mumcal practice, these pressures are given in inchen

Fig 4 makes it obvious that the simple sine relation for the change of velocity or displacement amplitude along the pipe 1s far from being satisfied at the mouth and for a considerable distance along the pipe. While the formula $y=a_{0}$ sin $2 \pi n t \sin (2 \pi x / 4 L)$, where L represents the total dustance from node to antinode, fite the experimental reaults for a fraction of the length of the pipe, varying from $\frac{y}{4}$ to $1 / 10$, as the pressure measured from the node is ancreased, beyond this point (marked with an arrow in fig. 4), the motion auffers a rapid magnfication as the mouth is approached, due to the ciroulation of the vortices at the mouth It appeara that the curcalating air in these vortices contributes nothing to the preasure variations in the pipe itself. If Γ represents the average atrength of the vortices, which observation ahowe are formed by the arr, issuing from the slit of the mouthpieer, with the same frequenoy as that of the pipe to which they are "coupled," we can represent the consequent motion in the pipe under the form :

$$
y=\alpha_{0} \sin 2 \pi x t \sin (2 \pi x / 4 L)+\Gamma e^{-b} .
$$

k is a function of the blowing preseure and the shape of the mouth In a well-voicod pipe the atream of arr is carefully directed on to the upper lip;

any misdirection of the stream into the interior of the pipe will increase the circulation at the expense of the intensity of the sound produced by the pipe.

In order to find to what extent the air near the mouth was in rotation, a single hot-wire, stretched between two brass rods, mounted on a micrometer screw, was made to traverse the width of the pupe, the wire being kept parallel to the mouth, first on a level with the upper lip and at another level an anch above this Roadings of the steady resartance drop were taken every fow millimetres of each traverse After calibration of the hot-wire in a steady draught, the velocity distribution across the mouth, shown in fig. ह, was obtained. Herein we see that about $60 \mathrm{~cm} . / \mathrm{sec}$. of the integrated velocity given by the grid is due to actual osoillatory motion of the air (that is, if the motionis truly two-dimensional, i.e. no rotationin planes paraliel to the alit). Traveraing the pipe at a pount higher up, e.g., at 15 om . from the upper hp, variations of a few per cent. only in the resuatance were found, while beyond the region of airoulation a constant resintance drop acrose the section was
F. G. Richardson.

fonad. Even after subtraction of the cicoulation, the whole of the remaining empltade near the mouth would not oontribute to the pressure changes in the pipe, because the cross-section enlargea rapidly at the mouth

Passible Errors in the Use of the Grd.

It has bean ahown that a grid may be used to measure the maxunum velucity, and, therefore, the amplitude of an oscillating draught. The question arises whether it accurately measures the "stationary vibration" in an organ pipe of the type used here. The possible sources of error presented themselves as follows .-
(1) Vibration of the wire composing the grid
(2) Obstruction of tho motion of the air in the pipe by the grid frame, in spite of its tenuity.
(3) Effect of the thicknoss of the wire composing the grnd
(4) Effect of the temperature changes in the plpe which accompany the pressure changes

The possible motions of the wire itaclf under the action of the pipe group themselves under two heads. Hesonance with the pupe tone, and Fohan tones, Owing to the fineness and short length of the wire, the pitch of ats fundamental was usually very high, beyond the range of the lower partials of the pipe. Any aympathetio response by the wire of a particular grid to the note in the pipe would have manifested itsolf by abnormally large resistance drope, compared with another grid in which the tension happened to be different The Aolian tones of a wire are produced only at definite and steady values of the wind velocity,* and have also the natural frequencies of the wire In an alternating draught of the organ pipe they would not be maintained. In the steady draught of the wind channel they would, if produced, show an abnormal ressatance drop

To test the second pount, ie. whether the frame obstructed the motion, single platinum wires were stretched straight across the prpe at a number of points, eo that their leada projectod a millimetre or two merely into the pupe, and the holes made for the leads well sealed up with was. These atraight hot-wres were callbrated in sttu; the stop was replaced by a wide connection to the aspirstor, converting the pipe into a miniature wind channel The results are ahown in flg 4, and also, by crosses, in fig. 6, and indicate that

[^131]the original grid does give rather low resulte, compared with the atraight wire, though the former seems to preserve the correct proportion down the pipe.

Fia 7
In measuring small oscillations where the amplitude is comparable with the thickness of the wire, an errur may arise in the sense that a thick wre may not measure the whole amplitude given by $\mathbf{V}=2 \pi n a$. Accordingly, beside the ().001-mnch straight-wire grids, others of wires 0002 inch and 0001 cm . were teated A comparison of the reading of thesr different wires in the nonturbulent region of the pipe, blown at 18 inch pressure, appeare on fig a The two thuner wires give practirally identical values st the same place in the pupe, while the 0002 -nch wire registers a somewhat lower value. A 0001 inch wire seems therefore aufficiently five for our purpose, and can atand a reasonable strain It must be remembered that an organ pipe is a rather unstable source of sound The mere removal and replacement of the wooden stop is aufficient to produce changes in the amplitude, eapecially at the point ($x=54 \mathrm{~cm}$) where the second harmonic has a node. This accounts for some of the variation noticed betwern different grids, or between the readings of the seme grid on dufferent occasions.

With the pressure varistions in the pipe, there is a sumultaneous ohange in the temperature of the air, deducible from the adabatic rule, which will affeot the reastance of the grid, apart from the ooolng due to the air currents whoh one claims to measure. The tempersture change in the node of a stopped pipe was measured by Neuscheler* using a 0.001 inch Wollaston wre at $150^{\circ} \mathrm{C}$., the osollatory ohange un resistance being observed The marimum estimated tempersture change was $0.13^{\circ} \mathrm{C}$., corresponding to a prassure vanation in the node of 0.0155 atmosphere, the pipe being blown at

[^132]5 mohes water. Pressure and temperature (T) are connected by the relation $\delta T=\frac{\gamma-1}{\gamma} \frac{T}{p} \delta p \quad$ Taking the temperature coefficient of resistance of platinum as 40×10^{-4}, thas would produce a reasatance change of $4 \times 10^{4} \mathrm{ohm}$, whech can be ignored in comparison with the cooling effect obscrved in the method of this paper It is doubtful whether the indications of a resistance thermoineter can be relied on in such small but rapid fluctuations, in spite of the careful technique developed by Neuscheler In a recent paper, Friese and Waetrimaun* claim that auch a " thermometer regsters a fraction (depending on the finpness of the wire) only of the temperature changes in an oscillation of 100 periods per second "

Calculation of Pressure from Displacement Amphtude

Following Topler and Boltzmann, wo can, if we wish, calculate from the amphtude a_{0} at the mouth the total pressuro change at the node during the period, using the elementary theory The instantaneous displacement at x being given by $\bar{\xi}=a_{0}$ sin $2 \pi n t$ sin ($2 \pi x / 4 \mathrm{~L}$) the denasty $=1-\frac{d \xi}{d x}=1-\stackrel{2 \pi n a_{01}}{c} \sin 2 \pi n t \cos \frac{2 n x}{4 \mathrm{~L}}$, where the normal density is 1 . Using the adiabatic relation between density and pressure, and taking the normal pressure $=1$ atmosphere, wo find the total pressure change at $x=$ twice the pressure mmpltude $\frac{4 \pi \gamma n a_{0}}{c} \cos \frac{2 \pi x}{4 \mathrm{~L}}(\gamma=$ ratio of speccfic hests $)$. In fig. 6 , if there were no corculation, sad the graph had continued in anne form to the mouth, $V_{\text {mas }}$ at the antirode would have been $6 \mathrm{~cm} / \mathrm{sec}$., and thercfore the pressure change at the nole $=\frac{4 \pi \gamma n a_{0}}{c}=\frac{2 \gamma}{c} V_{m a x}=0000085 \mathrm{~V}_{\mathrm{max}}$ $=0.0003$ atmosphere, considerably lower than in the organ pipe of Raps.

> Open Pipe.

In an open pipe, a considerable proportion of the resistance drop is due to the through current of air. Resulta for the upper half of the same pipe, with the stop removed, appear in fig 4 After subtraction of the $15 \mathrm{~cm} . / \mathrm{sec}$. of draught at the central node, the remainder indicates increase in sme form to the open end.

A sumple open tube without mouthpiece in which the sonnd is maintained by the heat of the grid itself, on the principle discovered by Ruke, \dagger forms an

[^133]intareating subject for investigation. An iron wire grid, pasang 3 ampa, placed in the lower half of a brass tube, round which cold water ciroulated, caused it to sound its fundamental when the grid became red-hot When a amall hole was opened at the central node, the leak of preasure stopped the sound. Simultaneously, a fall of a few per cent. In the resistance of the gnd was noticed, ropresenting the magnitude of the effect of the oscillation which had been imposed on the upward draught. This Rijke tube is more readjly oxamined through the oscillatory change of resistance, and so will be dealt with in a later paper.

Sound Waves in Narrow Tubes

The propagation of sound waves in narrow tubes in which viscosity may be axpected to play a part has been dealt with by Helmholtz, Kirchhoff, and the late Iord Rayleigh * Measurements of the velocity of sound under such carcumstancea (by German and American scientista), and of decay of amplitude along the tube (by Summous and Johansent), have been almost entirely confined to comparatively wide sections, in which the layer affected by nacosity can only be a small fraction of the diameter. By using a tube 0.17 cm . in drameter, and "aural frequenclea," the writer hoped to have the main body of air in the tube moving under viscous retardation Simmons and Johansen produced slow harmonic motions of the aur at one end of a rubber tube (either 475 or 9.53 mm diameter) by means of a large paston operating into a reservoir Different lengths of the rubber tube were taken and the transmitted preasure measured by a daphragn gauge which rocked a mirror. To produce the waves, in the work about to be described the obellating engine previously described was used to produce dasplacement waves The piston was made to oscillate the air in a little oylinder, hanng a brass tube leading out, to which the rubber tube could be adapted. At the other end of the rubber tube, 1.7 mm . dameter, a amilar adapter of the asme dameter led to a box, 20 cm long, open at the other end, made to hold the platinum grid, whoh was placed about 4 cm , from the pont where the narrow tube debouched on the wide box With various lengths of the tube from the shortest possible up to 1 m ., the amphitude transmitted to diferent distances from the source was frund by the usual method of measuring $V_{\text {wus. }}$. No evidence of rewonance in the box at thesc frequencles was obtained Four froquencies and four inital amplitudes were used, and the 16 curves so obtained are shown in fig. 8 .

> ' 'Phll. Mag.,' vol. J, p. 301 (1901).
> t ' Phil. Mag ;' vol. 50, p. 659 (1925).

A theory accounting for the observed decay as the waves traverse the tube, together with the resonant lengthe, may be developed by assumung the walls

of the tube to exert a dragging effect on the aur in their immedtate neighbourhood. Starting with the Eulerian equations of motion:

$$
\begin{equation*}
\rho \frac{\delta u}{\delta t}=-\frac{8 p}{\partial x}+\mu \Delta u, \text { etc. } \tag{1}
\end{equation*}
$$

with the oquation of continuty:

$$
\begin{equation*}
\frac{\delta u}{\delta x}+\frac{\delta v}{\delta y}+\frac{\delta w}{\delta z}=0, \tag{2}
\end{equation*}
$$

Prandtl assumes that in a medrum of amall viscosity like arr, the oparation of the viscous forces is restricted to a thin layer adjacent to the boundary In thas "boundary layer," the tangental velocity u falle very rapidly from the mean velocity in the body of the flud to 0 at the boundary, in a fraction of a. mullimetre; the motion in thas layer is approximately atream-lune even when it is turbulont outside These amemptions have the experimental support of Stanton and Marshall,* one of whose ourves is shown in fig. 8, oxhibiting the

$$
\text { - ' Roy. Soo. Proo,' A. vol. 87, p. } 418 \text { (1020). }
$$

velocity gradient across the channel in which aur is flowing. A new co-ordinate is talken across the tube $\eta=y / c$, where ε is a small quantity, so that $\eta=0$ at the boundary and infinty at the outer edge of the layer. For amphaity he treats the motion as two-dimensional in planea at right angles to the wall, and the assumption of stream-hne motion in the boundary layer allowa him to neglect v or v_{v} in comparison with u The friction being entirely in this thin layer requires a new and larger co-efficient than that given by Posseuille's law; it is found that, with the above change of co-ordinates, it is necessary that $\mu=\mu_{1} c^{2}$. Prandtl's equations finally become

$$
\begin{equation*}
\rho\left\lceil\frac{\delta u}{\delta t}+v_{\eta} \frac{\delta v_{n}}{\delta x}+u_{\eta} \frac{\delta u}{\delta \eta}\right\rfloor=-\frac{\delta p}{\delta x}+\mu_{1} \frac{\delta^{2} u}{\delta \eta^{2}} \quad 0=-\frac{\delta p}{\partial \eta}, \tag{3}
\end{equation*}
$$

or, with the further approximation,

$$
\begin{align*}
\frac{\delta u}{\delta x}+\frac{\delta v_{n}}{\delta \eta} & =0, \quad \frac{\delta v_{y}}{\delta \eta}=0 \text { and } v_{q}=0 \\
\frac{\delta u}{\delta l} & =-\frac{1}{\rho} \frac{\delta p}{\delta x}+v_{1} \frac{\delta r^{2} u}{\delta \eta^{u}} \tag{4}
\end{align*}
$$

which is the equation we can apply to the propagation of waves in pipes Putting $u_{1}=\mathrm{Ce}^{(46 x+n)}$ and $u_{0}=\mathrm{C} e^{\text {lnt } t}$ the apphed alternating velocity prodaced by the piston at $x=0 \quad$ Outade the boundary layer $-\frac{1}{\rho} \frac{8 p}{8 x}=\frac{8 u_{1}}{8 t}$ approximately, where $u=$ the mean velocity along the tube at thas point.

Prandtl has considered the stationary stato, where $\frac{8 u}{8 \ell}=0 \quad$ Equasion (3) is then unchanged on multiplication by $\sqrt{\overline{\nu_{l}}}$, if l represents the length of boundary agannst which the flud rubs. In the case of our S.H M, thes quantity is represented by a, snd u by $2 \pi n a$. Then the factor $\sqrt{\frac{v_{1}}{u}}=k \sqrt{\frac{v_{1}}{n}}$ represents the order of the dragging effect on the flud, \imath,e. the thickness of the boundary lager is proportional to $\sqrt{\frac{v_{1}}{n}}$.

Inside the boundary layer, let us put

$$
u^{\prime}=f(\eta) 0^{j\left(a z+n^{\prime}\right)},
$$

wath $f(0)=-C$ to satisfy the boundary condition.
Then putting $u=u_{1}+u^{\prime}$ in (3), we obtain

$$
\inf (\eta)=v \frac{\partial^{\frac{2}{2}}}{\delta \eta^{1}},
$$

whence

$$
\begin{aligned}
f(y) & =-C e^{ \pm(1+1)_{n} \sqrt{\frac{n}{2 \nu_{1}}}} \\
u & =C / 2 n\left[1-e^{-(1+i)} \sqrt{\frac{n}{2 \nu_{1}}}\right] e^{i=1}
\end{aligned}
$$

The second term in the bracket represents the extent to which the motion is disaipated by friction during propagation, and shows that, as mught have been guessed, it 18 the thickness of the boundary layer which determnes the rate of decay

Equating the tangential force on unit length of the tube $-\mu^{1} \frac{\delta u}{8 \eta} 2 \pi n a$ to the difference of the forces on a corresponding section of air ; $\pi a^{2}\left[\rho_{0} \frac{\delta u}{\delta t}+\frac{\delta \bar{p}}{\delta x}\right]$ and using the sound-wave relation.

$$
\frac{\delta}{\delta t}\left(-\frac{1}{\rho_{0}} \frac{\delta \bar{p}}{\delta x}\right)=-\frac{1}{\rho_{0}} \frac{\delta}{\delta x}\left(\frac{\delta \bar{p}}{\delta t}\right)=\mathrm{C}^{\mathrm{g}} \frac{\delta}{\delta x}\left(\frac{\delta v}{\delta x}\right)
$$

we get

$$
\begin{equation*}
\frac{\delta^{2} u}{\delta t^{2}}=\left[1-\frac{1-1}{a} \sqrt{\frac{2 v_{1}}{n}}\right] \mathrm{C}^{2} \frac{\delta^{2} u}{\delta x^{2}} \tag{Б}
\end{equation*}
$$

This correaponds to the formula obtained by Rayleigh and others, save that their v is replaced by v_{1}, the valuo of whioh will be determined by the experimental resulta. Inoidentally (5) shows that the velocity of sound in the tube $18\left(1-\sqrt{\frac{2 v^{\prime}}{n}} \cdot \frac{1}{2 a}\right) \mathrm{o}$, as against c in free aur.

For convensence, we now modify our expression for u and put

$$
u=\mathrm{C} e^{\ln 1 x_{2}(\psi+r \psi) x}
$$

and in accordance with (5) we must have

$$
\phi=\frac{n}{0} \frac{\sqrt{\frac{2 v_{1}}{n}}}{2 a} \text { and } \psi=\frac{n}{c}\left[1+\frac{\sqrt{\frac{2 v}{n}}}{2 a}\right]
$$

In our tube we have both incident and reflected waves, and a particular solution to eatisly these conditions is

$$
\begin{aligned}
& x=\mathrm{M}\left[e^{-\phi x} \sin (n t-\psi x)+e^{-\phi(\psi-x)} \sin (n t-\psi \overline{2 l-x})\right] \\
& +\mathrm{N}\left[e^{-\phi x} \cos (n t-\psi z)+e^{-\phi(\nu-x)} \cos (n t-\psi 2 l-x)\right] \\
& \quad=\mathrm{V}_{\mathrm{n}} \sin (n t-\psi l+\omega), \text { say. }
\end{aligned}
$$

Bubatituting the inital condition, $u=V_{0} \sin n \ell$ at $x=0$, we find

$$
\begin{aligned}
& \mathbf{V}_{0} \cos \theta=2 \mathrm{Me}^{-\omega} \\
& \mathrm{V}_{0} \sin \theta=2 \mathrm{Ne}^{-\phi} .
\end{aligned}
$$

Substituting these values for M and N, we get at $x=l$ the value of the maximum velocity at this point,

$$
\begin{equation*}
V_{I}=\frac{V_{0} 2 e^{-\alpha}}{\sqrt{\left(1+2 e^{-84}\right.} \cos 2 \psi l+e^{-6}} . \tag{6}
\end{equation*}
$$

Resonance will occur at a value, L , of the length of the tube, given by $\cos 2 \psi \mathrm{~L}=-1$, and the amplitude in auch cases will be $2 e^{-\phi L}$ approx. As ψ involves v_{1} in a term forming a small fraction of the whole, we should not expect its value to affect the posthons of resonance to a graat extent. In fig 8 we find the experimental resonance positions corresponding with thase plotted from the Raylegh formula, with $v=015$. For the same unitaal ampltude, the amplitudes at resonance average half the Rayleigh values Summons and Johansen found in one case resonance at the same length as the Rayleigh theory but with amplitude $0 \cdot 425$ of the theoretical The loganthm of this amplitude ratio will give us the spproximate ratio of $\sqrt{\bar{v}}$ to $\sqrt{v_{1}}$ In the present case a valur of 13 instead of 015 is indicated The value of this ooefficient will be a function of the roughness and elasticity of the material of the tube, as both these factors affect the thickness of the boundary layer and reduce the manmum amplitude attannable on resonance. The above treatment is an attempt to account for this. Several experimonters on the velocity of sound in narrow tubes agree that the formula of Helmholtz $0^{\prime}=0\left(1-\frac{\mu}{2 a \sqrt{n}}\right)(e f$ equation $5 a$) can be made to fit expermental reaulta of a larger coefficienh is put instead of the unsoasity μ.

Absorption Coefficients of Materals

We can unvestugate the change of amplutude, by means of a grid, at a point in a oylindncal resonstor when different materiala are placed at the atopped end, and, from the change of amplitude, we can gann information of the absorbing qualities of the material of the stop to the waves which are inadent upon it from the source of sound at the open end of the resonstor Although observathons of absorbing power are more accuratoly determined by experiments with a large partition between two ohambera, when time and expense have not to be considered, yet Taylor* by a amall-scale method \dagger hes obtained results in good agreement with these His plan was to send waves down a long resonstor, which by reflection at the atopped end formed nodes and loope in the tabe.

[^134]The relative intensities in these nodes and loope was reduced by placing absorbent material against the atop, these intensities were measured by a long search-tube connected to a Rayleigh disc resonator pushed down the pipe until the maxima and minma were discovered This gives a measure of the relative amplutudes in the incident and reflected waves. In the present research, the grid (either in the reticolate or, better, the atraght-wire form) is placed at any convement point in the pipe, consisting of a wooden bor of about the same size as the organ pipe to which it resounded Values of $V_{\text {mas }}$ were found, first (V_{1}), when a thick varnshed wooden stop 12 cm deep was fired in the end, and agan $\left(\mathrm{V}_{9}\right)$ when the face of the stop was covered with maternal.
It was essential that the stop tightly fitted the pipe under all circumstances, and the stop was adjusted so as to bring the surface of the material to the same point in the tube From the ratio V_{1} / V_{1} we can calculate the ratio of the incident and reflected amplitudes, assuming the thick stop to be a perfect reflector

Takng the equation for an moident progressive wave as

$$
y=a \sin \omega(l+x / c)
$$

where x represente dastance from the atop, the equation of the reflected wave wall be

$$
y=-b \sin \omega(t-x / 0)
$$

Here a and b are the amplitudes of the incident and reflected waves, respectively.
Case 1.-Perfect reflector, $a=b$ Resultant amphtade at x_{1}

$$
y_{1}=2 a \cos \omega t \sin (2 \pi x / \lambda) .
$$

Maximum value of velooity in S.H.M.,

$$
\mathrm{V}_{1}=-2 a \omega \sin 2 \pi x / \lambda .
$$

Case 2. $-\mathrm{b}<\boldsymbol{a}$ Resultant amplitude at π,

$$
y_{\mathrm{B}}=(a-b) \text { yin } \omega t \cos 2 \pi x / \lambda+(a+b) \cos \omega t \sin 2 \pi x / \lambda \text {. }
$$

Maximum velocity,

$$
\begin{gathered}
\left.\mathrm{V}_{2}=\omega \left\lvert\,-\frac{(a-b)^{2}}{\sqrt{2 a^{J}+2 b^{2}}} \cos 2 \pi \frac{x}{\lambda}-\frac{(a+b)^{2}}{\sqrt{2 a^{2}+2 b^{2}}}\right. \text { ain } 2 \pi \frac{x}{\lambda}\right] . \\
\therefore \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{2 \sqrt{2} \sqrt{1+\cdot b^{2} / a^{2}}}{(1-b / a)^{2} \cot 2 \pi x / l+(1+b / a)^{2}} . \text { Put } b / a=0, \text { which we want to }
\end{gathered}
$$ find.

$$
\frac{V_{1}}{V_{1}}=\frac{2 \sqrt{2} \sqrt{1+\theta^{1}}}{(1-\theta)^{1} \cot 2 \pi x / b+(1+\theta)^{1}} .
$$

(The " sbsarption coefficient ${ }_{\lambda}^{*} \alpha_{-}^{*}=1-0$.)

This equation may be solved by putting an approximate value ($1 \cdot 5$) for $\sqrt{1+0}$, or by ploting $V_{\mathrm{B}} / \mathrm{V}_{\mathbf{1}}$ from trial values of θ. This has been done

in fig 9 for n number of values of $2 \pi x / \lambda, *$ from which we see that judgment is needed to get sensitivity, in selectug the distance x at which the measurements are to be made. Results are shown in Table IV, making use of this graph and values for amilar materials from Taylor's and other researches. By obviating the employment of Taylor's long search-tube, with ite consequent

Table IV.

Material	$\begin{gathered} \text { Gnd at } x=12 \\ n=104 \end{gathered}$		$\begin{gathered} \text { Gnd at } x=23 \\ n=104 \end{gathered}$		$\begin{gathered} \text { Grid at } x=12 \\ x=315 . \end{gathered}$		Averago rasulta of ather workere a
	∇_{0} / V_{1}	a	V_{1} / V_{1}	e.	∇_{1} / V_{1}	a.	
	080	058	0.88	0545	0.87	0.88	
	0895	0.21	000	$0 \cdot 16$	0.808	02	
	08885	0.16	097	012	-	-	
	0855	02	$0{ }^{03}$	0.3	0.04	023	
	103	0.75	0885	07	088	0.72	
		-	0.935	0.84	-	-	

[^135]interference with the motion and the uncertainty of what is happening in the search-tube itself, it is hoped that the present method is an improvement.

Sunmary and Conolusions.

The steady drop of resistance of a hot-wire grid is suitable for the atudy of the amplitude of vibration in organ pipes, without cutting into or specially adapting the pipe, and in the form of a angle wire offers the minmum dasturbance to the motion. The method is also adapted to measurements of the decay of sound in narrow tubes and of absorption coefficients of materials.

An instrumont 18 much needed in appled sound at present that will give absolute measurements in free air of sounds of any frequency. If the above mothod were employed to measure amplitudes in the open as, it would only be of use for very loud sounds All locel aur currents would have to be obviated, as any attempt to cover the grid would introduce resonance effects Supposing that all arr movemente other than those due to the pasange of the sound were eliminated, the greatest $V_{\text {mas }}$ which could be real with accuracy is $2 \mathrm{~cm} . / \mathrm{sec}$., corresponding to smplatudes of the order $10^{-3} \mathrm{~cm}$. at a frequency of 100 , whereas the ear can detect amphtudes of 10^{-6} om at this frequency. When pressure amplutude is required, a manometric oapsule with a mirror recorder instead of a flame can be used, but, being less sensitive, is of no use in the open arr.

My thanks are due to Prof A. W Porter, D.Sco., F R B, for giving every encouragement to this work, and to Mr. R C. Riohards, BA, M Sc., lor giving me a more complete account of h.s work than appears in the paper oited.

The Solubility and Rate of Solution of Oxygen"in Silver.

By E. W. R Steacie, M.Sc , Ph D., and F. M. G. Johnbon, M Be., Ph.D , McGill University, Montreal.

(Commaniosted by Prof, A. 5 Eva, F R.S.-Received May 25, 1926)

Introduction

A large number of investigations have been made on the solubility of gases in metals, and on the rate of diffusion of gases through metals Hydrogenplatinum and hydrogen-palladium are, however, the only syatema which bave been thoroughly anvestagated The hehaviour of these syatems is such that thoy can by no means be regarded as typical The system orygen-alver was chosen as a more typical one which was suitable for purposes of inveatigation. The rate of diffusion of orygen through silver has been measured by Johnson and Larose * This paper deala with the solubility and rate of solution of oxygen in silver.

Hestorical

It has been known for a long time that molten silver will absorb orygen from the arr and will "spit" on solidification Sieverta and Hagenackert found an absorption of 20 volumes of gas per volume of silver at the melting point The solubility decreases as the temperature increases beyond the melting point The absorption is proportional to the square root of the pressure Dumas \ddagger showed that a portion of the oxygen is retained by silver on solidufication, He obtained 57 oc . of oxygen from 1 kilogram of silver. Braunerf found that 0.04 volumes of gas were retained on solvdification. Richards and Welle $\|$ found 0 0-1.8 volumes. Grahampl found that silver takes up oxygen at a red heat. He obtaned an absorption of 0.7 volumes. Neurmann ${ }^{* *}$ found a somewhat larger absorption, whle Berthelotit obtamed a amaller value More recently Sleverts $\ddagger \ddagger$ obtamed an sbsorption of $0 \boldsymbol{3}$ volumes of gas per volume

[^136]of alver His results, however, do not check closely and he does not place muoh confidence in them himself

All that can be concluded, therefore, from previous work is that sold silver ebeorbs a smell amount of oxygen.

Descoption of Apparatus,

In principle the apparatus was extremely ample. A definite volume of gas was introduced into a bulb of known volume, which contained alver foll, and was connected to a manometer. At any temperature the preasure of the gas in the bulb could be calculated from the gas laws If any absorption took place, the observed pressure would be lass than that calculated, and the difierence between the two pressures would be a measure of the absorption

The apparatus is shown in fig. 1 Threc bulbs, A, B, D, were contained in

Fha, 1,-Absorption Apparaten.
an electric farnace F. The bulb A was filled with air and led to a thermal regulator. D was part of a constant-volume ges thermometer. The third
bulb B contained sulver foll The bulbe and conneoting tubes wero mede of either Pyrex glass or of quartz, and were connected to the remanoder of the apparatus by means of de Khohnsky cement
The bulb contaning the alver was connected, through the tap E , with a manometer IJ. A glass pointer M was aogled into the top of the tube J . By means of the taps H and K etther the silver bulb or the gas thermometer could be oonnected to the manometer The volumes of the tube J from the pointer M to the tap E , of the capillary tube from the tap to the furnace, and of the bulb contaning the alver were all known
The tabe \mathbf{J} was connected to one arm of a two-way tap \mathbf{O}. The other arm of the tap led through a phosphorua pentoxide tube to the gas reservoir R The tube S led to another two-way tap U One arm of U led to a meroury container W, and the other led through three phosphorus pentoxide tubes to the gas supply Z and the pumping system Y. The bulb V was inserted to catch any meroury whech might inadvertently be let through the tap U

In carrying out an expenment, the bulb contaming the silver was connected to the pumping aystem by means of the taps $\mathrm{E}, \mathrm{O}, \mathrm{U}$ and Y , and the whole system was evacuated The taps E and 0 were then closed. The tap U was turned so as to connect S with the meroury reservor W, and mercury was allowed to rise and fill the tube $\mathbf{S} \quad \mathbf{S}$ was then connected to the gas resarvoir \mathbf{R} by means of the tap 0 , the mercury reservor was lowered, and gas was drawn into S . O was then turned to oonnect S to the manometer tube J , and the meroury reservour was rased, forcing the gas into J . The meroury was allowed to run up the tube after the ges till it took up the position shown in the figure. 0 wes then closed and K opened, connectung J to the manometer. The mercury was brought to the lower pointer N and the pressure was read. Then, knowing the volume of the tube and the room temparature, the volume of the gas under standard conditions could be calculated.

The tap E was then opened and the gas was admitted to the bulb. The mercury level was brought up to M and the pressure read, after equilibnum had been reached. The absorption was then calculated from the dufference between the calculated and the observed pressure.

Measurement of Temperature.-The temperatures were measured by means of the ordinary type of constant-volume gas thermometer DGHI The bulb D was filled wath nitrogen By means of the tape H and K, the same manometer was used for the absorption apparatua and the gas thermometer. The thermometer was ohacked at $0^{\circ} \mathrm{C} ., 100^{\circ} \mathrm{C}$., and at the boiling point of sulphur $444.7^{\circ} \mathrm{C}$. The maximum divergence wab $0 \cdot 2^{\circ} \mathrm{C}$. In calibrating at
the boilung poist of sulphur, the procedure recommended by Messaner* was followed.
Electic Furnace.-A 16 -inch length of $2 \frac{1}{2}$-nch aron pipe was covered with asbestos paper and then wond with 18 -gauge nuchrome wire, the turns being sbout t-inch apart This was covered with another layer of asbestos paper and packed in an rron contaner wath loose anbestos The tubes were placed in position in the furnace and the top was covered with a layer of "asbeatos cement" The bugh heat conductivity of the iron ensured an even temperature throughout. The furnace would maintain a temperature of $1000^{\circ} \mathrm{C}$. with a power consumption of 600 watts

Temperature Regulation.-The temperature was controlled by the usual type of thermal regulator, using air as the expanding medium. The circuit was arranged so that only about 10 per cent. of the current going to the furnace was cut out by the regulator The temperature could be kept constant to within 1-2 ${ }^{\circ} \mathrm{C}$.

Pumping System - At the conclusion of an experment the tap K was shut and E opened The two-way tap 0 was turned ao as to connect the tubes J and S , and the tap U so as to connect 8 to the mercury reservoir W. The reservoir was lowered and the mercury in J and S was allowed to run out. O, U and Y were then turned to connect the bulb contaning the alver to the pumping syatem,
The pumping system consisted of a two-stage mercury vapour condensation pump, backed up by a Hyvac pamp. A McLeod gauge was used to undioate the pressure. If it was desired to collect the gas pumped out, a Toepier pump was used as a fore-pump instead of the Hyvac. The gas from the Toepler pump was collected in the usual manner, transferred to an apparatus of known volume, the pressure measured, and the volume of the gas calculated

Silver--Four amples of alver foil were used which were, approximatoly, $0 \cdot 10,0 \cdot 15,030$ and 0.15 mm . theck, respectively. The first two samples were of commercially pure silver Anslyais shuwed them to contan 0.02 per cent. oopper, 0001 per cent. iron, and 0.005 per cent. lead The presence of tin, bismuth and antimony could not be deteoted in e D-gram eample. For the third and fourth samples the same metal was purified by one of the methods of Stas \dagger The metal was dussolved in nitric acid and the solution diluted with water and allowed to settle. Sllver chlonde was precipitated fram the filtared eolution by the addation of hydrochlonc acid. The ailver chlonde was boiled with

[^137]hydroohlorio acid and washed with water until free from aotd. It was then reduced to the metal by boling it with invert sugar and sodium hydroxide. The precipitate was thoroughly washed with hot distiled water and fused to a button in a crucible under borax. The button was cleaned by acrubbing it wath sand and was rolled out into a sheet. The purfied ailver gave, on analysis, 0.004 per cent copper, 0.001 per cent lead, and a trace of yon

Gases.-The nitrogen used was the ordinary commercial vanety, supplied in cylinders It was bubbled twice through alkaline pyrogallate to free it from orygen, dried by bubbling through concentrated sulphuric acid, and stored in the gas reservoir over phosphorus pentoxade.

The oxygen was also the commercial variety It was dried in the asme way with sulphuric acid and phosphorus pentoride.

Expermental Procedure.
Pror to makng an experiment, the furnace was rased to a temperature of sbout $550^{\circ} \mathrm{C}$ in the case of the Pyrex glass apperatus, or $750^{\circ} \mathrm{C}$. with quarte, and the bulb was evacuated continnously for 6 to 8 hours. The silver was allowed to stand in vacuo over nught, and the next morning the bulb was agan pumped out for sbout an hour.

The tap next to the bulb was then closed, and gas from the reservoir was admitted to the tube and measured as previously descnbed. The gas was then let into the bulb, and after equilibrium had been reaohed the temperature and pressure were read. A senes of observations was made without changing the gas At high temperatures equilibrium wbs queckly reached, at temperatures around $200^{\circ} \mathrm{C}$., however, several days were requred for equilbrium.

At the conclusion of the experiment the bulb was agam evacuated continmously for several hours, and the ges pumped out wes collected and measured, and the volume compared with the volume originally admutted to the bulb. If any duscrepancy between the two volumes existed, the resulta were discarded.
This long-continued pumping out is absolutely essential in order to obtann consistent resulte The last traces of the gas are only very slowly removed from the silver. This point has, however, been overlooked by the majority of anvestigators.

Preliminary Resules

Some prelumnary resalts were obtained with a simplified form of apparatus. They did not agree very well and several sources of error had to be eliminated.
(1) Originally a quartz, nitrogen filled, mercury thermometer was used. If, however, the tempersture of the furnace was not even throaghout, this would
only indicate the temperature of one particular plaoe What is really needed for purposes of calculation is the mean temperature of the bulb contaning the ailver. The meroary thermometer was accordingly replaced by a gas thermometer The bulb of this was made the same aize and shape as the bulb contaning the silver and was placed next to it In thes way the gas thermometer automatically compensated for any urregulanty in the tomperature of the bulb containing the alver.
(2) During prelimunary experiments the tap between the silver bulb and the short arm of the manometer was left open. It was found that there was a slow steady drop in pressure amounting to about 1 mm . per day The only posable cause of this appeared to be oxidation of the mercury. This idea was supported by the fact that there was a small reddish-brown deposit on the walls of the capillary tube just outaide the furnace

A blank experiment was tried with an empty bulb at $500^{\circ} \mathbf{C}$., and it was found that about 0.1 co ol gas disappeared in 10 days, but no oxidation was detectable if the bulb was kept at room temperature The drop in pressure is apparently due to the oxdation of mercury vapour in the bulb The oride then disthls out and condenses in the colder part of the apparatus, more mercury vapour diffuses in and the process goes on continuously. By keeping the tap between the bulb and the mercury surface closed between readings, the diffioulty was overcome and no further drop in pressure was noticed.
(9) A further difficulty was met with in connection with the use of tap grease on the tap mentioned above Blank experimenta showed a slow but appreciable absorptaon of oxygen by the ordinary type of grease, consisting of rubber, parafin, and vasaline A mixture of paraftin and vaseline did not absorb oxygen and gave satisfactory results.

Sample Calculation

In order to illustrate how the calculations were carried out, the oomplete data of one experiment aro given below

Table I

Volume of gas (N T P) K Volume of gas puraped out						
Prew, obs	$\mathrm{T}^{\circ} \mathrm{C}$	T" K	Fress, asle	Prusa dift	C.o. Ebe	Volv, chas.
7686	478	746	81.74	8.18	0.188	0.097

The volume of gas admitted to the bulb was $2 \cdot 985$ c.o. under standerd conditions, or 3.247 c.c. at room temperature. The total volume of the bulb and dead space was 5222 cc Hence the presaure exerted by the above amount of gas at room temperature would be $\frac{3 \cdot 247 \times 76}{5 \cdot 222}=47.25 \mathrm{cms}$.

Here we have a volume of gas which is all at the same presaure, but the different parts of which are at different temperatures Now from the gas laws,

$$
\Sigma \frac{\mathrm{PV}}{\mathrm{~T}}=\Sigma \frac{\mathrm{P}_{1} \mathbf{V}_{1}}{\mathrm{~T}_{1}}=\mathbf{K}
$$

or

$$
\mathbf{P}\left(\frac{\text { Vol. of bulb }}{\text { Temp, of bulb }}+\frac{\text { Vol of dead space }}{\text { Temp, of dead space }}\right)=\mathbf{K}
$$

This equation will bold for any mass of gas in the apparatus Inscrting the actual values in this case, we have, at $24^{\circ} \mathrm{C}$,

$$
4725\left(\frac{3 \cdot 668}{297}+\frac{1554}{297}\right)=K
$$

whence $K=0.8307$.
According to the table, when the room temperature was $24^{\circ} \mathrm{C}$ and the temperature of the furnace was $473^{\circ} \mathrm{C}$, the observed pressure was 76 Jcms . If there were no absorption the pressure would be given by

$$
P\left(\frac{3 \cdot 668}{746}+\frac{1.554}{297}\right)=0.8907
$$

hence $P=81 \cdot 74 \mathrm{cmas}$. Thus $15 \mathrm{f} \cdot 18 \mathrm{cms}$, higher than the observed pressure. Hence an amount of gas has been absorbed which would be sufficient to erert a pressure of $5 \cdot 18 \mathrm{cms}$. in the apparatus when the temperature of the bulb is $473^{\circ} \mathrm{C}$ and the temperature of the dead space $1824^{\circ} \mathrm{C}$ Bringing this, to N T.P., we have,
(1) For the gas in the bulb (at 746° abs) -

$$
\frac{5.18 \times 3.668 \times 273}{76 \times 746}=0.0910 \mathrm{c}
$$

(2) For the gas in the dead space (at 297° sbs.)

$$
\frac{5.18 \times 1554 \times 273}{76 \times 297}=0.097 \text { 0.c. }
$$

Total volume of gas absorbed $=0 \cdot 188$ c.c.
The weight of silver in the bulb was $20 \cdot 315$ grams. Taking the density of
gilver to be $10 \cdot 5$ ，this is equivalent to 1.93 c c of silver Hence the number of c．c of gas absorbed by 1 co of alver under the conditions of the experiment is 0 097．That 1s， 0097 volumes of gas at N T．P are absorbed by one volume of silver at 746° abs and a pressure of 76.50 cms ．of mercury

Experimpneal Resulle．

No apparent change took place in the silver used in the experiments except the development of a somewhat crystalline appearance on the aurface due to evaporation The Pyrex bulbs turned a dark brown colour，apparently due to the presence of colloidal alver in the glass The quartz bulbs developed a milky appearance．

Owing to the large number of observations which were made，only the smoothed curve values are given in the following tables of solubuities The resulta for one serien of observations on the rate of solution are given in full The maximum divergence of any observation from the amoothed curve was about D per cent

The results are discussed in the next section
（A）Solubility of Nutrogen－No measurable absorption of nitrogen by sulver was found between 200° and $B 00^{\circ} \mathrm{C}$ If any absorption takes place，it is cer－ tainly leas than 0.002 volumes of gas per volume of alver This is to be expected，as it has been found by a large number of observers that nitrogen is not absorbod by metals excopt in cases where a well－defined nitide is formed
（B）Solubulity of Oxygen－
Table II．

最昆	$\mathrm{T}_{\mathbf{L}}=\mathbf{2 0 0}{ }^{\circ} \mathrm{C}$	Tis ${ }^{3} 300^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{8}}=400^{\circ} \mathrm{C}$	$\mathrm{T}_{4} \times 500{ }^{\circ} \mathrm{C}$		$\mathrm{T}_{1}=800^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathbf{6}}=700^{\circ} \mathrm{C}$		T，$=800^{\circ} \mathrm{C}$	
	vols $\sqrt{\text { P }} / \mathbf{Q}$	vols	$\sqrt{\overline{\mathbf{P}}}$	vols $\sqrt{\mathbf{P}} / \mathbf{Q}$	vols	$\sqrt{\text { P／}}$／	vol		vols，	$\sqrt{\bar{P} / Q}$	voln，	$\sqrt{\mathbf{P} / \mathbf{Q}}$
8	0－030 745	0021	1065	$0020112 \cdot 0$	0022	1020	0 033	680	0048	$4{ }^{4} 7$	0088	$2{ }^{2} 6$
10	0.050634	0.032	908	$0 \cdot 0311023$	0034	时 2	0047	675	00048	486	$0 \cdot 124$	258
40	007168	0045	81－0	0044102.3	0048	934	0 086	67．0	0008	46.7	0－175	258
40	0100 08 5	0070	00%	00611039	0047	045	0.093	681	0114	463	0247	25.7
80	0 142 68 2	0.097	$\theta 17$	00871080	0095	043	0182	67．0	0103	465	0.854	253

(C) Rate of Solution of Oxygen.一

Table III

Initual Prea -ure Temperature	$\begin{gathered} 3364 \\ 250^{\circ} \mathrm{C} \end{gathered}$	$\begin{array}{r} 755 \\ 310^{7} \mathrm{C} \end{array}$	13.94 $310^{9} \mathrm{C}$	8134 $310^{\circ} \mathrm{C}$	3050 $310{ }^{\circ} \mathrm{C}$	$\begin{array}{r} 61818 \\ 810^{\circ} \mathrm{C} \end{array}$	$\begin{array}{r} 6752 \\ 310^{\circ} \mathrm{C} \end{array}$
Time ming.	Volumea Absorbed.						
1	0008	00020	0003	0004	00007	0.014	0018
1	0011	00088	0088	0019	0017	0024	0095
2	0017	00065	0009	0018	0028	0030	0035
3	0020	0.0005	0.011	0024	0082	0039	0041
4	0021	$0^{0} 0075$	0012	0.028	0038	0040	0048
5	0027	00080	0.014	0031	0042	0047	0051
0	0-031	00088	0018	0034	0045	0051	0006
8	0084	00100	0018	0037	0051	0058	00038
10	0.040	00110	0.020	0.041	0055	0004	0087
12	0.048	00120	0092	00425	0069	0080	0073
15	0045	00135	0024	00485	0082	0072	0078
18	0080	00145	0026	0.050	0065	0076	0.080
21	0058	00155	0027	0008	0067	0.078	0.082
25	0057	00170	0 028s	00535	0.071	0.078	0084
Final	0068	0 0225	0094	0088	0075	0081	0.087
K (mema)	0020	00100	0028	0042	0047	0057	0.058
C	010	$0 \cdot 10$	010	010	010	010	010
$\sqrt{\overline{\mathbf{P}} / \mathrm{K}}$	232	140	139	138	134	180	151

Discussion of Results.

The values obtamed for the solublity of oxygen in silver are given in Table II for various temperatures and pressures. From the constanoy of \sqrt{P} / Q (where P is the pressure and Q the sbsorption), it is apparent thast the solublity is proportional to the square root of the pressure. There is, however, a deviation from this relationship at the lowest pressures, the amount sbsorbed being too small. This devistion is not noticeable at the hugher temperatures The absorption has been found to be proportional to the equare root of the pressure in several other asses, for example, the absorption of hydrogen by tantalum," copper, \dagger tron, \ddagger and nuckel, 8 and for the sbsorption of sulphur dionde by copper.||
The varistion of solubility with temperature is shown in fig. 2. The solublity

[^138]is a minmam in the neighbourhood of $400^{\circ} \mathrm{C}$. On account of the axtreme slowness of the process of dffiusion at low temperatures, it was not practacable

Fre. 2.-Curvee ahowigg the Veriation of Solubility with Temperature.
to make any measurementa below $200^{\circ} \mathrm{C}$., but from the form of the curve it appears probable that the solubility is considerably greater at room temperature than it is at $200^{6} \mathrm{C}$

Above $400^{\circ} \mathrm{C}$, the equation

$$
1 / \mathrm{Q}=\mathrm{K}(930-t),
$$

where Q is the absorption and t is the temperature in degrees Contigrade, fitted the experimental results quite accurately. The melting point of alver 18 $960^{\circ} \mathrm{C}$., but thes is lowered by the dissolved orygen. Hence, it may be said that above $400^{\circ} \mathrm{C}$. the reorprocal of the solublity is approxamately proportional to the distance below the melting point. Molten silver dissolves about 20 volumes of oxygen at the melting point It seems probable that there is no very abrupt ohange in solublity on meltung, bat that tho eolublity ourve as merely very steep in the neighbourhood of the melting point.

As previoualy mentioned, four samples of alver of vanious thoknesses were used. No difference in solubility was detected due to the dufference in thickness
or surface, hence adsorption is apparently negligible at the temperatures employed.
As the solubility was the same for the hughly purified and the commeroually pure alver, small traces of impurities such as copper and iron have no measurable effect

Rate of Solution.-Some of the expenmental resalts for the rate of solution of oxygen in salver are given in Table III. All these experiments were made with a plece of alver foll 015 mm . thick. Some sample absorption-time curves are given in fig. 3.

Fia 3 -Abeorption-Time Curves.
No $1-690^{\circ} \mathrm{C}, 3138 \mathrm{~cm}$ No $2--508^{\circ} \mathrm{C}, 6586 \mathrm{~cm}$. No $3-560^{\circ} \mathrm{C} ., 81.24 \mathrm{om}$, No. 4, 280° C., 3864 cm . No. $5 .-400^{\circ} \mathrm{C} ., 32.18 \mathrm{am}$.

In order to denve an equation for the rate of solution, consider a block of alver placed in an atmosphere of oxygen. Assume that the surface layer of the silver is immedately astorated with the ges in the dissociated condition. The process of solution will consist of diffusion of the gas from this saturated layer into the body of the metal. As the ges duffuses inwards from the surface layer, more ges will diseolve in it so as to keep it natarated. Let S be the naturation conoentration, and X be the average concentration of gas in the body of the silver. Then, sccording to FHok's Duffurlon Law, the rate of diffasion
linarde will be proportional to the concentration gradient, that is to $\mathrm{S}-\mathbf{X}$ Hence

$$
\frac{d x}{d t}=\mathrm{K}(\mathrm{~S}-\mathrm{X}) .
$$

Integrating and evaluating the constant of integration by putting $\mathrm{X}=0$ when $t=0$, we obtain

$$
K=\frac{1}{l} \log \frac{S}{S-X} .
$$

As may be seen from hgs 4,5 and $6, \log 8 / 5-X$ plotted aganst t gives a

Fio 4 -Variation of Solution Velocity with Preamure at $310^{\circ} \mathrm{C}$.
No $1-57.52 \mathrm{om} \quad$ No $2-3955 \mathrm{~cm} \quad$ No $3-3134 \mathrm{om}$. No. 4.- 13 94 cm . No 5.-7 $\mathbf{~} 5 \mathrm{~cm}$
st raight hine. The first two or three pointe, however, generally lie below the line, and the line does not pass through the origin, as the foregoing equation would require Apparently the first part of the gas is absorbed much faster than the equation would andicate. The process evidently consents of two stages. If we neglect the first two or three points on the curve, and take into account the fact that the line does not pass through the orign, we obtain a corrected equation of the form

$$
K=\frac{1}{l}\left(\log \frac{S}{S-X}-C\right)
$$

VOL. aXI, -
where K is a constant depending on the temperature and presaure and C varics with the temperature but is independent of the pressure. This equastion has been found to givo good agreement with the expenmental results.

Fio 5.-Varistion of Solution Velocity with Temperature et a Preamure of 30 om . (Part 1).
No. $1-390^{\circ} \mathrm{C}$. No 2. $-375^{\circ} \mathrm{C}$. No 3.-397 ${ }^{\circ} \mathrm{C}$ No. $4-310^{\circ} \mathrm{C}$ No. $5-280^{\circ} \mathrm{C}$
In fig $4 \log \mathrm{~S} / \mathrm{S}-\mathrm{X}_{18}$ plotted againgt time for various preasures at $310^{\circ} \mathrm{C}$. All the lines cut the axis at the same point, showing that \mathbf{C} in the solution velocity equation does not change mith pressure K, that is, the slope of the line, is proportional to the aquare root of the pressure, as may be seen from Table III. This is to be expected, diffusion is the predominatiug factor in the process of solution, and Johnson and Larose ${ }^{*}$ have ahown that the rate of diffuanon of oxygen through alver is proportional to the square root of the preasure
The effect of temperature on the velocity of solution is ahown in fige. $\bar{\sigma}$ and 6 . At temperatures below $400^{\circ} \mathrm{C}$. (that is, below the position of the minumum in the solubility-temperature curve), the value of C in the equation remans constant at $0 \cdot 10$, while K increases as the temparature is raised. Between 400° and $440^{\circ} \mathrm{C}, \mathrm{C}$ noreases rapidly while K decreases. Above this temperature C

$$
\text { * 'J.A.0.8.,' vol, 46, p. } 1877 \text { (1924). }
$$

contmues to increase as the temperature is rased, and K mereases slowly and regularly. The pecular behaviour of the solution velocity in the nelghbourhood of $400^{\circ} \mathrm{U}$. makes it impossible to obtan any simple expression for the ctfect of

Fig. 6,-Variation of Solution Velocity with Temperature at a Preanure of $\mathbf{9 0}$ om (Part IJ).
No $1-690^{\circ} \mathrm{C}$ No $2-600^{\circ} \mathrm{C}$ No. 3-560 C No $4-608^{\circ} \mathrm{C}$ No. $5-405^{\circ} \mathrm{C}$. No $11-450^{\circ} \mathrm{C}$ No $7-430^{\circ} \mathrm{C}$ No $\mathrm{B}-440^{\circ} \mathrm{C}$, No $0-400^{\circ} \mathrm{C}$
temperature The temperature coefficient is low, however, as would be expected in a process in which diffusion is the controlling factor

General Dracussion.

As pointed out by Donnan and Shaw," the variation of the solubility with the equare root of the pressure showa defintely that a dissociation of the axygen takes place on solution. The actual condition of the oxygen after the dassoclation has taken place cannot be definitely established. The two mort likely ponsibilities are the solution of the oxygen in the atomio state, or as $\mathrm{Ag}_{3} \mathrm{O}$. At the temperatures investigated $\mathrm{Ag}_{2} \mathrm{O}$ would be in existence at oxygen pressures far below its dissociation pressure. It is possible, however, that Ags 0 would be stable, even urder these conditions, when in dalute solution.

$$
\text { ' ' J. Soo. Ohem. Ind.;' vol. 29, p. } 687 \text { (1910). }
$$

The explanation of the minumum in the solublity-temperature curve is difficult The fact that a sudden change occurs in the rate of solution at this temperature scems to point to a transition of the alver from one allotropic form to another. It is interesting to note in this connection that Holt* was obliged to assume two forms of the metal in orier to explain his resulta on the rate of solution of hydrogen in palladiun
There 1 a also the possibility of a change in the manner of combination of the oxygen From the shape of the solubility-temperature curve, the heat of solution is obviously positive at the lower temperatures, zero at alout $400^{\circ} \mathrm{C}$, and negative at higher temperatures The heat of formation of $\mathrm{Ag}_{2} \mathrm{O}$, calculated from the measurements of Irwis, \dagger is positive, while the heat of dissociation of oxygen is negative. It is therefore possible that at low temperatures the majority of the dissolved oxygen exists as $\mathrm{Ag}_{2} \mathrm{O}$. while at temperatures ubove $400^{\circ} \mathrm{C}$. it is mostly atomic oxygen.

Solution and Duffusion --The phenomena of absorption of gases by metala and diffusion of gases through metala must be fundamentally connerted It is vrtually impossible to concouve of a mechanam for diffurion other than that of solution on the high-pressure side of the metal and subsequent giving up of the gas on the low-pressure side which is supersaturated Apparently, then, solution must precede diffusion This conclusion is substantistel by the fact that there is no known case of a gas diffuang throngh a metal in which it is not appreciably soluble

In the case of oxygan and alver, the solubility and the rate of diffimion are both proportional to the square root of the pressure Hence, both phenomens point to a diesociation of the gas

If we assume that diffusion is due to solution, we can calculate the actual distribution of oxygen in a silver plate through which the ges as diffusing into a vacuum Consider a plate of slver of unit cross-section and thickness T , through which oxygen is diffusing from one side on which the pressure is \mathbf{P} to the other ande which is kept at zero pressure. Let the concentration of gas diseolved in the metal be C_{b} at the high-pressure ade, and C_{s} at any distanoe x in from this side. The number of $\mathbf{c} \mathbf{c}$ of oxygen diffusing through per second, Q, is given by

$$
\begin{equation*}
\mathbf{Q}=\frac{k \sqrt{ } \mathbf{P}}{\mathbf{T}} \tag{1}
\end{equation*}
$$

[^139]The amount of oxygen disgolved in the surface layer, C_{0}, will be given by

$$
\mathbf{C}_{0}=k_{1} \sqrt{\bar{P}},
$$

sunce the solubility ${ }^{19}$ proportional to the square root of the prossure Sultstituting for P in equation (1), we obtain

$$
\begin{equation*}
\mathbf{Q}-\frac{K_{0}}{T} \tag{2}
\end{equation*}
$$

This amount of gas must cross any plane in the metal per second.
The amount of gas difiusing towards the low-pressure side at \boldsymbol{s} is given by an expression simular to (2),

$$
\mathbf{Q}_{x}=\frac{\mathbf{K} \mathbf{C}_{x}}{\mathbf{T}-x}
$$

But the total amount of gas crossung any plane in the metal per second is the same, hence $\mathbf{Q}_{\boldsymbol{c}}=\mathbf{Q}$, so that

$$
\frac{K C_{0}}{T}=\frac{K C_{x}}{T-\iota}
$$

whence

$$
\mathrm{C}_{x}=\frac{(T-x)}{T} \mathrm{C}_{0}
$$

This gives the concentration of oxygen at any point in the plate
We can also calculate the average velocity of the oxygen atoms through the plate. If S bo the quantity of oyagen dissolved in a plate of thickneas T and unit croes-section, and if Q be the rate of diffusion through the plate, then the average velocity of the gas through the plate will be QT/s For a plate 1 mm . thick at $500^{\circ} \mathrm{C}$, with a pressure of 78 cms , we have $\mathrm{S}=0.0104, \mathrm{~T}=0.1$, $\mathbf{Q}=\mathbf{2 \cdot 2} \times 10^{-7}$ c.c. per second. Henco

$$
\begin{aligned}
\text { Velocity } & =\frac{2.2 \times 10^{-7} \times 0.1}{0.0104} \text { cms. per sec } \\
& =22 \times 10^{-0} \mathrm{cms} \text { per sec }
\end{aligned}
$$

This is extremely amall compared with the probable mean displacement of an orygen molecule in oxygen
Sinoe the solubility is a minmum at $400^{\circ} \mathrm{C}$, and there is also a sudden change in the rate of solution at this temperature, it is probable that the rate of deffusion would also undergo an abrupt change below this temperature. Unfortunatoly, no meararements of the rate of diffusion below $400^{\circ} \mathrm{C}$. have yet been made. The authors hope to investigate in the future the rate of diffusion of oxygen

558 Solubility and Rate of Solution of Oxygen an Silver

through ailver at low temperatures, and also the rate of diffusion, rate of solution, and solublity for hydrogen and salver

Summary

The solublity of osygen in sulver has been measured over a wide range of temperature and pressure. The solubility is proportional to the square root of the pressure. The solubinty-temperature curve has a minmum at $400^{\circ} \mathrm{C}$. Above thes temperature the solulnity 18 expressed by $1 / Q=K(930-1)$, where Q_{18} the solubilaty and t is the temperature $1 n^{\circ} \mathrm{C}^{\circ}$.

The rate of solution of oxygen in silver bas also been measured. The equation $\mathrm{K}-1 / t\left(\log (\mathbf{S} / \mathbf{S}-\mathbf{X})-C^{\prime}\right)$ has been found to express the experimental results, where $\mathrm{S}_{\text {is }}$ the saturation concentration, $\mathrm{X}_{\text {is }}$ the amount dissolved at tume t, and K and C are constants The rate of solution is proportional to the square root of the pressure. The varintion with temperature in complicated and suggeats a transition of the salver, or a change in the manner of combnation of the oxygen in the vicminty of $400^{\circ}($:

By comparison with diffusion measurements, the concentration gradient of the oxygen in a ailver plate through which the gas is diffiusing has been calculated

Nitrogen has been shown to be msoluble in silver
Acknowledgment is made of the receept by one of ua of a Studentship from the National Rescarch Council of Caneda, durng the tenure of which part of thes work wes performed,

The Flexure of Thiok Crecular Plates *
By C A Clemmow, B A B B SC, Reeearch Department, Wooluich
(Communcated by Prof A E H Love, FRS-Ieceived December 2, 1925)

Introduction

(1) The Genesis and Objectry of the Investration

The investigation undertaken in this paper arose out of a suggestion that the deflexion of a circular steel plate. firmly held at the edge, might be used as a measure of high explonive pressures The plate would be securely screwed into, and form the base of, a cylindrical closed vessel of the usual type, and the measurement made would be that of the normal central deflexion of its external flat surface
These deflexions, which are, of course, necessarily small, can be suitably magnified by optical means, and thus a pressure-time curve of tho explonion would be obtained is the usual way.

Onginally, it was taken for granted that the bending of the plate would depend on the pressure in the manner indicated in the standard text-books on elasticity and enguneering (wide Love, 'Elesticity,' chap XXII), so that the uaually acoepted formulse for a clamped plato would apply to the case under consideration.

This being so, it would be possible to obtain some idea of the orders of magnitude of the deflexions to be oblained with a thick plate when subjected to high pressures, of the order of several tons per square inch, a point of great importance when considering methods of meamurng such deflexions.
It was felt, however, that further investigation was needed for two reasons, firstly, because the plates to be used would be very thack, the ratio of thickness to dameter being one-fifth or more, and, secondly, because of the doult as to what boundary conditions would apply at the crrcular edge, as these plates would have to be turned out of sold metal
As regards the thickness of the plate, this has been tacitly assumed in the past to be of slight umportance, at any rate within humits, so that, in the classical treatment of the problem, the assumption is made that the forces applied to the edge of the plate, considered as a cylindrical surface, can be expressed adequately by a line distribution of force and a line distribution of flexural couple, both

[^140]being reckoned per unit length of the edge line, which is the curve in which the middle plane of the plate cuts the edge surface (vide Love, 'Elastictry,' 2nd edn, p 459)
Such an assumption is valid only when the plate is thin, for then " the actual distribution of the tractions applied to the edge, regarded as a cylindrical surface, is of nu practical importance " (Love, loc ert, p 438). The question of the boundary conditions at the edge is also of fundamental importance It is impossible, with threk plates, to fix the edge by " clamping," and so, for experimental purposes, the plates were turned out of a block of metal, leaning them with a heavy flange, this method being necessary to permit of calibration.

The boundary conditions in such a case cannot be apecifiod beforehand, and the problem has thus to be approached indirectly by postulating varions boundary conditions at the circular edge and mnvestigating their consequences analytically

Experimental work carned out on thich plates of the type described has given remarkable reaulta, the deflexions obtaned greatly exceedng the expected values Practical conaderations have thus shown the necessity for a reexamination of the subject from a theoretical standpoint, and they constitute the apology for the present paper So far as is posable the reaulta have been expressed anthmetically to render them of practical use, and the investigatious have been confined to the case of ecreular plates as the type obviously moant for use in experiment.

It may be noticed that the ordnarily accepted formulas fall also for very thin plates, ze. platea for which the thickness-diameter ratio is of the order of $\frac{1}{2}$ do or less Experimentally it bas been found that the deflexions obtamed are markedly less than those indicated by the usual theory. An investigation in in progress to try to account for the discrepancles observed, but the matter will not be dealt with in thus paper.*

(2) The Statement of the Problem

The plate is taken to be a right circular cyluder in elastic equilibrium under tractions applied to its flat ends, being held so that there is no dsplacement at

[^141]any point of its cylindrical edge, body forces being neglected. The problem is to determine completely the stres-stran system throughout the plate in cases where the tractions on the plane ends are such as oan be appled expenmentally. We thus confine ourselves to cases where the plate is subjected to unform prassures over one of the flat surfaces or to loads concentrated over small areas at the centre, or acting solely at the centre of the plate So far an as known, this problem, in its complete generality, has not yet been solved, and apparently cannot be sulved by the methods of thas paper, and mo, analytical solutions have been obtained partially fulfiling the conditions at the edge, and powsibly adapted to various practical methods of fixing the edge.

In particular, an attempt is made to obtain solutions which give results in accord with experiment, so that the paper is himited to certan specific problems of practical interest, and no attempt is maile at a general discussion *

(3) Mcthodx of Solution Empluyped

The problem is one of symmetric strain in a right circular cylinder, and solutions of the fundamental equations of elastic equilbrium applicable to this case are well known (inde Love, ' Elasticty,' 2nd edn, p. 263)

Corresponding to any such solution, expressions for the dasplacements and atressea can be found, and these have to be manpulated to satisify cortan boundary condrtions both at the curved edge aurface and over the plane ends, and then the stress-strain datribution made the plate can be calculatel

The boundary conditious over the plane ends of the plate are known at once, and the method adopted is to fit the solutions to astisly these conditions, and then to examine what particular edge conditions can be satisfied

We take $O z$ to be the amis of the plate, and then, from symmetry, everything is expressed in cylindrical co-ordinates, r, z

The solutions referred to are of three types - -
(1) Rational integral functions of r and z
(ii) Solutiona which are exponential in z_{1} and contain Bessel functions of r
(ii) Compound solutions of (i) and (ii).

It will be seen in the sequel that the last type is the most useful. The satisfaction of the boundary conditions over the lat surfacea of the plate, viz, $z= \pm h_{1}$ where $2 h$ is the thickness, is straightlorward in the case of type (1), and is effected in the cases of types (ii) and (iii) by the use of certain Fourier-

[^142]Bessel expansons It will be ahown that solutions (i) and (i) are of limited application when we try to astisfy the boundary conditions at the circular edge, and it is with the mixed solution (iii) that we shall be chrefly concerned. Nevertheless, it is thought to be of importance to indicate the limitations of the sumpler solutions

(4) The Three Types of Solution.

In cases of symmetrical stran such as we are conadering, the stress compouents and the displacements can all be expressed in terme of a single function $\chi^{\text {as follows - }}$

$$
\left.\begin{array}{c}
\overline{r r}=\frac{\partial}{\partial z}\left\{\sigma \nabla^{2} x-\frac{\partial^{2} x}{\partial r^{2}}\right\}, \quad \overline{z z}=\frac{\partial}{\partial z}\left\{(2-\sigma) \nabla^{2} x-\frac{\partial^{2} x}{\partial z^{2}}\right\} \\
\overline{\theta 0}=\frac{\partial}{\partial z}\left\{\sigma \nabla^{2} \gamma-\frac{1}{r} \frac{\partial x}{\partial r}\right\} \quad \overline{r z}=-\sigma \frac{\partial}{\partial r}\left(\nabla^{2} x\right)+\frac{\partial}{\partial r}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\right) \tag{2}
\end{array}\right\}
$$

the usual notation beung employed (vide Love, 'Elasticity,' 2nd edn, pp, 260-263).

The function χ itself satisfies the equation

$$
\begin{equation*}
\nabla^{\prime} x=0, \tag{9}
\end{equation*}
$$

and we have also

$$
\begin{equation*}
\nabla^{4} v=0, \tag{4}
\end{equation*}
$$

whilst the stress equations of equilibrium are

$$
\left.\begin{array}{l}
\frac{\partial \overline{r r}}{\partial r}+\frac{\partial \overline{r x}}{\partial z}+\frac{\overline{r r}-\overline{\theta \theta}}{r}=0 \tag{D}\\
\frac{\partial \overline{r z}}{\partial r}+\frac{\partial \overline{z z}}{\partial z}+\frac{r z}{r}=0
\end{array}\right\}
$$

Solutions of equations (3) and (4) of the three types referred to above are well known." nnd corresponding to any such solation, the complete stress-dusplacement aystem can be calculated by equations (1) and (2).

[^143]The solution of type (1) is constitated by the equations

$$
\left.\begin{array}{c}
u=\sum_{n=0}^{n=N}\left(\alpha_{n}+\beta_{n} z\right) \mathbf{V}_{n} \tag{6}\\
\frac{1+\sigma}{E} \chi=\sum_{n=2}^{N+2}\left(A_{n}+B_{n} z\right) \mathbf{V}_{n}
\end{array}\right\},
$$

where V_{n} is the sold zonal harmonc of degree n
The connection between the sets of constants α, β, A, B are obtanned from the second of equations (2), and we find the following -

$$
\left.\begin{array}{rl}
\alpha_{0}=-21 \mathbf{A}_{2} & \beta_{1}=-32 \mathbf{B}_{3} \\
\alpha_{1}=2(1-2 \sigma)!\mathbf{B}_{2}-32 \mathbf{A}_{1}-2 \mathbf{B}_{2} & \beta_{1}=-43 \mathbf{B}_{1} \\
\alpha_{2}=2(1-2 \sigma) 3 \mathbf{B}_{1}-43 . \mathbf{A}_{4} & \\
\alpha_{n}=2(1-2 \sigma)(n+1) \mathbf{B}_{n+1} & \beta_{n}=-(n+2)(n+1) \mathbf{B}_{n+2} \\
& -(n+2)(n+1) A_{n+2} \tag{7}
\end{array}\right\},
$$

notice being taken of the fact that, ance $\mathrm{V}_{1}={ }_{2} \mathrm{~V}_{\mathrm{U}}$, the term $\beta_{0} \mathrm{~V}_{0}$ can be taken up with $\alpha_{1} V_{1}$, so that we drop β_{0} and write $\beta_{2} V_{0}$ as $\beta_{2} V_{1}$.

For the solution of type (11) we may write

$$
\left.\begin{array}{rl}
w & =\Sigma\{(\alpha+\beta z) \cosh k z+(\gamma+\delta z) \sinh k z\} J_{0}(k r) \tag{8}\\
\frac{1+\sigma}{E} \gamma & =\dot{L}\left\{(\mathrm{~A}+\mathrm{B} z) \cosh k z+\left(\mathrm{C}^{\prime}+\mathrm{D} z\right) \sinh k z\right\} \mathrm{J}_{0}(k r)
\end{array}\right\} .
$$

where the summation includes any finite or an infinte number of terms The relationships between the constants, found as before, are

$$
\begin{array}{ll}
\alpha=2(1-2 \sigma) \mathrm{D} k-\mathrm{A} k^{2} & \gamma=2(1-2 \sigma) \mathrm{B} k-\mathrm{C} k^{2} \tag{9}\\
\beta=-\mathrm{B} k^{\mathrm{g}} & \delta=-\mathrm{D} k^{2}
\end{array}
$$

To get the solutions of type (iii) we merely combine the above solutions, the part of the solution corresponding to type (i1) being necessarily an infinite series, to permut of eatisfying the boundary conditione over $z= \pm h$ by the use of Fourler-Bessel analysis.

The solutions corresponding to (8) with h maginary, leading to circular functions of $h z$ and to the Bessel functions with imaginary argument, viz, I_{0} (kr), oan be shown to be neffective for the problems we have in new, and there is also a solution of the type

$$
w=\Sigma\left(\alpha^{\prime} \cosh k z+\beta^{\prime} \sinh k z\right) r J_{0}^{\prime}(k \tau),
$$

which contains insufficient constants to permit of the stress boundary conditions over $z= \pm h$ being gatusfied

Tife Rational Integral Solution and ity Application 10 the Plate Prohiem.

(5) A Spreffic Problem

We consuler the ceac of a plate bounded by the surface $r=a$ and the planes $z= \pm h$, subjected to a umform pressure p over $z=+h$, zero pressure nver $z=-h$, and no shear strens over $z= \pm h$, and determme a solution of type (1) which bts these boundary couditions, and then discuss the conditions at $r=a$. The boundary conditions at $z= \pm h$ urr $\bar{z}=0$ for $z= \pm h, \bar{z}=0$ for $z=-h, \overline{z z}=-p$ for $z=+h$, in each case for all values of r

These conditions, in combination with the second of equations (5), lend to the equations

$$
\left.\begin{array}{l}
\overline{r z}=r\left(h^{2}-z^{2}\right) f_{1}(z) \tag{10}\\
\bar{z} z=(h+z) f_{2}(z)
\end{array}\right\}
$$

where f_{1}, f_{2} are rational integral functions
We take the expressions for w and χ given in equations (6), and the fullowing properties of V_{n} are used -

$$
\left.\begin{array}{l}
V_{n}=z^{n}-\frac{n!}{2!(n-2)!} r^{2} z^{n-2}+\frac{1.3}{24} \frac{n!}{4!(n-4)!} r^{\prime} z^{n-4} . \\
\frac{\partial V_{n}}{\partial z}=n V_{n-1} \\
\frac{\partial V_{n}}{\partial r}=n\left(V_{n}-z V_{n-1}\right)=-\frac{1}{2} \frac{(n-1)!}{(n-2)!} r^{2} z^{n-2}+\frac{13}{2.4} \frac{(n-1)!}{3!(n-4)!} r^{4} z^{n-1}
\end{array}\right\}
$$

The equations (1) theu give

$$
\begin{align*}
& -\left[4.3 .2\left(A_{4}+B_{8} z\right)\left(-\frac{1}{2}\right)+5.4 .3\left(A_{6}+B_{5} z\right)(-z)\right. \\
& +0.5 .4\left(A_{4}+B_{8}\right)\left(--\frac{3}{2} 2^{2}+\left(r^{2}\right)+\ldots\right), \tag{12}
\end{align*}
$$

which, by (10), must be a function of z only, and it is easily seen that the terms written down in (12) are all that cen ocour.

The expression for $\overline{z z}$ thus becomos

$$
\begin{align*}
\frac{1+\sigma}{E} \approx & =(1-2 \sigma)\left[2 B_{2}+3.2 B_{4} z+43 B_{4}\left(z^{2}-\frac{1}{2} r^{2}\right)+54 B_{5}\left(z^{9}-\frac{1}{2} r^{2} z\right)\right] \\
& -3.2 .1\left(A_{9}+B_{3} z\right)-432\left(A_{4}+B_{4} z\right) z \\
& -543\left(A_{5}+B_{3} z\right)\left(z^{2}-\frac{1}{2} r^{2}\right)-0.5 .4 A_{0}\left(z^{3}-\left\lfloor r^{2} z\right)\right. \tag{13}
\end{align*}
$$

In (12) the terms in $r^{2} z$ and \boldsymbol{r}^{2} must vanish and the remaining terms must be equableal to a constant multiplier of $h^{2}-z^{2}$, in (1J) the terme in $r^{2} z$ and \boldsymbol{r}^{9} must likewise vamsh, and $\overrightarrow{z z}$ become equal to $-p$ and zero for $z= \pm h$ respeotively

The constant \mathbf{A}, B are thus determined as follows -

$$
\left.\begin{array}{rlrl}
(\mathrm{L}-2 \sigma) \mathbf{B}_{2}-3 \mathrm{~A}_{\mathbf{2}} & =-\frac{p(\mathrm{l}+\sigma)}{4 \mathrm{E}}, & \mathbf{A}_{\mathbf{1}}=\mathbf{B}_{\mathrm{i}}-\mathbf{B}_{0}=0 \tag{14}\\
\sigma \mathbf{B}_{\mathbf{2}}+2 \mathrm{~A}_{4} & =\frac{p(1+\sigma)}{16 \mathrm{E} h}, & \mathbf{A}_{\mathbf{0}}=\frac{p(1+\sigma) \sigma}{480 \mathrm{E} h^{3}} \\
\mathbf{B}_{\mathbf{3}} & =-\frac{p(1+\sigma)}{160 \mathrm{E} h^{3}} & &
\end{array}\right\}
$$

leaving three arbitrary
The expressions for w and $\overline{\mathrm{U}}$ may now be worked out, using equations (2) and (7), and it is found that, by writing the three arbitrary constants in the forms $\alpha=-2 A_{\mathbf{g}}, \quad \beta=6 A_{4}-3(1-2 \sigma) B_{3}, \quad \gamma=3 A_{3}+B_{g}$ we have finally,

$$
\begin{align*}
& v=\left\{\alpha+\beta r^{2}-\frac{3 p\left(1-\sigma^{2}\right)}{128 E h^{3}} r^{4}\right\}-\left\{\frac{2 \sigma}{1-\sigma} \gamma+\frac{p(1+\sigma)(1-2 \sigma)}{2 \mathrm{E}(1-\sigma)}\right\} z \\
& +\left\{\frac{2 \sigma}{1-\sigma} \beta-\frac{3 p(1+\sigma)}{8 \mathrm{E} h(1-\sigma)}-\frac{3 p \sigma(1+\sigma)}{16 \mathrm{E} h^{3}} r^{2}\right\} z^{\mathrm{g}}+\frac{p(1+\sigma)^{\mathrm{B}}}{16 \mathrm{E} h^{\mathrm{s}}} \mathrm{q}^{4} \tag{15}\\
& \overline{\mathrm{U}}=\gamma r+\left[\left\{\frac{3 p(1+\sigma)}{4 \mathrm{E} h}-2 \beta\right\} r+\frac{3 p\left(1-\sigma^{2}\right)}{32 \mathrm{E} h^{3}} r^{8}\right] z-\frac{p(1+\sigma)(2-\sigma)}{8 \mathrm{E} h^{\mathrm{s}}} r z^{\mathrm{B}} . \tag{16}
\end{align*}
$$

These expressions constitute the most general values of the displagementa, corresponding to the solution of type (i), which are in accordance with the assigned boundary oonditions over $z= \pm h$.

(6) The Known Results for the Clampod and Supported Plates.

In equations (15) and (10) there are three constants at our chouce, and they can only be determued by assagning conditions to be satusfied at the edge
$r=a$, The olassical procedure (vide Love, 'Elasticity,' chap, XXIl) is to consider only the middle surface of the plate, ε, the plane $z=0$

We denote by w_{0} the value of w for $z=0$, and then, taling as the conditions for a clamped plate, $u_{0}^{\prime}=0, d v_{0} / d r=0$ for $r=a$, we get from (15)

$$
\begin{equation*}
w_{0}=-\frac{p\left(a^{2}-r^{2}\right)^{2}}{64 D} \tag{17}
\end{equation*}
$$

where $D=\frac{E h^{3}}{1-\sigma^{2}}$ is known as the "flexural rigidity" of the plate
Thas result mught well apply when the plate is sufficiently thin, and, in fact, is found experimentally to hold in such cases, although it is defficult to determine for what range of values of h / a the equstion (17) is valid.

For a thick plate it would appear that the conditions of clamping are not sufficiently represented by making w_{0} and $d w_{0} / d r$ vansh for $r=a$

Further, it should be noticed that the result (17) does not depend in suy way on φ, so that the maddle plane may either be stretched or unstretched.

Assuming $\gamma=0$, so that the middle plate sa bent withont extension, we find easily from (15) and (16)
$w=w_{0}+\frac{p z}{D}\left[\frac{1}{24} \frac{1+\sigma}{1-\sigma} z^{9}+\frac{1}{1 G} \frac{\sigma}{1-\sigma} z a^{9}-\frac{1}{8} \frac{\sigma}{1-\sigma} z r^{2}\right.$

$$
\left.-\frac{1}{4} \frac{z h^{2}}{(1-\sigma)^{2}}-\frac{1}{3} \frac{1-2 \sigma}{(1-\sigma)^{2}} h^{3}\right]
$$

a result given by Love (loc. cit., p. 463)
For the supported plate we assume at $r=a, w_{0}=0$ and

$$
\int_{-h}^{h} \overline{\pi r} \cdot d z=\int_{-h}^{h} \overline{\pi r} r d z=0
$$

ic that the integrated radial pull over $r=a, h>z>-h$ does not give rise to forces or couples, and the usual result is obtamed.

Incidentally we find $\gamma=\frac{1}{1}$ ($\sigma p / E$), so that the middle plane is stretched.
(7) Some Further Results.

The solution of the problem of the unformly loaded plate comprised in (15) and (10) can be mado to satisfy certan other edge conditions.

Thus, suppose $\overline{\mathrm{U}}=0$ for $r=a, z= \pm h$, then β and γ are determined, γ being zero, making $w_{0}=0$ for $r=a$, gives α and the result is

$$
\begin{equation*}
w_{0}=-\frac{p a^{4}}{64 \mathrm{D}}\left(1-\frac{r^{2}}{a^{2}}\right)\left(1-\frac{r^{4}}{a^{2}}+\frac{8}{3} \frac{4+\sigma}{1-\sigma} \frac{h^{2}}{a^{2}}\right) . \tag{18}
\end{equation*}
$$

[^144]Another case is $\overline{\mathrm{U}}=\partial \overline{\mathrm{U}} / \partial z=w=0$ for $r=a, z=0$, wheh gives $\gamma=0$ and determines a and β. We find for u_{0},

$$
\begin{equation*}
w_{0}=-\frac{p a^{4}}{64 \mathrm{D}}\left(1-\frac{r^{2}}{a^{2}}\right)\left(1-\frac{r^{2}}{a^{2}}+\frac{10}{1-\sigma} \frac{h^{2}}{a^{2}}\right) \tag{19}
\end{equation*}
$$

Theso boundary conditions may not be practicable, but we quote these resulta for comparison with others to be obtamed later.

In each case the normal deflexion of the middle plane is much greater than that given by (17) if h / a be at all large, $t e$ for a thick plate

(8) Remarks on the Solution of Art 5

It is to be observed that, with the solution given by equations (15) and (16), wo cannot make cither w or \bar{U} vanish at every point of $r=a$
By choice of α, β, γ all but the last term in w (equation (15)) can be made zero, and aimilarly for \bar{U}, so that the limitations of the solution in finite terms are manifest and the problem of a thick plate must be investigated by a fresh type of analysis

The solutions given above are thus necessarily approximate, even for thin plates, but it will be shown wi the sequel that the results obtaned by more elaborate analysis can be expressed in a form similar, for example, to that of (17), with a correction term which is of small consequence when h / a is small.

(9) The Stregses in a Thin Plate

Some remarks on the stresses in a clamped or supported then plate may be interposed here before we pass on to the next type of solution. The following results are easily obtained.-

$$
\left.\begin{array}{l}
\tilde{\pi}=\frac{2 \mathrm{E} \gamma-\sigma p}{2(1-\sigma)}+\left[\frac{3 p}{4 h(1-\sigma)}-\frac{2 \mathrm{E} \beta}{1-\sigma}+\frac{3(3+\sigma) p}{32 h^{3}} r^{2}\right] z-\frac{(2+\sigma) p}{8 h^{9}} z^{\mathrm{s}} \tag{20}\\
\tilde{z z}=-\frac{p}{2}-\frac{3 p z}{4 h}+\frac{p z^{3}}{4 h^{3}} \\
\tilde{\pi z}=\frac{3 p r\left(h^{\mathrm{e}}-z^{2}\right)}{8 h^{3}} \\
\hat{\theta \theta}=\frac{2 \mathrm{E} \gamma-\sigma p}{2(1-\sigma)}+\left[\frac{3 p}{4 h(1-\sigma)}-\frac{2 \mathrm{E} \beta}{1-\sigma}+\frac{3(1+3 \sigma) p}{32 h^{3}} r^{2}\right] z-\frac{(2+\sigma) p}{8 h^{3}} z^{3}
\end{array}\right\}
$$

The atress $\overline{z z}$ is of the order of p only, and the greatest value of $\overline{r z} 18$ of the order of $p a / h$ (niz. at $r=a, z=0$), but $\widehat{\pi r}$ and $\widehat{\theta \theta}$ will, at the edges $r=a$, $s= \pm h$, contain terms of the order $p a^{2} / h^{2}$.
For s clamped plate, $\beta=p a^{2} / 32 D$ and γ, although undetermined, is of the
order of p only, so that the greatest stress is the radial pull at the edges, which is numerically equal to $\frac{\mathrm{H}}{\mathrm{it}}\left(p a^{2} / h^{2}\right)$, the value of $\overline{\mathrm{rr}}$ at $r=a, z=+h$ being actually the greater, the difference being of the order of p.

The value of $\widehat{\theta \theta}$ at the edges as $3 \sigma p a^{2} / 16 h^{2}$.
For a supported plate, we find

$$
\pi=\left[\frac{3(2+\sigma) p}{40 h}-\frac{3(3+\sigma)}{32 h^{3}} p\left(a^{8}-r^{3}\right)\right] z-\frac{(2+\sigma) p z^{8}}{8 h^{2}},
$$

so that $\tilde{\pi}^{\prime}$ for $r=a$, is only of the order of p, and the maximum streas is at the centre of the plate, or rather of its upper and lower surfaces, and is, numerically

$$
\frac{3(3+\sigma) p a^{2}}{32 h^{3}}
$$

These reaulta will be compared with those to be obtained later for the case of a plate, definitely thick.

The Solution of the Problem by Inpinite Seriea involvine Begsel Functions.
(10) Dhscussion of the Mathods.

The solution given by equations (8) oan obviously be made to eatisfy condithons at $r=a$ more general than those considered in the last section. Thus w can be made to vanish at all points of $\tau=a$ by choosing k но that $J_{0}(k a)=0$, and, therefore, there are possible epplications to the thick plate problem We have next to consider the method of satisfying the atreas boundary conditions over $z= \pm h$, which involve $\overline{z z}$ and $\overline{\tau z}$ (art 5)

Equations (1) show that, χ being of the form given in equation (8), $\overline{z z}$ and $\overline{r z}$ are respoctively expressions of the types $\Sigma P(z) \mathrm{J}_{0}\left(k_{r}\right)$ and $\Sigma Q(z) \mathrm{J}_{0}^{\prime}\left(\alpha_{r}\right)$, so that, when z is constant, $\overparen{z z}$ takes the form $\Sigma P_{0}\left(k_{r}\right)$ and $\underset{F z}{ }$ the form $\sum Q J_{1}\left(k_{r}\right), P$ and Q being independent of r.

Now it is known that if $f(r)$ is any function which could represent a displacement or a stress in the range 0 to a, then the constants P_{n} oan be so chosen as to satisfy an equation of the form

$$
\begin{equation*}
f(r)=\sum_{1}^{\Omega} P_{n} \mathrm{~J}_{0}\left(k_{n} r\right), \tag{21}
\end{equation*}
$$

where $J_{0}\left(k_{w} a\right)=0,(n=1,2,3, \ldots)$
If $J_{0}\left(k_{n} a\right)=0$ we have also

$$
\begin{equation*}
J_{1}\left(k_{1} a\right)+k_{\square} a J_{2}^{\prime}\left(k_{n} a\right)=0, \tag{22}
\end{equation*}
$$

and this result can be used to determine the constants Q_{a} in an equation of the form

$$
\begin{equation*}
F^{\prime}(r)=\sum_{1}^{\mathbb{D}} Q_{n} J_{1}\left(k_{\mathrm{n}} r\right) . \tag{23}
\end{equation*}
$$

In fact we have (rude Gray and Mathews, 'Bessel Functions,' chap VI)

$$
\left.\begin{array}{l}
\mathbf{P}_{\mathrm{n}}=\frac{2}{a^{2} \mathrm{~J}_{1}^{2}\left(k_{n} a\right)} \int_{0}^{a} \mathrm{~J}_{0}\left(k_{n} r\right) f(r) r d r \tag{24}\\
\mathbf{Q}_{\mathrm{n}}=\frac{2}{a^{2} \mathrm{~J}_{1}^{2}\left(k_{n} a\right)} \int_{0}^{a} \mathrm{~J}_{1}^{r}\left(k_{n} r\right) F(r) r d r
\end{array}\right\}
$$

It follows that, if we take an infinite number of terms in the expressions for w and χ, the boundary conditions over $z= \pm h$ can be satisfied provided that the integrals in (24) can be determined for the particular forms of $f(r)$ and $F(r)$ which may arise

To this cnd, a number of reaulta in Fourier-Beasel analyas are requred, which we procced to detell.
(11) Colleation of Necessary Resulld in Founer-Beysel Analysis.
(a) Reoulles snvolung the Roots of $J_{0}\left(\boldsymbol{m}^{\boldsymbol{a}}\right)=0$-We have the following results, m baing a positive integer and $\mathrm{J}_{0}(k a)=0$ -

$$
\begin{align*}
& I_{m}=\int_{0}^{1} J_{0}(k r) r^{2 m+1} d r \\
& =\frac{a^{2 m+2} \mathrm{~J}_{1}(k a)}{k a}\left[1-\frac{4 m^{2}}{(k a)^{2}}+\frac{4 m^{2}(m-1)^{a}}{(k a)^{4}}\right. \\
& \left.+(-1)^{m} \frac{4^{m} \cdot m^{2}(m-1)^{2}}{(k a)^{2 m}} \quad 2^{2} \quad 1^{2}\right] \\
& I_{m}^{\prime}=\int_{0}^{a} J_{1}(k r) r^{a m} d r \tag{2b}\\
& =\frac{2 m a^{\mathrm{Bm}+1} \mathrm{~J}_{1}(k a)}{k^{2} a^{2}} \Gamma_{-}-\frac{4(m-1)^{2}}{(h a)^{2}}+\frac{4^{2}(m-1)^{2}(m-2)^{\mathrm{a}}}{(k a)^{6}} \ldots \\
& \left.\ldots+(-1)^{m-1} \frac{4^{m-1}(m-1)^{\mathrm{a}} \quad 2^{2} \quad 1^{\mathrm{z}}}{(k a)^{2 m-2}}\right]
\end{align*}
$$

Now, asguming the equation $r^{2 m}-a^{2 \theta}=\sum_{1}^{5} P_{0} J_{0}\left(k_{w} r\right)$, where $J_{0}\left(k_{n} a\right)=0$, which is legitmate since both sides vanish for $r=a$, we have, from (24),

$$
P_{n} \frac{a^{1}}{2} J_{1}^{1}\left(k_{n} a\right)=I_{m}-\frac{a^{m n+1}}{k_{n} a} J_{1}\left(k_{n} a\right),
$$

T01. xan.-4.
wheh determines P_{n}, so that
$\dagger\left\{\left(\frac{q}{a}\right)^{2 m}-1\right\}=-4 m^{2} \sum_{1 k_{n}}^{\infty} \frac{J_{0}\left(k_{n} r\right)}{a^{5} J_{1}\left(k_{n} a\right)}+4 m^{a}(m-1)^{2} \sum_{1}^{\infty} \frac{J_{0}\left(k_{n} r\right)}{k_{n}^{5} a^{4} J_{1}\left(k_{n} a\right)} \ldots$
This equation must be identically true for all values of m, and putung $m=1,2,3, .$. , and sorting out the various series, we find the following .-

$$
\begin{align*}
& \sum_{1}^{\infty} \frac{\mathrm{J}_{0}\left(k_{n^{r}} r\right)}{k_{n}^{2} a^{8} \mathrm{~J}_{1}\left(k_{n} a\right)}=\frac{1}{8}\left(1-\frac{r^{2}}{a^{2}}\right) \tag{26}\\
& \sum_{1}^{\infty} \frac{\mathrm{J}_{0}\left(k_{n} r\right)}{k_{n^{5}} a^{4} \mathrm{~J}_{1}\left(k_{n} a\right)}=\frac{1}{128}\left(1-\frac{r^{2}}{a^{2}}\right)\left(3-\frac{r^{2}}{a^{2}}\right) \tag{27}\\
& \sum_{1}^{\infty} \frac{\mathrm{J}_{0}\left(k_{n^{2}} r\right.}{k_{n}^{7} a^{7} \mathrm{~J}_{1}\left(k_{n} a\right)}=\frac{1}{4608}\left(1-\frac{r^{2}}{a^{2}}\right)\left(19-8 \frac{r^{2}}{a^{2}}+\frac{r^{4}}{a^{4}}\right) \tag{28}
\end{align*}
$$

etc., etc.

Putting $r=0$ in the above, we have

$$
\begin{gather*}
\sum_{1}^{\infty} \frac{1}{k_{n}^{8} a^{3} J_{1}\left(k_{n} a\right)}=\frac{1}{8}, \quad \sum_{1}^{5} \frac{1}{k_{n}^{5} a^{5} J_{1}\left(k_{n} a\right)}=\frac{3}{128} ; \\
\sum_{1}^{\Sigma} \frac{1}{k_{n}^{7} a^{7} J_{1}\left(k_{n} a\right)}=\frac{19}{4608} \tag{29}
\end{gather*}
$$

Uaing the equation $r^{2 m-1}=\sum_{1}^{\infty} Q_{n} J_{1}\left(k_{n} r\right)$, or, alternatively, differentiating the above results term-by-term (which can easily be justified), we find .-

$$
\begin{align*}
& \sum_{1}^{x} \frac{\mathrm{~J}_{1}\left(k_{n} r\right)}{k_{n}{ }^{a^{4}} \mathrm{~J}_{1}\left(k_{n} a\right)}=\frac{1}{4} \frac{r}{a} \tag{30}\\
& \sum_{1}^{\infty} \frac{J_{1}\left(k_{n} r\right)}{k_{n} a^{4} J_{1}\left(k_{n} a\right)}=\frac{1}{18} \frac{r}{a}-\frac{1}{32} \frac{r^{3}}{a^{3}} \tag{31}\\
& \underset{1}{\sum} \frac{J_{1}\left(k_{n} r\right)}{k_{n} a^{6} J_{1}\left(k_{\mathrm{n}} a\right)}-\frac{3}{256} \frac{r}{a}-\frac{1}{128} \frac{r^{3}}{a^{8}}+\frac{1}{768} \frac{r^{6}}{a^{6}} \tag{32}
\end{align*}
$$

tete, teto,
and, with $r=a$,
(b) Resulds involving the Roods of $J_{1}\left(k_{ \pm} a\right)=0$ (exduding the Zoro Root).To discuss the plate problem when the radial displacement $\overline{\mathbf{U}}$ is assumed to vanish at all points of $r=a(h>z>-h)$, it is necessary to use resulta simular to the above, but involving the roots of $\mathrm{J}_{1}\left(k_{\mathrm{n}} a\right)=0$.
These are obtained by aasumptions of the type $\sum_{1}^{[5} P_{n} J_{1}\left(k_{n} r\right)=r\left(r^{2 m}-a^{\text {em }}\right)$, eince $J_{1}\left(k_{r} r\right)$ vanishes for $r=0$ and $r=a$.

The results required are as follows:-

$$
\begin{align*}
& \sum_{1}^{z} \frac{\mathrm{~J}_{0}\left(k_{n} r\right)}{k_{n}{ }^{2} a^{2} \mathrm{~J}_{0}\left(k_{n} a\right)}=-\frac{1}{8}+\frac{1}{4} \frac{r^{2}}{a^{2}} \tag{34}\\
& \sum_{1}^{\Sigma} \frac{\mathrm{J}_{0}\left(k_{n} r\right)}{k_{n^{4}} a^{4} \mathrm{~J}_{0}\left(k_{n} a\right)}=-\frac{1}{96}+\frac{1}{32} \frac{r^{2}}{a^{2}}-\frac{1}{64} \frac{r^{4}}{a^{4}} \tag{35}\\
& \sum_{1}^{\infty} \frac{\mathrm{J}_{0}\left(k_{\mathrm{n}} r\right)}{k_{\mathrm{n}} a^{6} \mathrm{~J}_{0}\left(k_{\mathrm{n}} a\right)}=-\frac{7}{0216}+\frac{1}{384} \frac{r^{2}}{a^{\mathrm{a}}}-\frac{1}{512} \frac{r^{4}}{a^{4}}+\frac{1}{2304} \frac{r^{6}}{a^{4}} \tag{36}\\
& \sum_{1}^{s} \frac{\mathrm{~J}_{1}\left(k_{n} r\right)}{k_{n}^{3} a^{9} \mathrm{~J}_{0}\left(k_{n} a\right)}=-\frac{1}{16} \frac{r}{a}+\frac{1}{16} \frac{r^{3}}{a^{s}} \tag{37}\\
& \sum_{1}^{\frac{\Sigma}{2}} \frac{\mathrm{~J}_{1}\left(k_{n} r\right)}{k_{n} a^{5} J_{0}\left(k_{n} a\right)}=-\frac{1}{192} \frac{r}{a}+\frac{1}{128} \frac{r^{8}}{a^{3}}-\frac{1}{384} \frac{r^{5}}{a^{5}} \tag{38}
\end{align*}
$$

Putting $r=0$ and $r=a$ in equations (34) to (36) we have

$$
\left.\begin{array}{ll}
\sum_{1}^{5} \frac{1}{k_{n}^{9} a^{4} J_{0}\left(k_{n} a\right)}=-\frac{1}{8} & \sum_{1}^{=} \frac{1}{k_{n} a^{2}}=\frac{1}{8} \tag{40}\\
\sum_{1}^{\infty} \frac{1}{k_{n}^{4} a^{4} J_{0}\left(k_{n} a\right)}=-\frac{1}{96} & \sum_{1}^{5} \frac{1}{k_{n} a^{4}}=\frac{1}{192} \\
\frac{1}{1} \frac{1}{k_{n}^{8} a^{4} J_{0}\left(k_{n} a\right)}=-\frac{7}{9216} & \sum_{1} \frac{1}{k_{n}^{6} a^{8}}=\frac{1}{3072}
\end{array}\right\} .
$$

(o) Resulls involving Loganthmic Functions wuth $\mathrm{J}_{0}\left(k_{n} a\right)=0$-To discuss the case of the bending of a plate when the load is concentrated at the centre, some further results are required.
Consideration of the integral $V_{m}=\int_{0}^{0} J_{0}(k r) r^{2 m+1} \log \frac{r}{a} d r(m$ a positive integer) on the lines of (a) above gives the following.

$$
\begin{align*}
& \sum_{1}^{\infty} \frac{J_{0}\left(k_{n} r\right)}{k_{n}{ }^{2} a^{1} J_{1}{ }^{1}\left(k_{n} a\right)}=1 \log \frac{a}{r} \tag{41}\\
& \sum_{1}^{\frac{x}{2}} \frac{\mathrm{~J}_{0}\left(k_{\mathrm{n}} r\right)}{k_{\mathrm{n}}{ }^{4} a^{4} \mathrm{~J}_{1}{ }^{2}\left(k_{\mathrm{n}} a\right)}=\frac{1}{8}\left(1-\frac{r^{2}}{a^{2}}\right)-\frac{1}{8} \frac{r}{}_{a^{2}}^{a^{2}} \operatorname{lqg} \frac{a}{r} \tag{4}
\end{align*}
$$

Multiplying by r and then integrating term-by-term, we find

$$
\begin{align*}
& \sum_{1}^{5} \frac{\mathrm{~J}_{1}\left(k_{\mathrm{n}} r\right)}{k_{n}^{8} a^{9} \mathrm{~J}_{1}{ }^{\mathrm{a}}\left(k_{\pi n} a\right)}=\frac{1}{8} \frac{r}{a}\left(1+2 \log \frac{a}{r}\right) \tag{43}
\end{align*}
$$

this process being legitumate because of the unform convergence of (41) and (42) in the range 0 to a
 leads to the resulta (29).
(12) The Elastrc Problem-Reasons for the Chonce of Solution of Type (in),

From art (10) it is apparent that, with the solution of type (ii), the boundary conditions over $z= \pm h$ lead to equations of the type $\sum_{1}^{\infty} P_{n} J_{0}\left(k_{n} \tau\right)=$ a constant or zero, in the case of a uiformly loaded plate
 assuming that $\sum_{1}^{\text {m }} \frac{J_{0}\left(k_{r} r\right)}{k_{\wedge} a J_{1}\left(k_{\nabla} a\right)}=\frac{1}{2}$, a result whach is untrue for $r=a$, slthough it oan be shown to hold for $0 \leqq r<a$ It will be necessary, therefore, to use a solution which does not depend on this result for the satisfying of the boundary conditions at $z= \pm h$

Furthermore, the assumption

$$
\omega=\sum_{1}^{x}\left\{\left(\alpha_{n}+\beta_{n} z\right) \cosh k_{n} z+\left(\gamma_{n}+\delta_{n} z\right) \sinh k_{n} z\right\} J_{0}\left(k_{n} r\right)
$$

with $\mathrm{J}_{0}\left(k_{n} a\right)=0$, gives $w=0$ for every point of the edge surface, but permits of no othor edge condution being satisfied, beoause the series constants $\alpha_{n}, \beta_{n}, \gamma_{n}, \delta_{n}$ are completely determined by the stress conditions over $z= \pm h$

It may be noticed, as a matter of interest, that if this solution be worked out, we arrive at the following result for the deflemion of the middle surface of a thin plate (using methods of approximation to be explained later),

$$
\begin{equation*}
w_{0}=-\frac{p a^{4}}{64 \mathrm{D}}\left(1-\frac{r^{2}}{a^{2}}\right)\left(3-\frac{r^{a}}{a^{2}}\right) . \tag{45}
\end{equation*}
$$

A reault, in partial agreement with thia, can be obtained from (15). By choice of α, β, γ, w can be made to vanish $n t r=a$, except for the final term, $\frac{p(1+\sigma)^{2}}{16 \mathrm{E}^{3}} z^{4}$, so that v at the edge will vanish for $z=0$, and attain its graatest numerical value at $z= \pm h_{1}$ viz, $\frac{p(1+\sigma)^{2} h}{16 \mathrm{E}}$.

The ratio of this quantity to the central deflenon is $\frac{8(1+\sigma)^{2}}{1-\sigma^{4}} \frac{h^{4}}{a^{4}}$, so that,
for thin plates, the condition $w=0$ at all points of $r=a$ is approximately secured. Determining α, β, γ as indicated, we find

$$
\begin{equation*}
w_{0}=-\frac{p a^{6}}{64 D}\left(1-\frac{r^{2}}{a^{2}}\right)\left[3-\frac{r^{2}}{a^{2}}+\frac{8}{\sigma(1-\sigma)} \frac{h^{2}}{a^{1}}\right], \tag{46}
\end{equation*}
$$

which 18 nearly the same as (40) if h / a be small
It should be noticed that the central deflexion whth the sole edge condition $v=0$ is three times the value for a clamped plate.
(13) The Solution of Type (mi)-Expressions for the Displacements and Stresses We take as the solution

$$
\left.\begin{array}{rl}
w= & \alpha_{0}^{\prime}+\left(\alpha_{1}^{\prime}+\beta_{1}^{\prime} z\right) V_{1}+\left(\alpha_{2}^{\prime}+\beta_{2}^{\prime} z\right) V_{q}+\ldots \tag{47}\\
& \ldots+\sum_{1}^{\Sigma}\left\{\left(\alpha_{n}+\beta_{n} z\right) \cosh k_{n} z+\left(\gamma_{n}+\delta_{n} z\right) \sinh k_{n} z\right\} J_{0}\left(k_{n} r\right) \\
\sigma \\
\sigma= & \left(A_{2}^{\prime}+B_{2}^{\prime} z\right) V_{2}+\left(A_{3}^{\prime}+B_{a}^{\prime} z\right) V_{\mathrm{B}}+ \\
& .+\sum_{1}^{\infty}\left\{\left(A_{n}+B_{n} z\right) \cosh k_{n} z+\left(C_{n}+D_{n} z\right) \operatorname{Binh} k_{n} z\right\} J_{0}\left(k_{n} r\right)
\end{array}\right\},
$$

Where the number of terms in the finite part of $w i s$, at present, undetermined.
The connections between the sets of constants $\alpha^{\prime}, \beta^{\prime}$ and A^{\prime}, B^{\prime} are given by (7), and those between α, β and A, B by (9).

We requre for our immediate purpose the values of $\bar{U}, \overline{r z}$ and $\overline{z z}$, whioh are determined from the function χ by equations (1) and (2).

We find, using the results of (11),

$$
\begin{align*}
& \frac{1+\sigma}{E} \cdot \tilde{z z}=2(2-\sigma)\left[2 \cdot 1 \mathrm{~B}_{2}^{\prime}+3.2 \mathrm{~B}_{\mathrm{a}^{\prime}}^{\prime}-\mathrm{V}_{1}+4.3 \cdot \mathrm{~B}_{\mathbf{\prime}}{ }^{\prime} \mathrm{V}_{\mathrm{a}}+. .\right] \\
& -\left[6 \mathrm{~B}_{s^{\prime}}+32\left(\mathrm{~A}_{s^{\prime}}+\mathrm{B}_{8} / 2\right)+3.2\left(3 \mathrm{~B}_{8}{ }^{\prime}+4 \mathrm{~A}_{6}{ }^{\prime}+4 \mathrm{~B}_{6}{ }^{\prime}\right) \mathrm{m}_{1}\right. \\
& \left.+4.3\left(3 B_{i}^{\prime}+6 A_{b}^{\prime}+6 B_{b}^{\prime} z^{\prime}\right) V_{B}+. .\right] \\
& -\sum_{2}^{m}\left[\left\{A_{n}+B_{n} z-(1-2 \sigma) \frac{D_{n}}{k_{n}}\right\} \sinh k_{n} z\right. \tag{49}\\
& \left.+\left\{C_{n}+D_{n} z-(1-2 \sigma) \frac{B_{n}}{k_{n}}\right\} \operatorname{oosh} k_{n} z\right] k_{n}^{2} J_{0}\left(K_{n}\right)
\end{align*}
$$

(14) The Problems to be Discussed-che Forms of the Solutions

It is clear from the above that both displacements w and $\overline{\mathrm{U}}$ cannot be made to vanush at all pointa of $r=a$, no that the general problem of art. 2 cannot be solved by this type of analysis.

It is possuble to make one displacement zero for $r=a, h>z>-h$, and then to choose the constanta to make the other vanish for $r=a$ and particular values of z, such conditions construting approximations to the general case of the fixed edge.
We shall, therefore, discuss the problem of the plate under aniform pressure p over $z=+h$ with the following boundary conditions:-

$$
\begin{aligned}
& \text { (a) } w=0 \text { for } r=a, h>z>-h ; \overline{\mathrm{U}}=0 \text { for } r=a, z= \pm h, \\
& \text { (b) } \overline{\mathrm{U}}=0 \text { for } r=a, h>z>-h, w=0 \text { for } r=a, z=0,
\end{aligned}
$$

and shall refer to them subsequently as problems A and B respectively.
We have first to determine the number of terms required in the finite parts of the solutions in each cesse, the constante in the infinte series parts being, of course, determined by the stress boundary conditions over $z= \pm h$.

From equations (7) it is seen that the A^{\prime}, B^{\prime} constants are given in terms of the $\alpha^{\prime}, \beta^{\prime}$ constante, with the exception of B_{1}^{\prime}, which is leit undetermined.
The constants to be obtained from the edge boundary conditions can, therefore, be regarded as tho $\alpha^{\prime}, \beta^{\prime}$ constants, plus $B_{\mathbf{a}}{ }^{\prime}$. We ahall call these the accented constanta.

Suppose now that the finite part of avoontained terms up to, and inoluding, \mathbf{V}_{m}. Then the total number of acoented constants is $2 m+2$.
In virtue of equations (11) the finite parts of $\overline{\mathrm{U}}$ and $\overline{r z}$ can be expressed as series of odd powers of r, and the finite part of $\overline{z z}$ as a series of even powers (inoluding a term independent of r), the coeffloients involing z.

To satuefy the boundary conditions of problem A we must have $\mathrm{J}_{0}\left(k_{\mathrm{n}} a\right)=0$, and, at the finite part of w must slso vanish for $r=a$ and all values of z, we have $m+2$ relations between the accented constants, since the highest power of z oocurring $18 z^{m+1}$.
The $\widetilde{z z}$ conditions at $z=上 h$ give two relations between the constanta, and the $\overline{\mathrm{U}}$ conditions two more, making $m+6$ in all
In the case of problem B, the vanushing of $\overline{\mathrm{U}}$ at $r=a$ requires $\mathrm{J}_{1}\left(k_{n} a\right)=0$, and the vanishing of the finte part for $r=a$. The highest power of z occurring therenn is easuly seen to be z^{m}, so we have $m+1$ equations betwoen the accented constants The finite part of $\overline{r z}$ must vanush for $r=a, z= \pm h$, and this gives two relations between the constants, and, in applying the results of (94) and (35) to satiafy the $z z$ conditions at $z= \pm h$, we obtain two more Finally, the condition $w=0$ at $r=a, z=0$ provides a further equation, so that, as before, we have altogether $m+6$ relations between the mocented conotants

To solve each problem, then, we must take $m=4$.
It is clear that, by taking more terms, i.e increasing m, w could be made to satisfy further conditions at $r=a$ in problem \mathbf{B}, but the solutions become very lengthy, and, in any case, the man object in solving this particular problem is to indicate the effect, on the flexure of the plate, of assuming zero radial displacement

Making w vamish at $r=a, z=0$ will lead to a comparatively simple solution,* ${ }^{*}$
(16) Problem A-C'alculation of the Constants and the Stress-Dhsplacement System.

By the argument of the preceding article it is seen that the finite part of ω can be written (the V functions being obtained from (11))

$$
\begin{aligned}
& w=\alpha_{0}^{\prime}+\left(\alpha_{1}^{\prime}+\beta_{1}^{\prime} z\right) z+\left(\alpha_{2}^{\prime}+\beta_{2}^{\prime} z\right)\left(z^{2}-\frac{1}{1} r^{2}\right) \\
& +\left(\alpha_{s}{ }^{\prime}+\beta_{a^{\prime}} z^{\prime}\right)\left(z^{3}-s_{2} r^{8} z\right)+\left(\alpha_{0}{ }^{\prime}+\beta_{4}^{\prime} z\right)\left(z^{4}-3 r^{2} z^{2}+\frac{1}{1} r^{4}\right) .
\end{aligned}
$$

This must vapish for $r=a$ and all values of z, giving six equations between nine unknowns. Equations (7) determine all the $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$ constants in terms of these, except $\mathrm{B}_{\mathbf{2}}{ }^{\prime}$, so that there are lour undetermined constants, which we ahoose to be $a_{1}^{\prime}, \alpha_{1}^{\prime}, \alpha_{4}^{\prime}$, and B_{1}^{\prime}.

Omutting the algebri, the finite part of wo becomes

$$
w=\left(a^{\prime \prime}-r^{2}\right)\left[\dagger \alpha_{a^{\prime}}^{\prime}+\alpha_{a}^{\prime} z+\frac{3}{2} \alpha_{4}^{\prime} z^{2}-\frac{A}{8} \alpha_{4}^{\prime}\left(a^{1}+r^{2}\right)\right] .
$$

[^145]We now calculate $\overline{\mathrm{U}}, \overline{z z}$ and $\overline{\boldsymbol{r}}$, as given in art 13, and the resulta are as follows, the constants $A_{n}, B_{n}, C_{n}, D_{n}$ being replaced in terms of $\alpha_{n}, \beta_{n}, \gamma_{n}$, δ_{n} as shown in equations (9):-

$$
\begin{align*}
& \frac{1+\sigma}{\mathrm{E}} \cdot \overline{z z}=\left[4 \sigma \mathrm{~B}_{2}{ }^{\prime}+\alpha_{3}{ }^{\prime} a^{2}+2 \sigma \alpha_{2}{ }^{\prime} z+2 \sigma \alpha_{g^{\prime}} \varepsilon^{1}+3(1-\sigma) \alpha_{1} a^{2} a^{2}\right. \\
& \left.+2 \sigma \alpha_{s}^{\prime} z^{0}\right]-(1+\sigma)\left(\alpha_{0}^{\prime}+3 \alpha_{4}^{\prime} z\right) r^{2} \\
& \left.\begin{array}{rl}
+\sum_{1}^{z}\left[\left\{\alpha_{n}\right.\right. & \left.+\beta_{n} z+(1-2 \sigma) \frac{\delta_{n}}{k_{n}}\right\} \sinh \alpha_{n} z \\
& \left.+\left\{\gamma_{n}+\delta_{n} z+(1-2 \sigma) \frac{\beta_{1}}{k_{n}}\right\} \cosh k_{n} z\right] k_{n} \mathrm{~J}_{0}\left(k_{n} r\right)
\end{array}\right\} \tag{b3}
\end{align*}
$$

We now apply the atress boundary condtions, viz., $\bar{\pi}=0$ for $z= \pm h$, $\widehat{z z}=0$ for $z=-h, \bar{z} z=-p$ for $z=+h$, in each case for all values of r.
Putting $r=a, z= \pm h i n$ (53), the $\overline{z z}$ conditons givo

$$
\begin{align*}
& -\frac{1+\sigma}{2 \mathrm{E}} p=4 \sigma \mathrm{~B}_{1}^{\prime}-\sigma\left(a^{\mathrm{a}}-2 k^{\mathrm{s}}\right) \alpha_{1^{\prime}}^{\prime} \tag{5Б}\\
& -\frac{1+\sigma}{2 \mathrm{E}} \frac{p}{h}=2 \sigma x_{1}^{\prime}-2 \sigma\left(3 a^{\mathrm{a}}-h^{2}\right) a_{4}^{\prime} . \tag{56}
\end{align*}
$$

Denote by P_{n}, P_{n}^{\prime} the ooeffloiente of $J_{0}\left(k_{n} r\right)$ in $\overline{z z}$ with $z= \pm k$, and simularly by $Q_{n}, Q_{n}^{\prime}, R_{n}, R_{n}^{\prime}$ the coefficienta of $J_{1}\left(k_{n} r\right)$ in $\overline{r z}$ and \bar{U} respectively. Then $B_{n} \pm R_{n^{\prime}}^{\prime}$ and be expressed in termin of $P_{n} \pm P_{n}^{\prime}, Q_{n} \pm Q_{n} n^{\prime}$, and
these latter are obtained from the boundary conditions, by application of the equations (26) (30) and (31), in suoh forme, as, for example,

$$
\mathbf{P}_{n}+\mathbf{P}_{n}^{\prime}=-\frac{16(1+\sigma) a_{9}^{\prime} a^{1}}{k_{n}^{3} a^{\mathbf{3}} \mathrm{J}_{1}\left(k_{\mathrm{n}} a\right)} .
$$

The conditions $\overline{\mathrm{U}}=0$ at $r=a, z= \pm h$ then give, after considerable reduction,

$$
\begin{align*}
& B_{2}^{\prime}= {\left[-\frac{1-3 \sigma}{8(1-2 \sigma)}-\frac{1}{2} \frac{h^{2}}{a^{2}}+\frac{8\left(1-\sigma^{2}\right)}{1-2 \sigma} S_{1}-\frac{16 \sigma(1-\sigma)}{1-2 \sigma} S_{2}\right] \alpha_{3}^{\prime} a^{2} } \tag{57}\\
& \alpha_{a^{\prime}}^{\prime}\left[16 \sigma(1-\sigma) T_{2}+(1-2 \sigma) \frac{h^{2}}{a^{8}}\right] \\
&=\alpha_{1}^{\prime} a^{2}\left[48\left(1-\sigma^{2}\right)\left(T_{1}-2 T_{1}\right)+48 \sigma(1-\sigma)\left(1-\frac{h^{2}}{a^{2}}\right) \mathrm{T}_{2}\right. \\
&\left.+\frac{3(3-7 \sigma)}{4} \frac{h^{\mathrm{a}}}{a^{\mathrm{a}}}-(1-2 \sigma) \frac{h^{4}}{a^{4}}\right] \tag{88}
\end{align*}
$$

where

$$
\begin{align*}
& \mathrm{B}_{1}=\sum_{1}^{\pi} \frac{\sinh 2 k_{n} h}{\sinh 2 k_{n} h+2 k_{n} h} \frac{1}{k_{n}{ }^{4} a^{4}}, \quad \mathrm{~S}_{2}=\sum_{1}^{\infty} \frac{k_{n} h \cosh ^{2} k_{n} h}{\sinh 2 k_{n} h+2 k_{n} h} \frac{1}{k_{n}{ }^{4} a^{4}}, 7 \\
& \left.\mathrm{~T}_{1}=\sum_{1}^{\infty} \frac{k_{n}{ }^{9} h^{1} \sinh 2 k_{n} h}{\sinh 2 k_{n} h-2 k_{n} h} \frac{1}{k_{n}{ }^{0} a^{6}}, \quad \mathrm{~T}_{\mathrm{q}}=\sum_{1}^{n} \frac{k_{n} h \sinh ^{9} k_{n} h}{\sinh 2 k_{n} h-2 k_{n} h} \frac{1}{k_{n}{ }^{6} a^{4}},\right\} . \tag{B9}\\
& \mathrm{T}_{\mathrm{s}}=\sum_{1} \frac{k_{\mathrm{n}} h \sinh ^{2} h_{n} h}{\sinh 2 k_{n} h-2 k_{n} h} \frac{1}{k_{n}{ }^{0} a^{6}}
\end{align*}
$$

Equations (55) to (58) determine $\alpha_{9}{ }^{\prime}, \alpha_{a}^{\prime}, \alpha_{4}^{\prime}$ and B_{a}^{\prime}, and then $P_{n} \pm P_{n}{ }^{\prime}$, $\mathbf{Q}_{n} \pm \mathbf{Q}_{n}{ }^{\prime}$ are known, so that $\alpha_{n}, \beta_{n}, \gamma_{n}, \delta_{n}$ can be found, and the solution is oomplete.
(16) The Normal Deftexion of the Central Plane and the Lamiting Case of
a Thin Plate.

Equations (47) and (51) give, with $z=0$,

$$
v=\left(a^{9}-r^{4}\right)\left[\frac{1}{d} \alpha_{2}^{\prime}-\frac{f}{d} \alpha_{4}^{\prime}\left(a^{2}+r^{8}\right)\right]+\sum_{1}^{x} \alpha_{n} J_{0}\left(k_{k} r\right),
$$

and α_{n} is known in terms of $P_{a}-P_{n}{ }^{\prime}$ and $Q_{n}+Q_{n}{ }^{\prime}$.
The expression for w ultimately reduces to

$$
\begin{align*}
& -v=-\alpha_{a^{\prime}}\left[\frac{1}{}\left(a^{2}-r^{2}\right)+\frac{8 \sigma a^{4}}{h^{4}}\left(V_{r}+(1-2 \sigma) W_{r}\right\}\right] \\
& +\alpha_{4}^{\prime}\left[\frac{1}{1}\left(a^{4}-r^{4}\right)+\frac{24 \sigma a^{4}\left(a^{4}-h^{4}\right)}{h^{2}}\left(V_{r}+(1-2 \sigma) W_{r}\right\}\right. \\
& \tag{60}\\
& \left.\quad+\frac{48(1+\sigma) a^{4}}{h^{4}}\left\{W_{r}+(1-2 \sigma) X_{r}\right\}\right]
\end{align*}
$$

where

The forms of the infinite series in (59) and (61) are chosen so that the lipiting values, when $h / a \longrightarrow 0$, of the multipliers of the Bessel function terms are pure numbers, and thus the lumts of the above series can be found from the results of art 11. The formula (60) cannot be simplified, but we can obtain the formula for the deflexion at the centre of the plate $(r=0, z=0)$ in a shape permitting of exact or approxamate calculation for any specified value of h / a, and we can also show that (60) becomes the same as (17) in the limit when $h / a \rightarrow 0$. To obtain these results it is necessary to determine the constants α_{2}^{\prime}, α_{6}^{\prime} from (56) and (58) in appropriate forms, and to do this we anticipate some results to be obtained later (see art 17).

Thus we write

$$
\begin{equation*}
\mathrm{T}_{1}-2 \mathrm{~T}_{3}=\frac{h^{2}}{a^{2}} \mathrm{~T}_{4}=\frac{h^{2}}{a^{2}}\left(\frac{1}{64}+\frac{h^{\mathrm{a}}}{a^{2}} \mathrm{~T}_{4}^{\prime}\right) \quad \text { and } \quad \mathrm{T}_{2}=\frac{3}{128}+\frac{h^{2}}{a^{2}} \mathrm{~T}_{\mathrm{a}^{\prime}} \tag{62}
\end{equation*}
$$

Also, to the order of h^{1} / a^{2}, we have

$$
\begin{equation*}
V_{r}=\frac{1}{4} \Sigma_{5}+\frac{9}{40} \frac{h^{2}}{a^{2}} \Sigma_{3} ; \quad W_{r}=\frac{3}{1} \Sigma_{5}-\frac{1}{40} \frac{h^{3}}{a^{2}} \Sigma_{1} ; \quad X_{r}=t \Sigma_{5}-\frac{1}{40} \frac{h^{2}}{a^{2}} \Sigma_{3}, \tag{69}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Sigma_{s}=\sum_{1}^{\infty} \frac{J_{0}\left(k_{0} r\right)}{k_{4}^{3} a^{6} J_{1}\left(k_{n} a\right)}=\frac{1}{8}\left(1-\frac{r^{2}}{a^{2}}\right) ; \\
& \Sigma_{b}=\sum_{1}^{\infty} \frac{J_{0}\left(k_{n} \tau\right)}{k_{n}^{b} a^{6} J_{1}\left(k_{n} a\right)}=\frac{1}{128}\left(1-\frac{r^{8}}{a^{9}}\right)\left(3-\frac{r^{2}}{a^{2}}\right),
\end{aligned}
$$

by (26) and (27).
The above are approximate only, but whth $r=0$, for exsot calculation, we write

$$
\begin{equation*}
\mathrm{V}_{0}=\frac{9}{\delta 12}+\frac{h^{1}}{a^{2}} \mathrm{~V}_{0}^{\prime} ; \quad \mathrm{W}_{0}=\frac{\theta}{\delta 12}+\frac{h^{2}}{a^{1}} \mathrm{~W}_{0}^{\prime} ; \quad X_{0}=\frac{g}{\delta 12}-\frac{h^{2}}{\sigma^{2}} X_{0}^{\prime}, \tag{64}
\end{equation*}
$$

and then, putting $r=0$ in (60), calculating α_{9}^{\prime} and α_{6}^{\prime} using the equations (62), and replacing $\mathrm{V}_{0}, W_{0}, X_{0}$ by the expresains in (04), we obtain, finally,

$$
\begin{align*}
-w_{0}=\frac{p a^{4}}{64 \mathrm{D}}[3- & \frac{1+\frac{h^{2}}{a^{2}}\left\{\frac{128}{3} \mathrm{~T}_{2^{\prime}}+\frac{16}{3(1-\sigma \sigma}\right)}{16 \sigma(1-\sigma) \mathrm{T}_{a^{\prime}}-24\left(1-\sigma^{2}\right) \mathrm{T}_{4}^{\prime}}\left\{-1+32 \sigma \mathrm{~V}_{0}^{\prime}\right. \\
& \left.-32\left(2 \sigma^{\prime}+2 \sigma+3\right) \mathrm{W}_{0}^{\prime}-96(1+\sigma)(1-2 \sigma) \mathrm{X}_{0}\right\} \\
& \left.+\frac{16}{3 \sigma(\mathrm{l}-\sigma)}\left\{1+16 \sigma \mathrm{~V}_{0}^{\prime}+16 \sigma(1-2 \sigma) \mathrm{W}_{0}{ }^{\prime}\right\} \frac{h^{2}}{a^{2}}\right] \tag{68}
\end{align*}
$$

this expression permitting of direct comparison with the usual formula for thin plates. If, further, we replace $T_{a}{ }^{\prime}$ and T_{4}^{\prime} in (62) by their hmiting values, vi $\frac{1}{10}$ and $\frac{1}{2} \sigma$ reapectively, and use the results of (69), the expression for win (60) can be reduced in the limit to $-v=\frac{p\left(a^{2}-t^{2}\right)^{2}}{64 \mathrm{D}}$.

(17) The Numernal Calculation of the Infinue Serres involved.

We propose now to indioate methods of calculation which will give numerical results for thick plates and approwimations for plates whose thuckness, though small, cannot be neglected.

The numerical values, for specific values of h / a, of the various series can be obtained by direet calculation without undue labour in most cases correct to six or seven decimal places.

In some casee, however, the procedure involves finding a remainder after the calculation of the first few terms, the expressions involving h being replaced by simpler expressions, uee being made of the facts that the dufferences of
 large, $\mathrm{J}_{1}(x)= \pm \sqrt{\frac{2}{\pi x}}$ approximately.

For $h / a=t$ it is usually aufficient to calculate about ten terms and then to find a remainder; for $h / a=\$$ fewer terms would be requred.

These methods become impossibly laborious for amaller values of h / a, asy of the order of $1 / 10$, but suitable approximations can be obtained in such ouses by expanding the terms in the series involving h in powers of $\boldsymbol{k}_{n} h$ and applying the results of art. 11.

Thus, for example, we have

$$
\begin{gathered}
\sum_{1}^{\infty} \frac{k_{n} h^{2} \sinh ^{\sinh } 2 k_{n} h}{2 k_{n} h-2 k_{n} h} \frac{1}{k_{n}^{6} a^{8}}=\frac{3}{2} \sum_{1}^{\mathrm{D}}\left[1+\frac{7}{15} k_{n}^{9} h^{2}+\frac{11}{525} k_{n}^{4} h^{4}+\ldots\right] \frac{1}{k_{n}{ }^{6} a^{6}} \\
=\frac{1}{128}+\frac{7}{320} \frac{h^{9}}{a^{2}}+\frac{11}{1400} \frac{h^{4}}{a^{4}}+\ldots
\end{gathered}
$$

by equations (33), and it is found that the expression written down is a very close approxamation even for values of h / a as large as $\frac{1}{4}$.

The alove procedure 18 not, perhaps, aufficiently rigorous as it stands, but the values of the series can be shown to lie between limits which are pretty close if h / a is not too large

Table I on p. 681 gives results for the senes whioh occur in the disoussion of problem A, some of the approxmations are not valid for other than small values of h / a, so that the results must be used with discretion
(18) Numerical Values of the Central Normal Deflexion for a Thok Plate.

Equation (65) gives the requred expression for w at $r=0, z=0$,
From the results of the last article it is seen that $\mathrm{V}_{0}{ }^{\prime}, \mathrm{W}_{0}{ }^{\prime}, \mathrm{X}_{\mathrm{o}}{ }^{\prime}$ can all be expressed spproximately in terms of h / a correct to the order of h^{2} / a^{2}, but, unfortunately, T_{a}^{\prime} and T_{i}^{\prime} cannot, so that only thear lumiting values are lnown. Thus a simple expression for v_{0} correct to the order of h^{2} / a^{2} cannot be found, but exact resulta for $h / a=\frac{1}{4}$ and $h / a=\frac{1}{2}$ can be given, and these are important as showing the great divergence between the laws governing the bending. of a thick plate and that of a thin clamped plate.

Takng $\sigma=\frac{1}{6}$, equation (65) gives the results,

$$
\left.\begin{array}{l}
\text { for } h / a=\frac{1}{1}, \tag{66}\\
\text { for } h / a=\frac{1}{1}, \quad-w_{0}=\frac{p a^{4}}{64 \mathrm{D}} \times 1 \cdot 3612 \\
\frac{p a^{4}}{64 \mathrm{D}} \times 22262
\end{array}\right\}
$$

whilst with $\sigma=\frac{1}{3}$, the results are

$$
\left.\begin{array}{l}
\text { for } h / a=t \quad-w_{0}=\frac{p a^{4}}{84 D} \times 1.4918 \tag{67}\\
\text { for } h / a=\frac{1}{1} \quad-w_{0}=\frac{p a^{4}}{64 D} \times 2.9312
\end{array}\right\}
$$

The above are outaide values of a, but it is important to notice the marked effect on the deflexion formule of varistions in σ.
Table I

Sanes.	Approximation	Correct relue $h / a=1$	$\begin{gathered} \text { Approximate } \\ \text { ralue } \\ h_{j}=1 \end{gathered}$	$\begin{gathered} \text { Correct } \\ \text { ralue } \\ b_{1} / a=1 \end{gathered}$	
	$\frac{1}{64}+\frac{1}{24} \frac{\mathrm{~N}^{4}}{\mathrm{a}^{2}}$	0017714	0018229	-	-
	$\frac{1}{128}+\frac{1}{24} \frac{k^{2}}{a^{2}}$	00102985	00104167	-	-
	$\frac{1}{128}+\frac{7}{320} \frac{h^{2}}{a^{2}}+\frac{11}{1+00} \frac{h^{4}}{a^{4}}$	00098062	000921038	00137394	001377232
	$\frac{3}{128}+\frac{1}{40} \frac{h^{1}}{5^{4}}$	002491075	025000	002808015	00298875
	$\frac{1}{256}+\frac{1}{320} \frac{h^{1}}{\sigma^{2}}-\frac{1}{4200} \frac{h^{4}}{\sigma^{4}}$	000410059	0 00410063	000467058	00046726
	$\frac{\theta}{512}+\frac{9}{320} \frac{h^{1}}{\sigma^{2}}-\frac{157}{11200} \frac{h^{4}}{\sigma^{4}}$	00192812	00182812	002373002	00237333
$W_{0}=\sum_{1}^{0} \frac{k_{N} k k^{2} \sinh E_{n} h}{\sinh 2 k_{j} h-2 k_{-j} h} \frac{1}{k_{n}{ }^{4} d^{d} J_{1}\left(k_{n} a\right)}$	$\frac{9}{512}-\frac{1}{320} \frac{k^{9}}{\sigma^{2}}-\frac{17}{11200} \frac{h^{4}}{\alpha^{4}}$	0 0173769	00173769	001670219	00167020
	$\frac{3}{512}-\frac{1}{320} \frac{h^{1}}{a^{2}}+\frac{19}{33600} \frac{h^{4}}{c^{4}}$	00056656	00056663	000511368	000511347

The blanks in the above table must be taken to imply that the appronimataons are not sufficiently close to be usable
(19) The Defferwass at the Centres of the Upper and Lower Surfaces of a Thook Plate.
In expenmenting with plates the deflexion can be measured only at the flat surface other than that to which pressure is applied, and so it is important to calculate the value of w at the point $r=0, z=-h$.

It is shown bolow, however, for a plate in which $h / a=\downarrow$ or less, that there is little variation between the values of w at the pount $r=0, z=0, z= \pm h$. Denoting by $w_{+\infty}, w_{-h}$ tho normal displacements at $r=0, z= \pm h$, we have, naturally, $w_{+n}>w_{0}>w_{-A}$.

From (47) and (51) we find $w_{+A}-w_{-h}=2 a^{2} \alpha_{a}^{\prime} h+\sum_{1}^{\infty}\left(\beta_{n} h\right.$ oosh $k_{n} h$ $+\gamma_{n}$ anh $\left.k_{n} h\right)$, and β_{n}, γ_{n} are known in terms of $P_{n}+P_{n}^{\prime}$ and $Q_{n}-Q_{n}^{\prime}$, whilst α_{a}^{\prime} is found from (55) and (57). Replacing the various senes that occur by ther values as given by (29), or by ther apprommsto values determined as in art. 17, as the case may be, we find the approxmate result

$$
\begin{equation*}
0_{+\Lambda}-w_{-\Lambda}=\frac{256(1-2 \sigma)}{9\left\{1-3 \sigma-\frac{1}{3}(1-\sigma)^{2} \frac{h^{2}}{a^{2}}\right\}} \frac{h^{6}}{a^{6}} \cdot \frac{\rho a^{4}}{64 \mathrm{D}} \tag{68}
\end{equation*}
$$

Thus ahows that the dufference between the dusplacements is of a high order in h / a, and, although only approxmate, should give results of the correct order of magnitude.
With $h / a=f$ and $\sigma=1$ we find $w_{+h}-w_{-h}=\frac{2}{117} \cdot \frac{p a^{4}}{64 D}$, and sunce the central duplaoement in this case is $v_{0}=\frac{p a^{4}}{64 \mathrm{D}} \times 1 \cdot 3612$, the difference between $w_{+\Delta}$ and w_{-a} is only about $1 \ddagger$ per cent of w_{0}, and so can be neglected for experimental purposes.
(20) Stress Calculations for the Thuck Plate.

The expressions for $\tilde{z z}$ and $\widehat{r z}$ are given by (59) and (54), and those for the remaining stresses are as follows :-

$$
\begin{align*}
& -\sum_{1}^{\pi}\left[\left\{\alpha_{n}+\beta_{2} z+(3-2 \sigma) \frac{\delta_{n}}{k_{n}}\right\} \operatorname{aunh} k_{n} z\right. \\
& \left.+\left\{\gamma_{n}-1 \delta_{n} z+(3-2 \sigma) \frac{\beta_{n}}{k_{n}}\right\} \cosh k_{n} z\right] k_{n} J_{0}\left(k_{n} r\right) \tag{60}\\
& +\sum_{1}^{\sum}\left[\left\{\alpha_{z}+\beta_{n} z+(3-4 \sigma) \frac{\delta_{n}}{k_{n}}\right\} \sinh k_{n} z\right. \\
& \left.\left.+\left\{\gamma_{n}+g_{n} z+(9-4 \sigma) \frac{\beta_{n}}{k_{n}}\right\} \cosh k_{n} z\right] \frac{J_{1}\left(k_{n} r\right)}{r} .\right\}
\end{align*}
$$

$$
\begin{align*}
& \left.\frac{1+\sigma}{\mathrm{E}} \overparen{\theta \theta}=2 \mathrm{~B}_{2}^{\prime}-1 \alpha_{3}^{\prime} a^{2}-1 \sigma \alpha_{3}^{\prime} r^{2}+\left(\alpha_{2}^{\prime}-3 \alpha_{4}^{\prime} a^{2}-\jmath \sigma \alpha_{1}^{\prime} r^{2}\right) z+\alpha_{3}^{\prime} z^{2}+\alpha_{1}^{\prime} z^{a}\right) \\
& -2 \sigma{\underset{1}{2}}_{\operatorname{Li}}^{x}\left(\delta_{n} \sinh k_{n} z+\beta_{n} \cosh k_{n} z\right) J_{0}\left(k_{n} r\right) \\
& -\sum_{1}^{\mathbb{E}}\left[\left\{\alpha_{n}+\beta_{n} z+(3-4 \sigma) \frac{\delta_{n}}{k_{n}}\right\} \sinh k_{n} z\right. \tag{70}\\
& \left.\left.+\left\{\gamma_{n}+\delta_{n} z+(3-4 \sigma) \frac{\beta_{n}}{k_{n}}\right\} \cosh k_{n^{2}} z\right] \frac{J_{1}\left(k_{n} r\right)}{r},\right\}
\end{align*}
$$

With these equations the stresses may be calculated at various pounts insile and on the boundary of the plate, results of simple form being obtained by using the apprommate methods outhnod in art 17. Whilst not strictly accurate, they cannot be more than one or two per cent in error provided that h / a does not exceed $\frac{1}{4}$, and they suffice to indicato the distribution of atress throughout the plate Certain of the results require careful examination as they present strilang differences from the corresponding stress values deduced from the rational integral solution (see art. 0).

Thus, putting $r=a$ in (69) and (70), and using (52) with $\overline{\mathrm{U}}=0$ for $r=a$, $z= \pm h$, we find

$$
\begin{aligned}
\frac{1+\sigma}{(1-\sigma) E}(\tilde{(r})_{r=a} & =\frac{1+\sigma}{\mathrm{E}}(\tilde{r r}+\hat{\theta \theta})_{r=a} \\
& =4 \mathrm{~B}_{\mathbf{2}}^{\prime}-\left(a^{2}-2 h^{2}\right) \alpha_{s}^{\prime} \pm 2 h\left\{\alpha_{a_{2}}^{\prime}-\left(3 a^{2}-h^{2}\right) \alpha_{1}^{\prime}\right\} \\
& =-\frac{1+\sigma}{\mathrm{E} \sigma} p \text { or } 0,
\end{aligned}
$$

by equations (55) and (D6).
The stresses $\widehat{F r}$ and $\widehat{\theta \theta}$ are thus of the order of p only at the edge for any value of h / a, whilst with the rational integral solution they can be shown to be of order $p a^{1} / h^{2}$, whiohever of the various sets of boundary conditions in arts. 6 and 7 be assumed, in particular the set $\overline{\mathrm{U}}=0$ for $\tau=a, z= \pm k, w=0$ for $r=a, z=0$.

This latter set would appear, at first sight, to tend to the edge conditions of prohlem A, when $h / a \longrightarrow 0$, but, as the value of $\partial w / \partial z$, which is zero in the latter case, is of order $(p / E) a^{2} / h^{1}$ in the former, the two sets of boundary conditions are not effectively the same even for a thin plate

The point has been ressed* that the discrepancy may occur because certain of the series have a discontinuity at $r=a, z= \pm h$, due to non-iniform

[^146]convergence in the range 0 to a. If the terms in $\overline{r r}$ and $\overline{\theta \theta}$, with $z= \pm \bar{h}$, involving $\mathrm{J}_{0}\left(k_{n} r\right)$ are written out in full, we find series of the types
$$
\sum_{1}^{\infty} f\left(h_{n} h\right) \frac{J_{0}\left(k_{n} r\right)}{k_{n} a^{3} J_{1}\left(k_{n} a\right)}, \quad \sum_{1}^{\infty} F\left(k_{k} h\right) \frac{J_{0}\left(k_{n} r\right)}{k_{n}{ }^{5} a^{5} J_{1}\left(k_{n} a\right)},
$$
the functions f and F being of the same general form as already met whth in equations (69) and (61), and such senes are absolutely and uniformly convergent in the range 0 to a.
An eramination of the conditions near the edge, say at $r=a-\varepsilon$, shows that the terms in $\widehat{r r}$ and $\overline{\theta \theta}$ involving $J_{0}\left(k_{*} r\right)$ contribute an expression which venighes with c , but beoomes large, and of order $p a^{2} / h^{2}$ or higher if c be taken of the order of h / a, so that there is a very rapid variation of stress near the edge if the plate is thin, but no actual discontinuty.

The boundary conditions of problem A do not therefore approximate to any of those previously considered, nor can they be considered as the equivalent of those of problem B when the plate $1 s$ thin.
The collected results for the stresses are given in tabular form below, those which are vald for any value of h / a being starred, and the remainder must be regarded as accurate only to the order of the lowest power of a/h occurring.

Thus, for example, at $r=0, z=+h \bar{\pi}=-\frac{3 p}{32}(1+\sigma) \frac{n^{8}}{h^{8}}-\frac{\sigma p}{1-\sigma}$ plus additional terms of the order of $p h^{1} / a^{2}$ which, however, the approximate methode employed do not enable us to obtann.

For thick plates the position and magnitude of the greatest stresa will depend on the values of σ and h / a; thus for $\sigma=\frac{1}{2}$ and $h / a=\frac{1}{6}$ it would appear that
 $(\overline{r r})_{r=1}^{0}=-\frac{5 p}{2}$

In the oase of defintely thick plates the variation of strese near the edge comphestes the question too muoh for a definits suswer to be given.

Table II.

Strese	$r=0, z=0$	$r=0,2 m+h$	$r=0.2=-h$	$r=a, z=0$	$r=a, z=+h$	$r=a, z=-h$
\cdots / p	$-\frac{\pi}{2(1-\sigma)}$	$-\frac{3}{32} \frac{(1+\sigma) a^{\mathbf{1}}}{h^{\mathbf{2}}}-\frac{\sigma}{1}-\bar{\sigma}$	$\frac{3}{32}(1+\sigma) \frac{a^{3}}{h^{3}}$	$\frac{1-2 \sigma-2 \mu^{1}}{4 \sigma(1-\sigma)}$	$-\frac{1-\sigma^{*}}{}{ }^{*}$	$0{ }^{*}$
60/p	$-\frac{\sigma}{2(1-\sigma)}$	$-\frac{3}{3 \overline{2}}(1+\sigma) \frac{a^{1}}{h^{1}}-\frac{\sigma}{1-\sigma}$	$\frac{3}{32}(1+\sigma) \frac{a^{1}}{h^{1}}$	$\frac{1-2 \sigma-2 \sigma^{\prime}}{4(1-\sigma)^{\prime}}$	- 1*	$0{ }^{*}$
\% $2 / 5$	-1	-1'	0^{*}	$\frac{1-2 \sigma-2 \sigma^{\prime}}{4(1-\sigma)^{1}}$	- ${ }^{\text {* }}$	0^{*}
$\widetilde{r} / 1 / p$	0^{*}	0^{*}	0^{*}	3n/h	$0{ }^{\text {- }}$	0°

(21) Problem B-Calculation of the Stress-Displacement System.

By the argument of art 14 it is seen that the A^{\prime}, B^{\prime} constants which occur bre $A_{a}^{\prime}, A_{s}^{\prime}$. $A_{6}^{\prime}, B_{a}^{\prime}, B_{s}^{\prime} \ldots B_{0}^{\prime}$, and since the polynomals in \bar{U} and $\overline{r z}$, equations (48) and (50), roust vanish for $r=a$ and all values of z, by resson of $\mathrm{J}_{1}\left(k_{\mathrm{n}} a\right)=0$, we have seven hnear equations botween these ten constants.

The stress boundary conditions satisfied by $\overline{\boldsymbol{z}}$ and $\overline{z z}$ at $z= \pm h$ give, by use of (34) and (37), two further equations between the A^{\prime}, B^{\prime} constants, and also determbe $P_{a} \pm P_{n}{ }^{\prime}, Q_{n} \pm Q_{n}^{\prime}$ in terms of the A^{\prime}, B^{\prime} constants (actually only B_{6}^{\prime} is involved) and functions of $k_{n} a$

We bave, thus, nune equations wheh determine ull the constants, except A_{1}^{\prime}, as follows.-

$$
\begin{align*}
& A_{\mathbf{a}^{\prime}}^{\prime}=\frac{(1+\sigma) p}{24(1-\sigma) E}, \quad A_{i}^{\prime}=-\frac{(1+\sigma) p a^{\mathrm{a}}}{64 \bar{E} h^{2}(1-\sigma)}\left(1-2 \frac{h^{2}}{a^{2}}\right), \\
& A_{i}^{\prime}=-\frac{(1+\sigma) p}{240 E h^{3}(1-\sigma)}, \\
& B_{\mathbf{a}^{\prime}}=-\frac{(1+\sigma) p}{8 \mathrm{E}(1-\sigma)}, \quad B_{3^{\prime}}^{\prime}=\frac{(1+\sigma) p a^{1}}{64 E h^{\mathbf{1}}(1-\sigma)}\left(1-4 \frac{h^{\mathrm{a}}}{a^{\mathrm{a}}}\right), \tag{71}\\
& \mathrm{B}_{\mathrm{b}}{ }^{\prime}=\frac{(1+\sigma) p}{160 \mathrm{E} h^{3}(1-\sigma)}, \\
& A_{b}{ }^{\prime}=B_{a}^{\prime}=B_{a}^{\prime}=0 \\
& \text { VOL. 0IIT.—4. }
\end{align*}
$$

The $\alpha^{\prime}, \beta^{\prime}$ constants are known in terms of the A^{\prime}, B^{\prime} constants by equations (7), and so we find the following expression for w,

$$
\begin{align*}
& w=\left[-2 A_{a^{\prime}}-\frac{3(1+\sigma)(3-2 \sigma) j 2^{2}}{64(1-\sigma) E h^{2}}\left\{1-\frac{8(1-\sigma)}{3-2 \sigma} \frac{h^{2}}{a^{2}}\right\} r^{2}\right. \\
& \left.+\frac{3(1+\sigma)(3-2 \sigma)}{128(1-\sigma) E h^{3}} r^{4}\right] \\
& -\frac{(1+\sigma)(1-2 \sigma) p_{2}}{2(1-\sigma) E} z+\left[\frac{3(1+\sigma) p a^{2}}{1 \theta E h^{3}}, 1-\frac{2(1-2 \sigma)}{1-\sigma} \frac{h}{}_{a^{2}}^{4}\right\} \tag{72}\\
& \left.-\frac{3(1+\sigma) p}{8 E h^{8}} r^{2}\right] z^{8} \\
& +\frac{(1+\sigma)(1-2 \pi)}{16(1-\sigma) E h^{5}} z^{4}+\bar{\Sigma}_{1}\left\{\left(\alpha_{n}+\beta_{n} z\right) \cosh k_{n} z\right. \\
& \left.\left.+\left(\gamma_{0}+\delta_{n} z\right) \sinh k_{n} z\right) \mathrm{~J}_{0}\left(k_{n} r\right)\right]
\end{align*}
$$

$\mathrm{A}_{\mathbf{2}}{ }^{\prime}$ ie determined by the condtion $w=0$ for $r=a, z=0$, во that it can be found when $\sum_{1}^{\infty} \alpha_{n} J_{0}\left(k_{n} a\right)$ is known, and α_{n} depends on $P_{n}-P_{n}^{\prime}, Q_{n}+Q_{n}{ }^{\prime}$, which involve B_{6}^{\prime}, and this constant is given sbove

Thus all the constants are determined and the problem may be regarded as solved.

(22) The Bending of the Muddle Surface, and the Central Normal Deffeawon.

Since $w=0$ for $r=a, z=0$, (72) gives with $z=0$,

$$
\left.\begin{array}{rl}
w= & \frac{3(1+\sigma)(3-2 \sigma) p a^{2}}{64(1-\sigma) E h^{8}}\left\{1-\frac{8(1-\sigma)}{3-2 \sigma} \frac{h^{2}}{a^{2}}\right.
\end{array}\right\}\left(a^{2}-r^{2}\right),
$$

We find

$$
\begin{equation*}
\sum_{1}^{E} \alpha_{\pi} J_{0}\left(k_{\sigma} r\right)=\frac{3(1+\sigma)(2-\sigma) p a^{4}}{(1-\sigma) E \hbar^{4}}\left[L_{4}+(1-2 \sigma) M_{1}\right] \tag{74}
\end{equation*}
$$

where

The coefficents involving h in I_{r} and M_{r} are the same as those of the series W_{r} and X_{r} of equastions (61), and so we can write as in (63)
correct to the order of h^{2} / a^{2}.
Thus, by (35), we have

$$
\left.\begin{array}{l}
\mathrm{L}_{\llcorner }=-\frac{1}{256}\left(2-6 \frac{r^{2}}{a^{2}}+3 \frac{r^{4}}{a^{4}}\right)+\frac{h^{2}}{a^{2}} \mathrm{~L}_{4^{\prime}} \tag{77}\\
\mathrm{M}_{4}=-\frac{1}{768}\left(2-6 \frac{r^{2}}{a^{2}}+3 \frac{r^{4}}{a^{4}}\right)+\frac{h^{2}}{a^{2}} M_{r^{\prime}}^{\prime}
\end{array}\right\} .
$$

where $\mathbf{L}_{r}^{\prime}, \dot{M}_{r}^{\prime}$ are assumed to be defince by these equations, whilst, for amall values of h / a, we have by (76) and (34),

$$
\mathrm{L}_{r}^{\prime}=\mathrm{M}_{r^{\prime}}^{\prime}=\frac{1}{320}\left(1-2 \frac{r^{2}}{a^{4}}\right) .
$$

Putting $r=a$ in (77) we have

$$
\left.\begin{array}{l}
\mathrm{L}_{\mathbf{a}}=\frac{1}{25 \mathrm{G}}+\frac{h^{2}}{a^{2}} \mathrm{~L}_{a}^{\prime} \tag{78}\\
\mathrm{M}_{\mathrm{a}}=\frac{1}{788}+\frac{h^{\mathrm{a}}}{a^{2}} \mathrm{M}_{\mathrm{a}}^{\prime}
\end{array}\right\}
$$

so that $\sum_{1}^{\circ} a_{2} J_{0}\left(k_{n} a\right)$ can be found.
Using (74), (77) and (78), the oxpression for w in (73) reduces to

$$
\begin{align*}
&-v=\frac{p a^{4}}{64 D}\left[\left(1-\frac{r^{2}}{a^{1}}\right)^{2}+\frac{h^{2}}{a^{2}}\left\{\frac{16}{1-\sigma}\left(1-\frac{r^{2}}{a^{2}}\right)\right.\right. \\
&\left.\left.\quad-\frac{128(2-\sigma)}{(1-\sigma)^{2}}\left(L_{r^{\prime}}^{\prime}-I_{a^{\prime}}^{\prime}+(1-2 \sigma)\left(M_{a^{\prime}}^{\prime}-M_{a}^{\prime}\right)\right)\right\}\right] . \tag{79}
\end{align*}
$$

In the limiting case when $h / a \longrightarrow 0$ we got back to the usunl result.
To find the central normal deflexion we put $r=0$ in (79) so that the values of $\mathrm{I}_{\mathrm{a}^{\prime}}, \mathrm{M}_{0}^{\prime}, \mathrm{L}_{n^{\prime}}, \mathrm{Ma}^{\prime}{ }^{\prime}$ are requirod.
Using the approumate methods of art. 17 and the equations (40), wo have

$$
\left.\begin{array}{ll}
L_{0}=-\frac{1}{128}+\frac{1}{320} \frac{h^{2}}{a^{2}}, & M_{0}=-\frac{1}{384}+\frac{1}{320} \frac{h^{1}}{a^{2}} \\
L_{4}=\frac{1}{266}-\frac{1}{320} \frac{h^{1}}{a^{4}}, & M_{a}=\frac{1}{768}-\frac{1}{320} \frac{h^{4}}{a^{4}} \tag{80}
\end{array}\right\} .
$$

The realts in (80) are reasonably acourate for values of h / a up to t.

Thus, for $k / a=\frac{1}{2}$, (80) gives $\mathrm{L}_{0}=-00076172$, the correot value being -0.00760833 , and for $h / a=\frac{1}{2}$, the respective values are -0.00703125 and -0.00684590 , sumlar resulta holding for tho other senes, so that the approximations (80) may be taken as vald for any value of h / a lukely to occur in practice. Hence, to this degree of approrimation, $\mathrm{L}_{4}{ }^{\prime}=\mathrm{M}_{0}{ }^{\prime}=\frac{1}{320}=-\mathrm{L}_{0}{ }^{\prime}$ $=-M_{a}{ }^{\prime}$ and we have from (79)

$$
\begin{equation*}
-w_{0}=\frac{p a^{4}}{64 \mathrm{D}}\left[1+\frac{8(8+\sigma)}{\sigma^{4}(1-\sigma)} \frac{h^{2}}{a^{2}}\right] . \tag{81}
\end{equation*}
$$

With $h / a=t$ and $\sigma=\frac{1}{}$, this formula gives $2 \cdot 1$ times the deflexion given by the thun plate formula, and with $\sigma=\frac{1}{4}$, the ratio 192.25

For direct comparison with experimental reaults, the deflexion at $r=0$, $z=-h_{\text {is required (see art. 19). }}$
This can be calculated from the foregoing analysis, and the final result is

$$
\begin{equation*}
\omega=\frac{3 p a^{4}(1+\sigma)}{128 \mathrm{E} h^{2}}\left[1-128(2-\sigma)\left(\mathrm{X}_{0}-\mathrm{X}_{a}\right)\right] \tag{82}
\end{equation*}
$$

where

$$
\mathbf{X}_{r}={\underset{1}{5}}_{\frac{5}{3} n h 2 k_{n} h-2 k_{n} h \cosh h_{n} h}^{\sinh 2 k_{n} h-2 k_{n} h} \frac{J_{0}\left(k_{n} r\right)}{k_{n} a^{\top} J_{0}^{4}\left(J_{n} a\right)} .
$$

We find the approximations, using the resulta (40),

$$
\left.\begin{array}{l}
\mathrm{X}_{0}=\frac{1}{192}+\frac{1}{40} \frac{h^{2}}{a^{2}} \tag{83}\\
\mathrm{X}_{a}=-\frac{1}{384}-\frac{1}{40} \frac{h^{2}}{a^{4}}
\end{array}\right\} .
$$

For $h / a=\frac{1}{\hbar}$, the approxumate and correct values of X_{0} are 000677083 and 00066559 , and for X_{a} they are -0.004187 and -0.00399661 , the latted not being in partioularly good agreement.

The approximation to (82) is, therefore,

$$
\begin{equation*}
-w=\frac{p a^{4}}{04 \overline{\mathbf{D}}}\left[1+\frac{32}{\bar{b}} \frac{2-\sigma}{1-\sigma} \frac{h^{2}}{a^{\mathrm{B}}}\right] . \tag{84}
\end{equation*}
$$

This equation gives, as we shall sce, resulte in fair agreement with expenment. It should be notioed that the difference between the deflecion at $r=0, z=0$ snd at $r=0, z=-h$ are here greater than in the case of problem A.

(23) Stress Caloulations for the Thick Plate

The atresses at varions points in the plate are determined as in art. 20, and, as befors, certain of the resulta are exact, eapecially for the value $\mathbf{z = 0}$.

This arises from the fact that β_{n} and γ_{n} are found to vanish in thas solution, and so the expressions for the stresses involve only the finite terms when $z=0$.

The result $\overline{r z}=\frac{3 p a}{8 h^{5}}\left(h^{9}-z^{9}\right)$ should be noticed in comparison with that given in equation (20), viz,$\overline{\tau z}=\frac{3 p r}{8 h^{\mathbf{j}}}\left(h^{2}-z^{2}\right)$

There is some littlo difficulty in determining approximate values for $\widetilde{r r}$ and $\hat{\theta \theta}$ when $z= \pm h$ Thus, for $r=0, z= \pm h$ we find in the expressions for these atresses, besides terms in p and $p a^{2} / h^{2}$, a term of the type $\frac{p a^{4}}{h^{6}}\left(S-2 S^{\prime}\right)$, where

$$
\begin{aligned}
& \mathbf{S}=\sum_{1} \frac{k_{n}{ }^{9} h^{2} \sinh 2 k_{n} h}{2 k_{n} h-2 k_{n} h} \frac{1}{k_{n} a^{4} \mathrm{~J}_{0}\left(k_{n} a\right)}=-\frac{1}{64}-\frac{7}{80} \frac{h^{2}}{a^{9}} \\
& \mathbf{S}^{\prime}=\sum_{1}^{\sum} \frac{k_{n} h \sinh 2 k_{n} h}{\sinh 2 k_{n} h-2 k_{n} h} \frac{1}{k_{n}{ }^{4} a^{4} \mathrm{~J}_{0}\left(k_{n} a\right)}=-\frac{1}{128}-\frac{1}{80} \frac{h^{\mathbf{2}}}{a^{\mathrm{a}}}
\end{aligned}
$$

Approrimately, $\mathrm{g}-2 \mathrm{~S}^{\prime}=-\frac{1}{16} \frac{h^{2}}{a^{2}}$, correct to the order of h^{2} / a^{2}, and we should have terme in p if the approximation could be carried as far as h^{4} / a^{4},

The correct value of $\mathrm{S}-2 \mathrm{~S}^{\prime}$ for $h / a=\$$ is -0.0040342 as aganst the approximate value -0.0039062δ, the values being aufficiently close to permit of the omisesion of the extra terms in p.

For $r=a, z= \pm h$ we heve similar terms $\frac{p a^{4}}{h^{4}}\left(\dot{T}-2 T^{\prime}\right)$, where

$$
\begin{aligned}
& \mathrm{T}^{\prime}=\sum_{1}^{2} \frac{k_{n} h \sinh { }^{2} k_{\mathrm{p}} h}{\sinh 2 k_{n} h-2 k_{n} h}{h_{n}{ }^{4} a^{4}}_{1}^{250}+\frac{1}{80} \frac{1}{a^{2}} .
\end{aligned}
$$

Here the approxmation $T-2 T^{\prime}=\frac{1}{16} \frac{h^{2}}{a^{2}}$ is not very good, since for $h / a=\frac{1}{2}$ the correct value is $0 \cdot 00477417$.

We cannot, therefore, neglect the extra term, and we write $T-2 T$ mex $\frac{1}{1 \theta} \frac{h^{4}}{a^{1}}+k \frac{h^{4}}{a^{4}}$, where k is an undetermined quantity which varies with h / a, and so we have a term $p k$ in the expressions for the atresses.

For $h / a=t$ we find $k=0.222$.
The values of the atresses at various pointa are given below, it being understood that the remarks of art. 20 have equal force in this case.

Correot resultas are starred as before.
C. A. Clemmow.
Tsble III.

Btreses.	$r=0, z=0$.	$r=0, z=+h$.	$r=0,2=-4$.	$r=a, z=0$	$r=a, z=+h$.	$r=a, z=-b$
$\bar{\sim} / p$	$-\frac{\sigma}{2(1-\sigma}=$	$-\frac{\sigma}{1-c}-\frac{3 a^{2}}{32 b^{2}}$	$\frac{1820}{3205}$	$-\frac{\sigma}{2(1-\sigma)}$.	$-\frac{\sigma}{1-\sigma}+\frac{3(1+\sigma) t}{2(1-\sigma)}+\frac{3(2-\sigma) a^{4}}{32(1-\sigma) h^{2}}$	$-\frac{3(1+\sigma) k}{2(1-\sigma)}-\frac{3(2-\sigma) \sigma^{\text {a }}}{32(1-\sigma) d^{\text {d }}}$
$0 / 8$	$-\frac{\theta}{2(1-\theta)}$	$-\frac{c}{1-\sigma}-\frac{3 a^{2}}{3 \sum h^{2}}$	$\frac{304}{325^{2}}$	$-\frac{\sigma}{2(1-\sigma)} .$	$-\frac{\sigma}{1-\sigma}+\frac{3(1+\sigma) t}{2(1-\sigma)}-\frac{3 n a^{2}}{32(1-\sigma) h^{2}}$	$-\frac{3(1+\sigma) k}{2(1-\sigma)}+\frac{3 \sigma \pi^{2}}{39(1-\sigma)^{4}}$
${ }_{2}{ }^{2} \mathrm{p}$	-1*	- ${ }^{*}$	0	- 1*	-1^{*}	$0 \times$
$\underline{m} / \mathrm{p}$	$\frac{2 \text { 2m }}{81}$	$0{ }^{*}$	08	$\frac{3 \mathrm{pa}}{8 .}$	$0{ }^{\circ}$	$0^{\mathbf{2}}$

For $h / a=\frac{1}{6}$, we have $k=0222$, so that, with $\sigma=\frac{t}{2}$, the numerically greateat stress is $(\tilde{r})_{r=-a}=-\frac{7+5 k}{2} p=-4.05 p$, which is somewhat greater than in the previous case (see Table II).

The values of $\overline{\mathrm{rr}}$ and $\overline{\theta 0}$ at $r=a, z= \pm h$ are of the order of $p a^{2} / h^{2}$ in contrast to the results of problem A, and this is considered, as before (art 20), to be due to the fact that $\partial_{w} / \partial z$ is of the order of $p a^{2} / \mathrm{K} h^{2}$ at the edge in this case, so that the conditions of problems A and B do not become equivalent when $h / a \longrightarrow 0$.
(24) Some Problems of Non-Unıform Loading.

We propose now to consider briefly some cases of non-uniform loadng, the object being rather to indicate methods than to work out particular problems in detal The loading is considered to be symmetrical, so that we have $\overline{z z}=f(r)$ over $z=+h_{1}$ where $f(r)$ is a specified function, and this condition is to be satisfied as in art 10 Assuming, for example, the edge boundary conditions of problem A, we have $J_{0}\left(k_{\mathrm{n}} a\right)=0$, and the integral $\int_{0}^{a} f(r) J_{0}\left(k_{n} r\right) r d r$ is to be found.

Thas integral can be obtained for many values of $f(r)$, but here we confine the discussion to the case whero the plate as loaded only ovor a amall concentric ciroular area, or, in particular, where the load 18 wholly concentrated at the centre.
Suppose, then, that there 18 wuform pressure \boldsymbol{p}^{\prime} over the area of the carcle $r=b(b<a)$ end zero pressure over the rembinder of the plane $z=+h$. Then we have

$$
\begin{equation*}
\int_{0}^{a} f(r) J_{0}\left(k_{n} r\right) r d r=-p^{r} \int_{0}^{b} J_{0}\left(k_{n^{2}} r\right) r d r=-\frac{p^{\prime} b}{k_{n}} J_{1}\left(k_{n} b\right) \tag{85}
\end{equation*}
$$

If the total load is equivalent to a uniform pressure p over the whole plate, we have $p^{\prime} b^{1}=p a^{2}$, and we can pass to the lumiting case of central loading by making $b \rightarrow 0$ and keeping $p^{\prime} b^{3}$ finte.
The type of solution given in art. 15 will serve, and we have from (59), writing $\overline{z z}=f(r)$ for $z=+h$,
$\sum_{1} \frac{P_{a}+P_{n}{ }^{\prime}}{2} \mathrm{~J}_{0}\left(k_{n} r\right)=\frac{1+\sigma}{2 E} f(r)-\left(4 \sigma B_{2}^{\prime}+\alpha_{a}^{\prime} a^{2}+2 \sigma \alpha_{\mathrm{a}}{ }^{\prime} h^{2}\right)+(1+\sigma) a_{a}^{\prime} r^{\prime}$,
$\sum_{1}^{n} \frac{P_{n}-P_{n}^{\prime}}{2} J_{0}\left(k_{\sigma} r\right)=\frac{1+\sigma}{2 E} f(r)+2 \sigma x_{9}^{\prime} h+3(1-\sigma) \alpha_{4}^{\prime} a^{2} h-2 \sigma \alpha_{0}^{\prime} k^{3}$ $+3(1+\sigma) a_{4}^{\prime} h^{2}$,

Since $\mathrm{J}_{0}\left(k_{\mathrm{a}} a\right)=0$ and $f(a)=0$, we arrive st equations (Bb) and ($5 B$) with the ominsion of the terms in p, and, multiplying throughout by $\mathrm{J}_{0}\left(k_{m}\right)$ r, integrating from 0 to a snd using the result of (85), we get expressions for $P_{n} \pm P_{n}{ }^{\prime}$. The resulta are, as before (art 15), with addod terms of the type $\frac{p}{k_{n} b} \frac{J_{1}\left(k_{n} b\right)}{J_{1}^{2}\left(k_{n} a\right)}$; the remainder of the analysis of art. 15 ia unchanged

The equations correspondeng to (57) and (68) are the amme with edded terms, so that the constants of the solution can be determined.
The results for a thick plate can be worked out if requred, but are, necessarily, rather complicated.
To prooced to the case of central loadıng we make $b \rightarrow 0$, so that $\frac{J_{1}\left(k_{n} b\right)}{k_{n} b} \cdots \frac{1}{2}$. The equation giving the normal deflexion of the middle surface is then the same as (60) with the following added term.-

$$
\begin{aligned}
& \frac{1+\sigma}{\mathrm{E}} \frac{\mathrm{pa}}{h^{4}}\left[2(1-\sigma) \sum_{1}^{\bar{s}} \frac{k_{n}{ }^{\mathrm{n}} h^{3} \cosh k_{n} h}{\sinh 2 k_{n} h-2 k_{n} h} \frac{\mathrm{~J}_{0}\left(k_{n} r\right)}{k_{n} a^{4} \mathrm{a}^{4} \mathrm{~J}_{1}\left(k_{n} a\right)}\right. \\
& \left.+\frac{h^{2}}{a^{2}} \underset{1}{\dot{g}} \frac{k_{n}^{2} h^{2} \sinh k_{n} h}{\sinh 2 k_{n} h-2 k_{n} h} \frac{\mathrm{~J}_{n}\left(k_{n} r\right)}{k_{n}^{2} a^{2} J_{1}{ }^{2}\left(k_{n} a\right)}\right] .
\end{aligned}
$$

Approximate resulta for the now series introduced can bo obtained as in art. 17 , using the resulte of art 11 (c), and the normal defierion can be calculated as before for a specified valuc of h / a

There is one point to be made clear conoerning the value of the deflemon at $r=0, z=0 \quad$ We have, by (41),

$$
\int_{1}^{\bar{j}} \frac{J_{0}\left(k_{n} r\right)}{k_{r} a^{\mathrm{A}} \mathrm{~J}_{1}{ }^{\mathrm{a}}\left(k_{\mathrm{s}} a\right)}=\frac{1}{2} \log \frac{a}{r},
$$

which becomes inflite for $r=0$, and so the expressan

$$
\frac{h^{4}}{a^{\mathrm{a}}} \sum_{1}^{x} \frac{k_{n}^{\mathrm{n}} h^{2} \sinh k_{k} h}{\sinh 2 k_{p} h-2 k_{n} h} \frac{1}{k_{n}^{2} a^{2} \mathrm{~J}_{1}^{2}\left(k_{n} a\right)}
$$

must be examued more closely, because the dellexion at $r=0, z=0$ is finite.
We have

$$
\frac{\theta^{2} \sinh \theta}{\sinh 2 \theta-2 \theta}=\frac{1+\frac{\theta^{2}}{8}+\ldots+\frac{\theta^{*}}{(2 r+1)!}+. \cdot}{1+\frac{\theta^{2}}{5}+\ldots+\frac{Q^{2}}{(2 r+3)!} \theta^{*}+\ldots}=\{f(\theta), \text { tag, }
$$

and $f(\theta)<1$, for $\theta>0$.

Clearly

$$
f(\theta)<\frac{1+\frac{\theta^{1}}{6}+\ldots}{\frac{\theta^{2}}{5}+\ldots}=\frac{5}{\theta^{1}} \phi(\theta), \text { say },
$$

where

$$
\phi(\theta)=\frac{1+\frac{\theta^{2}}{6}+\quad+\frac{\theta^{2 r}}{(2 r+1)!}+}{1+\frac{2}{21} \theta^{a}+\cdot+\frac{30.2^{2 z+2}}{(2 r+5)!} \theta^{2 r}+} .
$$

The ratios of corresponding coefficiente in the numerator and denominator of $\phi(\theta)$ decrease steadly from I to zero, so that $\phi(\theta)<\boldsymbol{J}$.
Thus

$$
=\sum_{1}^{\infty} \sum_{1}^{\infty} f\left(k_{n} h\right) \frac{1}{k_{n}{ }^{2} a^{2} J_{1}{ }^{2}\left(k_{n} a\right)^{\prime}},
$$

ie,

$$
\mathrm{s}<\frac{105}{16} \sum_{1}^{n} \frac{1}{k_{n}{ }^{2} h^{3}} \frac{1}{k_{n}{ }^{8} a^{2} J_{1}{ }^{2}\left(k_{n} a\right)}=\frac{105 a^{4}}{16 h^{2}} \stackrel{\Sigma}{1}_{1}^{k_{n}^{4} a^{4} J_{1}{ }^{4}\left(k_{n} a\right)},
$$

so that $\frac{h^{2}}{a^{2}} \mathrm{~S}<\frac{105}{128}$ (art $\left.11(c)\right)$, and the defexion at $r=0, z=0$ 18 fimite.
To proceed to the humiting case of a thin plate, we follow out the method of art 16, replaoung the various infinte series that occur by their equivalents as given by equations (26), (41) and (42), and the result given by Love (' Mlasticty,' p. 468) is obtanded
The problem can also be disoussed using the boundary condations of problem B, and detailed reaults obtaned in both cases for the case of central loading, but enough has been sald to indicate the possiblitities of the methods of this paper.

Some General Conbiderations.

(25) The Question of Unrqueness of Solution.

The question arises as to whether the solutions, given in this paper, of the problem of the thick circular plate, with asagned stress boundary conditions over the plane faces and displacement boundary conditions at the cylindrical edge, are trae solutions in the sense that they are the only solutiona.
If either the eurface tractions or the aurface displacements are given completely, it is known that the solution of the problem of elastio equilibrium

1s unique, so that the stress daplacement system throughout the body is determmable without ambuguity (erde Love, 'Elastioty,' p. 187).

The argument can easily be turned to suit tho case where the tractions are given over part of the bounding surface and the displaoements over the remainder, so that, in the case of tho circular plate, with symmotrioal loading, $\mathrm{f} \overline{z z}$ and $\overline{r z}$ are given over $z= \pm h$ and $\overline{\mathrm{U}}, w$ over $r=a$, the problem would have a unque solution.
In the cases worked out in this paper the strebses are so given over $z= \pm h$, but one only of the diaplacements $\overline{\mathrm{U}}, \boldsymbol{w}$ has been completely specufied over $r=a$, for all values of z, the remaining displacement being given for particular values of z only. Thus, in the sense of the above remariss, the solution, certandy, is not unique

It has been shown, however, that a complete solution as such is not possible by the methods employed, and, therefore, it becomes necessary to consider the lunitations of the partial solutions obtained

It is clear from the argument in art. 14 that solutions could be obtained to satisfy more general boundary conditions at $r=a$, although they would be very complicated.

Thus, in the case of problem A, we could by choice of m (art 14) make $\overline{\mathrm{U}}$ vanish at s positions, zay, on the cylundrical edge by choosing $m=2 \dagger 8$.

If, for example, we make $\overline{\mathrm{U}}=0$ for $r=a, z= \pm h$ and also for $r=a$, $z=0$, so that $m=5$, the solution gives the same cquations for α_{1}^{\prime} and $\alpha_{i}{ }^{\prime}$ as before, so that the law of bending of the middlo surface, which depends only on these constanta (equation (60)), is unchanged.
In the solution as given, $\overline{\mathrm{U}}$ does not vamah at $r=a, z=0$, and it is interesting to note that the vanishung, or otherwise, of $\overline{\mathrm{U}}$ at this position has no effiect on the bending of the middle surlace.

Sunilarly, in the case of problem B, we may take $w=0$ for $r=a, z= \pm h$, unstaed of merely $w=0$ for $r=a, z=0$, as worked out.

The more general solution is very lengthy, but, on workug it through, and approximating as usual to the infnite series whoh occur, we find that the normal deflerion of the centre of the plate is the same as before to the order of h^{1} / a^{1}.
It is found that the analytical dufficulties of the problem aro greatly inoreased as the number of terna in the finite part of the solution becomes greater, and it seems advieable to content ourselves with the rimplest possible solutions which apparently give a unique value for the bendling of the middle surfies,
and so, in a sense, may be regarded as the appropriate solutions consistent with the given boundary conditions.

(28) Expermmental Determination of the Elastic Contents

A point of some importance, upon which, it is hoped, the present invertigation may serve to throw some light, is the fact that dufferent valuas of the fundamental elastic constants, Young's modulus and Poisson's ratio, are obtaned when various tests are applied to speommens of metal

Thus the tensile test and the bender test give slightly different values of Young's modulus, and it is clear that tests on the bending of plates will give values differng from those obtained by the other teats mentioned, if the accepted formula for then plates 18 used.

Filon, in a memoir "On the Equilibrium of Circular Cylinders under Certan Practical Systems of Load " (' Phil. Trans,' A, vol 198 (1902)) has shown that the values of the elnstic constants determined by a tensile test dopend on the dimensions of the test prece, and it as olear that simular considerations apply to the bendung of plates, as the effective thickness (h / a) of the plate must be taken into account

Most experimental work in the past* has been done with plates for which the Grashof formula, so called (p. 666, equation (17)), apphes farrly well, as the thuckness-dumeter ratio was of the order τ^{2} to to $r a$, so that the effect of the dimensions of the plate was not important, but more recent work, as mentioned below, has shown that this formula fails for thick plates

(27) Expermental Results for Thrck Plates

Expenments on an extensive soale have recently been made, using plates of varying thickness-diameter ratio up to a value exceeding t, these plates being manufactured by turning out a block of metal in order, as was thought at the time, to secure offective clamping.
The results, howover, showed central normal deferions for thick plates greatly exceeding those calculated for a clamped plate by the usual formula, the diecrepencies increasing with the threkness
They have been compared with the values caloulated from the various formulw arrived at in thus paper

- Expermental resoarchen which have beop consulted are the following -

Orawfoth, 'Proc R.S.E,' vol 32, p. 948 (1011-12).
Eteinthal, ' Engineering,' vol 91, p. 677.
Bhalin, ' Dinglez's Polyteohnjocher Jouranl,' vol, $\$ 18$ (190s).

It is curious that the best agreement with experment is given by the formula for w at $r=0, z=-h$, using the boundary conditions $\overline{\mathrm{U}}=w=\frac{\partial \overline{\mathrm{U}}}{\partial z}=0$ for $r=a, z=0$, for which (19) gives the defiexion at $r=0, z=0$.
It is not considered, however, that the simple solution, with these aesumptions, can be apphed to the case of a thick plate, since the boundary conditious refer ouly to the middle surface, and the agreement with exporiment must be regarded as accidental
Of the solutions which are taken spectically to apply to the case of a thick plate with a fixed oylundrical edge, the better agreement is found with those values calculated from the formula (84), which was obtanned on the ansumption $\overline{\mathrm{U}}=0$ for $r=a, h>z>-h$
The resulta tabulated below were obtnined using plates 3 inches in diameter, and they are compared with the calculated deflexion in inohea given by the thin plate formula (17), the appropriate formula for $r=0, z=-h$ corresponding to (19), and the formula (84)
The value of σ used in calculating theso resulta was 0 266, but this figure is not very reliable, and it is probable that the value should be somewhat greater, if ao, the figures in columns 4, 5 and 0 would be increased

The agreement between columns 3 and 5 is far from perfect, but it must
Table IV.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 \& 2 \& 3 \& 4 \& 5 \& \(6^{\circ}\) \& 7 \& 8 \& 0 \\
\hline Thinknow in inches \& \(\boldsymbol{h} / \mathrm{a}\). \& \[
\begin{aligned}
\& \text { Deflesion for } \\
\& p=1000 \mathrm{lb} \\
\& \text { per } \mathrm{aq} \text { ln }
\end{aligned}
\] \& Doflexion from (17). \& \begin{tabular}{l}
Deflexian \\
from (84).
\end{tabular} \& \begin{tabular}{l}
Deflesion \\
from (10')
\end{tabular} \& \(\frac{\text { Col }}{\text { Col }} 4\). \& Col

Cul
5 \& Col 3 Col. B

\hline 0.1 \& 1/30 \& 0.03100 \& 0029800 \& 0030200 \& 0030428 \& 1040 \& 1093 \& 1018

\hline 02 \& 1/15 \& 0 0044] \& 0.003798 \& 0008980 \& 0004040 \& 1188 \& 1.119 \& 1096

\hline 03 \& 1/10 \& 0001575 \& 0001108 \& 0001272 \& 0001913 \& 1.425 \& 1.938 \& 1800

\hline 04 \& 2/16 \& 0000740 \& 0000468 \& 0000501 \& 0000821 \& 1.488 \& 1292 \& 1102

\hline 05 \& 1/6 \& 0000427 \& 0000299 \& 0000840 \& 0000983 \& 1787 \& 1258 \& 1.178

\hline 06 \& 1/6 \& 0000287 \& 0.000138 \& 0000221 \& 0.000240 \& 2080 \& 1298 \& 1.186

\hline 07 \& 7/30 \& 0000203 \& 00000870 \& 0000160 \& 0.000172 \& 2333 \& 1.280 \& 1-180

\hline 0.8 \& 4/15 \& 0000150 \& 00000582 \& 0.000121 \& 0000184 \& 2.578 \& 1.948 \& 1.180

\hline
\end{tabular}

be realised that there is no guarantee that the boundary conditions postulated have been secured; the more or less ateady values in column 8 , for the thicker plates, would appear to show that the theory is on the right hnes

It could hardly be expected that an admittedly tentative set of boundary conditions would be realised in practice, and it is posable that there exists unaroidable boundary atrain which cannot be taken account of in the theoretical treatment of the problem.

(28) Summary and Concluswns

The unvestigation in this paper is that of the flexure of a thick circular plate, held so that there is no displacement at the oylindrical edge, subjected to a uniform pressure over one of the flat surfaces
Three types of solution have been considered --
(i) The solution in finite terms,
(i1) The solution in infinite series involving hyperbolic functions of z and Bessel functions of r;
(ii) The solution afforded by a combination of (1) and (u).

It has been shown that no one of these solutions can solve the problem in its complete generality, and each has been examned in turn to discover what problems can be duscussed by its and.

The salution (1) leads easily to the usually accepted results for thin plates, but is moapeble of dealing with the case whero the thiokness of the plate cannot be neglected.
Solution (ii) is of restricted application, as boundary conditions at the edge referring to one displacement only can be satistied.

Solution (inl), in various forms, permita of the discussion of a variety of problems, the method being to satisfy the stress boundary conditions over $z= \pm h$, and then to consider different boundary conditions at $r=a$, such conditions being expressed in terms of w and $\overline{\mathrm{U}}$
It is possible to satisfy one condition only st $r=a$, for all values of ε, such as $v=0$ or $\overline{\mathrm{U}}=0$, and these have been consadered in turn, the remaining diaplacement being made to vanush for specified values of z only, thus leading to partial solutions of the problem.
It is fousd that, for a thick plate, the condition $\overline{\mathrm{U}}=0$ for $r=a, h>s>-h$ leade to greater bending for a given preasure than the condition $v=0$, which,
in ite turn, gives more than that according to the usual formula for thin plates.

In each case, the asual result for a thin damped plate is obtained in the lumit when h / a tende to zero.

Methods have also been indicated for the discussion of the problem for the oase of non-uniform loading, particularly when the load is concentrated entirely at the centre The theoretical results for thick platea are exprensed in the form of mfinite series, which have been reduced to simple terms by the methods described in the paper, so that concise approximate expressions for stresses and displacements are obtained which are vald in most cases even for comparatively thick plates (e $g ., h / a=\boldsymbol{t}$).

The distribution of atress throughoat the plate in the cases considered is indicated by tables giving the values of the stresses at verious particular points, and attempts arc made to determine the greateat stress in terms of the applied pressure and the ratio h / a

The maximum stresses vary in postion and magnitude aocording to the values of σ and h / a, and are beat determined at inatio in any particular case. It is hoped later to oblan, expermentally, some criterion for elastic failure in the case of the bending of thick plates, and then, perhapa, to make further epphcations of the results of this paper

In conclusion I wish to make my grateful acknowledgments to the following gentlomen :-Prof A E. H Love, F.R.S, who read the paper in ite first form and made valuable auggeations for alteration and improvement; my friend and colleague Captain W. F. Grımshaw, OBE., who also read the paper and with whom I have discussed various points ; my colleague Mr. G. M. Russell, who undertook the expenmental part of the research*; and Mr. N. M H. Lightloot, now asastant lecturer in the Univeraity of Sheffeld, who oasried out a good deal of the numerical work involved.

[^147]
On the Total Photo-Electric Emission of Electrons from Metals as a Eunction of Temperature of the Exciting Radiation.

By S. C. Roy, M.Sc , Physics Research Department, King's College, Iondon
(Communicated by Prof O W Riohardson, F R S —Racoived July 29, 1926)

1. Introduction.

In the year 1913 K. T. Compton and O. W Ruchardson (' Phil. Mag ,' vol. 26, p. 649 (1919)) published a paper contaning an inportant anvestigation on the action of homogeneous mono-chromatic radiation on a number of metals The essential characteristics of the photo-electric activity of various metals are set out in thoir experimental curves obtained by ploting photo-electrio greld of electrons against exciting frequency These curves contann double maxuma in the case of extremely electro-positive elements hike Na , and one maxamum for a less electro-positive metal Al, while the curves for Pt exhibit no maxumum in the range of frequencies oovered by their experiments Later inveatigationa by Souder (' Phys. Rev,' vol. 8, p 327 (1916)) and O. W. Richardson and A F. A. Young (' Roy. Soc Proc,' A, vol. 107, p 377 (1920)) have confirmed these general charactenstics of photo-electric activity-frequency curves A photo-electrio maximum for the "selective" effect was observed by Pohl and Pringaheim (' Verh. d. Deutsch. Phyaik, Ges,' vol 11, p. 1039 (1910)) as early as 1810 in the case of some eleotro-positivo eleruents. The general shape of the humps in their curves appears to be a function of the angle of incidence of the exciting radiation, nevertheless, the position of the manmum is quite independent and definte. Lately, R. Dopel (' Zerts. fur Phys.,' vol. 39, p. 297 (1928)) has shown that a leas electro-poqitive metal like Sr also shows the photo-electric maximun It is therefore probable that all metala would exhibit such maxmum photo-electric effect if it were possible to extend the range of exciting frequencies far into the ultra-volet. The presence of doablo maxima in the curves for Na and K probably points to the exustence of two photoelectrio threshalda in these elements, as suggested by O. W. Richardson (' Proc. Phys. Sloc. Landon,' vol. 36, p. 388 (1924)), and may lead to interesting developmenta in future.
In the tollowing Table I are colleoted the observed values of the long wevelength limit λ_{0} and the wave-length λ_{n} of the maximum photo-electric effeat. A oomparison of the figures in columne 1 and 3 abows that the frequencies
v_{0} and v_{m} can be correlated within the range of acotracy and consistency attainable in photo-electric measurementa by a simple relation,

$$
\begin{equation*}
v_{m}=z_{i} v_{0} \tag{1}
\end{equation*}
$$

Teble I.

Motals	$\lambda_{\text {/us }} \sim \mu$ (oba)	$\lambda_{\text {a }} \mu \boldsymbol{4}$ (obas)	$1 \lambda_{0} \mu^{\mu}$	
Ca	600°	>700\%	>600	
$\mathbf{R b}$	480*	-	-	
\mathbf{K}	$440{ }^{*}$	70011	465	
Na	$300 \dagger$	877	385	
Cs	800°	400\|	(1)	267
Be	$280{ }^{*}$	-	-	
My	$280{ }^{*}$	$380 \dagger$	260	
AI	$247.5 \dagger$	$360 \dagger$	240	

[^148]Thes significant result leads at once to the formulation of a functional relation between photo-electric activity and exciting frequency Thus if \mathbf{F}, represent the number of electrons emstted by the absorption of umit quantity of radiantenergy of frequency v, then the relationship (I) is satisfied if F_{v} be of the form

$$
\begin{equation*}
\mathbf{F}_{\nu}=\text { const } \frac{v-v_{0}}{v^{2}} . \tag{2}
\end{equation*}
$$

These two important relations were given by O.W. Ruchardson (' Phyn Rev.,' vol 34, p. 119 (1912); 'Phl. Mag.,' vol. 23, p. 615 (1912); vol. 24, p. 570 (1912)) on the bass of some thermodynamic and atatistical reasoning. As a matter of fact, these two relations'represent all the important aspects of the photo-clectric operation of monoohromatic hight on metala. A. Becker ('Ann der. Phys.' vol. 60, p. 30 (1919)) attempted to represent the photo-electrio activity of platinum by an empirical relation of the form

$$
\begin{equation*}
F,=\operatorname{const} .\left(1-\frac{v_{0}}{v}\right)^{\prime} . \tag{3}
\end{equation*}
$$

No importance can probably be attached to this emparical relation inasmuch as it is based on data of photo-eleotric activity of a aingle element over a limited renge of trequenores, and aleo partioularly because it fasla to represant a very important featare of the photo-dectric aetivity-frequency curve, namely, the
existence of a frequency of maximom effect related to the threahold frequency in some such sumple manner as is expressed in relation (I).

It should, however, be pointed out that the theoretical curve of photo-electric activity acoording to the expression (2) differs somewhat in sbape from the experimental one, but there are a number of caunes which mught furmah a natural explanation of this discrepancy. This 38 , however, of secondery importance for a study of the broad features of the photo-electric actanity of metals,

The total photo-clectric yield of electrons resulting from the action of a "back-body" spectrum is obtanned by multiplying the function F, by the intenaty \mathbf{K}_{v} and integrating it over all frequencies greater than the threahold. One thus obtains

$$
\begin{align*}
& \mathrm{N}_{\text {pbot }}=\int_{m}^{\infty} \mathbf{F}_{v} . \mathbf{K}_{r} d \nu \tag{4}
\end{align*}
$$

It 18 clear that a law of total photo-electrio emission in the form (4) is a consequence of the presence of a maximum photo-eleotnc effect at a frequency $v_{m}=\frac{3}{2} v_{0}$.

Willam Wilson (' Roy. Soo. Proo.,' A, vol. 93, p. 359 (1917)) was the first to make measurements on the total photo-electric emission, uang Na. He was able to represent his results by a law of the form,

$$
\begin{equation*}
\mathrm{N}_{\mathrm{pDot}}=\text { const. } \mathrm{T}^{4} \cdot \mathrm{c}^{-b / T} \tag{5}
\end{equation*}
$$

where a lees between 1 and 2. A. Becker ('Ano. der Physik,' vol. 78, p 83 (1925)) has recently studied the photo-electric exatation of Al by the complete radiation from a tungsten source at temperatures of $2100-3200$ abs. He concludes that a as greater than 2 and probably hes between 3 and 4. Owing to the predominating influence of the exponential term in ($\overline{(5)}$, it is scarcely posable to decide experimentally between values of a such as 1,2 , or even 3 . So far as the writer 18 aware, these ars the only two expemments on record ${ }^{*}$ O. W. Richardson ('Emisaion of Eleotricity from Hot Bodies,' pp. 97-100 (1916), and 'Phil Mag, vol. 31, p. 149 (1916)), on some computations based on experimental data on the action of monochromatic light on Pt, pointed out that the value of the total photo-olectric current from Pt by " black-body " radiation

[^149]at $2000^{\circ 8}$ should be about 10° times less than the thermionic current from $\mathbf{P t}$ at the same temperature

The idea that the thermionic emission from hot bodies may really be due to the photo-electrio activity of the radiation of the hot body atsell owes its origin to \mathbf{O} W Ruchardson (loc. ont) and W. Wison ('Ann. der Physk,' vol. 42, p. 1154 (1913)) So far as venation with temperature is conceraed, Whson's experiment substantisted this view. Further, A Becker (loc. cul) brought forward another fact to strengthen the basis of the radiation theory of thermono emission-namely, that the distribution of velocities amougst photoelectrons is the same as is found in the thermowcally emited electrons But although no systematic attempt has been made to study quantitatively the magnitude of the total photo-electric emiasion, it is generally known that the amount of thormonic emission of electrons is vastly in excess of the total photo-electric emission. This fact has been made the basis of some comments against the radiation theory of thermionic emssaion It is obvious that the origin of auch adverse oriticism lies in the fact that one $1 s$ apt to overlook the distinction between thermionic and photo-electric phenomena when laying too mach omphasis on the resemblance between them That both knds of processes are promoted by radation of course constitutes a reseinblance, but the distinction lies in the fact that one ia due to the action of radiation on a system in temperature equilibrium, while the other is duc to the action of high-temperature raduation on a cold syatem. In the thermionac phenomenon the exciting radustion is asotropic, and has the same intenaty throughout the body of the emitting system, while in the photo-electric experiments the untensity of the exciting radistion is greatest at the surface of mendence, and falls off exponentially with the depth of penetration.

Recently the writer (' Phil. Mag.,' vol. 50, p 250 (1925), 'Roy Soo Proc.,' A, vol 110, p. 643 (1926); 'Z. fur. Phyalk,' vol 94, p. 499 (1925)) made some attempta to reuew an interest in the radation theory of thermionic emission and chemical reactivity The phenomena which mey be supposed to be due to the action of radastion on a system in temperature equilibrium are (I) the thermiome emission of electrons from solds, (II) the thermal ionisation of gases, (III) the unimolecular decomposition of chemical moleoules by heat; while those promoted by the action of high-temperature radiation on a cold syitem are (I) the photo-aleotric emission of electrons lrom salids, (II) the photoelectric ronination of gases, and (III) the photo-ohemical decomposition of chemical moleculea. It ocourred to the writer that if one could explain the quantitative discrapanoy between thermionic and total photo-electinc ourrenta,

Total Photo-Electric Emisston of Electrons from Metals. 603
one would atrengthen the basis of tho radiation hypothesis of chemical reactivity in general But before one can do so, one must have at one's dusposal some quantitative data on total photo-oleotric emission It was with this object in view that the present expenments were undertaken by the writer

2 Experimental Atrangements.

The apparatus (as ahown to scale in plan in fig 1) is made of transparent quartz-glass, and was originally designed by Prof O. W Richardson for the

Fig. 1
study of soft X -rays It was found, however, that the same quartz-tube could be adapted with certan modifications in arrangements to the stady of total photo-eleotric emssion of electrons from metals by the action of radiation from an approximate " black-body" source
The source of radiation is an electrically hested tungaten wire of radius 0.005 cm , and of length about 10 cm , wound into a spiral of 11 or 12 turns.

This sparal, F_{1}, is kept centrally suspended insode a closed copper oyhnder, C_{1}, of height 2.3 cm . and of diameter 22 cm ., by means of two stout leads, L, of constantan wre. The use of a farly large length of tongsten ensures precision in the measurements of temperatures and reduoes to a minmum any correction due to end-losses The copper cyhnder, C_{1}, is put to earth and the flament is mantained at a positive potential of about 10 volts in order to prevent emiasion of electrons The raduation from the filament streams out of the copper cylunder through a rectangalar slit, $S_{1}, 2 \mathrm{~cm} \times 5 \mathrm{~mm}$. in dimension Any positive ions or electrons diffusing with the stream of radiation are trapped by a pair of metal condenser plates, A and B, which are held tight against the flat walls of the apparatus These plates are, respectively, 2.2×1.8 and 2×18 sq. cm in size, and about 0.52 cm apart. A potential difference of about 50 volts or even leas between the plates suffices to extract all the ions or electrons from the beam of radiation when the pressure inside the apparatus is less than $10^{-6} \mathrm{~mm}$.

The radiation enters through a seoond alit, S_{9}, of dimensions $2 \mathrm{~cm} \times 2.3 \mathrm{~mm}$, into the copper half-cylinder, $\mathrm{C}_{\mathbf{2}}$, and impinges upon the photo-eleotric targets enclosed by C_{2} The electrons liberated from the target by the inoident radiation are drawn to C_{n}, which is mantanned at a positive potential of about 20 volts. This potential 1 s sufficient to saturate the photo-electric currents,

Fie, 8. which range from 10^{-11} to $10^{-14} \mathrm{amp}$ in the present oxperiments These currents are measured by a surtable electrometer of semsiblity 904 cm . deflection on the scale per volt, and of capacity 960 om

In order to ensure that the current so measured 18 really due to photo-elaotrio action, and also to enable a comparison of the photo-electric properties of various metals to be made under the same experimental conditions, the experment is so arranged that four different metal targets can be atudied at the eame time. For this purpose four metal targets. ($2 \mathrm{~cm} \times 1 \mathrm{~cm}$.) are mounted in a nicirel framework, T (fig. 2), whioh is held by means of two metal apikea, P_{1} and P_{2}, to a metal collar, M_{1}, fixed tightly round a ahort glass tube, T_{1} cerrying two iron arms, I_{1} and l_{2}, by means of a secand metal collar, M_{g}. The gless trube, T_{1}, hes four grooves cut in its bottom at equal angular distances of 90°, and cas reat vertically through any of these grooves on a pin, P, atteched to agege tube, T. The electrical connection to the target-holder, T, in made by means of a apiral of
thin copper wire passing through \mathbf{T}_{2} The target-holder, \mathbf{T}, can thus be lifted and turned from outmide by means of a small electro-magnet so as to present any of the metal targets to the action of the impinging radiation

The evacuation of the apparatus is done by means of Volmer's condensatio pump system backed by a Fleuss oll pump. The apparatus is connected to the pump systen through two double-walled glass condensers in serice, one of them contaning coconut charcoal. Both of these glass condensers are kept immersed in hquid arr after complete evacuation by the pumps. The jointe and seals are all made with hard sealing wax of very low vapour preseure. The central parts of the quartz apparatus can be heated to red heat to get rid of occluded gases The metal cylinder, C_{1}, is degassed by electron-bombardment from the filament, F_{1}, and the half-cylinder, C_{2}, and the metal targets can be cleaned up by bombardment of electrons from an auxilary filament, $F_{\mathbf{a}}$ In this way it is always possible to maintain a pressure lower than $10^{-8} \mathrm{~mm}$ inade the apparatus when the temperature of the filament, \mathbf{F}_{2}, does not exceed $\mathbf{3 , 0 0 0 ^ { \circ }}{ }^{\circ}$

3. Eledrioal Connedions

The electrical connections are shown diagrammatically in fig. 3 The resiotance of the tungsten spiral, \mathbf{F}_{1}, is measured by a simple Wheatstone bridge

> Storage bitteries

Fio. 3
arrangement, of which F_{1} constitutes ono arm and P, Q and K are the other arma. \mathbf{R} is made of very thook manganue wire, so as to be capable of oarring a large ourrent without heating, and has a resistance of $\overline{5}-44$ ohmn., which is comparable with that of the spiral at high temperatures. The resistance of the anger P is 2.000 ohms and that of $Q_{\text {is }}$ variable The $P-Q$ ofroctit has a reaistance targe
compared to that of the $\mathbf{R}-\mathrm{F}_{1}$ circurt, so that a very negligible fraction of the current passes through P-Q The heatang current of the filament is supphed by a set of atorage batteries of about $\delta 2$ volty through an adjustable rheostat, r. G is the bridge-galvanometer The ammeter, A, moasures the heating current of the filament, and the voltuneter, V , records the voltage drop across it The poative potentals on the filament, F_{1}, the metal plate, B, and the copper oylonder, C_{g}, are taken from a set of dry cells of about 50 volts, whose negative terminal is put to earth The cylinder, C_{1}, with the condenser metal plate, A , is also earthed. The target-holder is connected to the electrometer by meana of a wire runnung through an earthed metal tube

1. Measurements of Temperature

The temperature of the filament is eatimated by three indeprendent methods (I) by direot measurement of its resstance, (II) by the wattage input given by the voltage drop and beating current in the filament, and also (III) by measurcment of saturated thermionic current. Owing to the fairly large length of the tungsten wire used for the filament, any correction due to end-losses is very small, and it is thought unaccessary to introduce it, particularly in view of the fact that radiation from all parts of the filament is operative In producing the observed photo-electric current ao that an ratimate of the average temperature of the source is more desirable than that of its central part alone In practice it is found troublesome to employ the three methods of measurement in each individual experiment Ocoasional comparison of the eatimation of temperature by the different methods shows farly satisfactory agreement. The methods (I) and (II) can be equally rehed upon. The estimations of temperature given in the following pages are all made from direct measurementh of reastances of the filament, and the scale of temperature adopted is that of Worthing and Forsythe *

5. Experimental Results

Measurements on total photo-electric emission of electrons from eleven elements- $\mathrm{Al}, \mathrm{Me}, \mathrm{Mo}, \mathrm{C}, \mathrm{Zn}, \mathrm{Pt}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Tr}, \mathrm{W}$ and Ni -are given, and the constants of the equation

$$
\mathrm{I}_{\mathrm{umot}}=A_{\nu \text { Let }} \quad \mathrm{T}^{2} \quad \mathbf{e}^{-b / T}\left\lfloor b=\frac{h v_{0}}{k}\right\rfloor
$$

are determined from these data by plotting grapha of $\left(\log _{10} I-2 \log _{10} T\right)$ against T^{-1} (Gige, 4, E and 6).

[^150]Total Photo-Electric Emission of Electrons from Metals. 607

Fia. 3

Fin ${ }^{6}$
The speomens were supphed by Johuson. Mathey and C'o They were not subjected to any apacial heat-treatment in these experiments, but were cleaned with sand-paper before inserting the target-holder into the apparatue. The pumps were started just after its insertion, and a vacuum of the order $10^{-8} \mathrm{~mm}$. could be attaned in about two hours lame

The range of temprratures covered by the present experiments extends from $1900^{\circ \mathrm{A}}$ to 2700°. The pressure inside the apparatus was always about $10^{-7} \mathrm{~mm}$. when the photo-electric currents were messured At higher teriperatures evaporation of tungaten from the radiating source interferes with the maintenance of satisfactory workng conditions inside the apparatus, and it is found diffioult to maintain a vacuum at a pressure lower than $10^{-6} \mathrm{~mm}$.

Total Photo-Electric Emission of Electrons from Metals. 609
Table II

Table III

110^{4}, T^{-1}	$20+\left(\log _{10} I_{\text {phat }}-2 \log _{17}{ }^{\prime} \mathrm{l}^{\prime}\right)$			
	AI	ke	Jo	C
04888	0.7174	-	-	-
() 1488	0 9780	$\overline{7}$	-	\rightarrow
0) 4007	12838	07100	--	-
0.1401	158888	10412	07348	0.0331
0. 4276	18884	12038	$0 \mathrm{P004}$	08840
0 1164	20701	14827	12497	1.275
04007	28210	17196	1-4484	13814
0. 2972	24220	18858	15845	15773
038005	-	- 1489	18155	1.7986
03774	--	-	90706	20116

Table IV*

T*	Iphot $\times 10^{18} \mathrm{smp}$ per eq cmu			
	Al	Fe	Mn	C
20413	1782	-	-	--
2106	1646	-	-	-
2101	7 nows	2800	-	-
9848	1400	(1)278	$2 \cdot 804$	2024
2017	2914	1187	0034	4.504
2506	55.12	28-34	1187	9094
841	103 7	4242	2834	18.4
2501	1750	7778	4374	80.30
2608	-	127 \%	7778	71.88
2076	-	-	1543	$140 \cdot 0$

* Table IV and VIII contain a aocond net of obearvationa made on theno opeolenens aftor truln eoreping whth a sherp knife
E. C. Moy.

Table VI.

Table VII

$10^{\mathbf{0}} \mathbf{T}^{-1}$	$20+\left(\log _{10} I_{\text {phot }}-2 \log _{10} T\right)$			
	A1	$\mathbf{Z n}$	Ag	1'4
0512 d	05947	--	-	-
048045	08001	0 8uad	-	-
0-4808	11469	1.1300	00083	-
0.4860	1 1894	18774	11298	0.7995
0.4085	110005	16015	1. 2516	0 ange
0.4481	10270	18835	1-6200	1-8096
0.4979	21785	21511	1.9184	1.6749
$0 \cdot 6170$	2-4810	2-3541	21880	1.8782
0.4080	-	-	2.4176	2-1459
0-8\%69	-	--	-	2. 8ist
0.3870	--	-	-	E. 5171

Total Photo-Electric Emission of Electrons from Metals. 611

Table IX.

$10^{0} \times 1{ }^{-1}$	$20+\left(\log _{10} I_{\text {phot }}-2 \log _{10} T\right)$			
	A)	Zn	4:	Pt
08182	08110	-	\cdots	-
04881	09759	0.8284	0)6542	-
04.817	I-2626	11254	0) 6471	-
0.4673	14806	1-4145	12239	07698
0. 4689	17516	18530	15401	11012
0.4403	1 gata	18034	17492	1-9682
04202	2 2395	20005	1 0308	1. 5580
$0 \cdot 4101$	28880	2974	21388	18009
0 4045	25873	25204	2.3465	20045
03973	-	--	25677	29864
03878	---	-	-	25118

Table X.

$\mathrm{T}^{\mathbf{8}}$	Iphot $\times 10^{14} \mathrm{mup} / 0 \mathrm{~m}^{\text {a }}$			
	'「a	W	N1,	Au
2051	1072	-	1718	-
2110	4555	--	3087	--
8176	8090	-	7-708	-
2240	1660	3-474	13.50	2884
3810	2600	8-619	3.21	5846
2 TH	47.40	1900	46.80	$10 \cdot 87$
241	3358	2800	90. 89	2706
2402	147 B	50.14	1648	80.5
9502	14	$8 \mathrm{8J} 08$	16.	$70 \cdot 80$
2 H 23	-	122.1	-	1274

Table KI.

$10^{4} \mathrm{~T}^{-1}$	$20+\left(\log _{10} 1_{\text {phipt }}-2 \log _{10} T\right)$			
	T'n	W	Ni	Au
04876	0 (1)00	-	086093	-
0 4780	1.007	-	0.0482	-
04.597	12784	-	12172	-
0.484	14927	086407	14501	07672
0 489\%	1-6880	10988	18670	10890
04817	19287	13840	19203	1-2902
0 50\%	2.1982	16400	21817	1-8571
03008	2-3720	180038	24206	1.7642
035009	--	2118	--	20 en 3
03821	-	2 24901	-	2-2483

That the variation of total photo-elcetric currents from all these metala with temperature of the source are astisfactorly represented by Richandson' μ law of thermonic emission 18 shown by the lincar plote of $\left(\log _{10} I_{\text {phot }}-2 \log _{\text {so }} T\right)$ sgainst $T^{-1} \operatorname{in}$ figs. 4,5 and 6.

7. Intensty of the Incident Radution at the Surface of the Targets.

In order to be able to compare the observed photo-electric currents with any theoretical calculations, one has to know what proportion of the radiation emitted by the tungsten-source reaches the photo-cleotric target. An estamation of thas necessarily involves considerable uncertanty, owing to the geometrical arrangements of the apparatus and the unknown correction for cooling at the ends of the filament.

If F_{r} be the emissivity of tungaten for radiation of frequency v, and $K_{\text {, }}$ be the specific intensity of "black-body" radiation of the same temperature es that of the tungaten-source, its specific intensity of emission is $\mathbf{E}_{r} . \mathbf{K}_{r}$, and the amount of radiation falling per socond on unit area of the target is equal to f. $\mathbf{E}_{\nu} . \mathrm{K}_{v}$, where $f 18$ a fraction determined by the distance between the source and the target, and other geometrical arrangements of the equipment.

The distance between the source and the target in the present experiments 186.5 om . The slit Φ_{1} is about $\overline{5 \mathrm{~mm}}$. in front of the target, and has a width 0.23 mm . For practioal purposes, therefore, the portion of the target reoeiving radiation can be reganded as a part of a cylinder coaxul with a thin eylindrioal sounce of light, and an approximate calculation can be made by talaing the effective emitting surface of the helical soarce of radiation as equal to half the total auriace of the tungsten-wire wound into the spiral.

Total Photo-Elechric Emission of Electrons from Metals. 613
The calculation of f is made as followa --

Fha. 7.
$I^{\prime}=$ helght of the target and also of the tungsten-spiral $\quad D=$ distance between the target and the source. $b=$ breadth of the target receiving light.

The solid angle subtended at a pount $d x$ in the filament by a surfaceelement $b, d y$ of the target (fig. 7) is equal to

$$
\begin{equation*}
\frac{b d y \cos \theta}{\left(D^{2}+y^{2}\right)}=\frac{b \cdot D d y}{\left(D^{2}+y^{2}\right)^{3 / 2}} \tag{l}
\end{equation*}
$$

Let Q be the quantity of light emitted per second by onit length of the helical seurce of light. The amount received per second by the target of area $b \times L_{4}$ Is therefore given by

$$
\begin{align*}
\mathbf{Q} \int_{0}^{L \mathrm{l}} d x \times & \frac{b \mathrm{D}}{4 \pi} \cdot \int_{0}^{\mathrm{L}} \frac{d y}{\left(\mathrm{D}^{2}+y^{2}\right)^{y / 2}} \\
& =\frac{\mathrm{Q} L}{4 \pi} \cdot \frac{b \cdot \mathbf{L}}{\mathrm{D} \cdot\left(\overline{\left.\mathrm{D}^{2}+\mathrm{L}^{2}\right)^{8 / 2}}\right.} \tag{2}
\end{align*}
$$

Now $\mathbf{Q} \times \mathrm{L}$ represents the total quantity of radiation emitted outwards by the source per second, and is equal to

$$
\begin{align*}
& \frac{2 \pi r l}{2} \times 4 \pi \mathrm{E}_{v} \cdot \mathrm{~K}_{v} \\
&=4 \pi^{2} \cdot r \cdot l . \mathrm{E}_{v} . \mathrm{K}_{v} \tag{3}
\end{align*}
$$

where r and l are the radius and length of the tungeten-ware wound into the upiral and K_{v} is the specific intensaty of unpolarised "black-body" radiation of frequency v.

Thus the quantity of radiant energy falling per second on a square centimetre of the target is equal to

$$
\begin{equation*}
\frac{\pi r l \cdot \mathrm{E}_{r} \cdot \mathrm{~K}_{r}}{\mathrm{D} \cdot\left(\mathrm{D}^{2}+\mathbf{L}^{\eta}\right)^{1}}=f \mathrm{E}_{r} \cdot \mathrm{~K}_{r} . \tag{4}
\end{equation*}
$$

In the present experiments $r=0.000 \mathrm{~cm}, l=8.5 \mathrm{~cm} ., \mathrm{D}=0.5 \mathrm{om}$,, $\mathrm{L}=2.0 \mathrm{~cm}$.

Therefore

$$
\begin{equation*}
f=302 \times 10^{-1} . \tag{B}
\end{equation*}
$$

8. Role of Raduation in Thermionic and Photo-Eleoticic Phenomena

As a preliminary to the following duscussion, it is necessery to state brielly the recent developments in the ideas of radiation-structure, a comprehensive account of which has been given by E C Stoner (' Proc. Camb. Phil Soc .' vol. 22, part 4, p 577 (1920)). It is well known that the whole range of phenomena typified by the photo-electric action uecessatates the adoption of some form of light-quantum hypothess. The question whether radation spreads in waves with power to collapse at a point or travela linearly as discrete entitios of energy is, perhaps, still an open one.

But if energy and momentum are to be conserved in the individual processes of emisaion, absorption and scattering, there seems no escape from the conolusion that radiation is propagated in lenearly directed quanta. The writer believes that the recent experiments on the "Compton effect" and on the associated idea of mono-electronce scattering in relation to "fish tracks "* due to reconl electrons have sufficiently strengthened the prosition of the corpuscular theory of raduation to warrant a speculation on the "aize" of a light-quant Such speculations have already enabled Ornstem and Burger (' Z. f. Physuk,' vol. 20, pp. 345, 351, and vol 21, p. 358 (1924), and other papers) to give a coherent account of various physical facta hitherto unexplained on the quantom theory There is, however, some vagueness in the definition of the terms "orosssection" and "volurue" of a light-quant. As pointed out by Stoner, the same difficulty arises in defining exactly the size of an electron Several writers agree that a hght-quant har ite energy conoentrated in a "sphere " of volume $q \lambda^{\prime}$, where λ is the wave-length. The value of q crudely estimated by different writerst does not agree, but is found to be of the order of a tenth. It is assumed in this paper that a light-quant is linesrly directed and apatially locelised, and that its sphere of action has a radius equal to λ
In order to appreciate fully the distinction between the operation of raduation

[^151] ('Z. I Phyndt,' vol 27, p 248 (1824)), "erose-section " $=\frac{3}{4 \pi} \lambda^{\prime}$.
on a syitom in temperature-equilibrium and that of high-temperature radiation on a cold aystam, it is necessary to direct attention to the essentially different conditions under which the molecules or atoms execute their functions an converters of radiation. The conception of matter and radation being at one and the same temperature means that, as a result of absorption or enussion, a oertan lixed and stationary distribution of energies is maintamed amongst the various Irequencies. If by any process a set of frequencies 18 removed, the aystem has to make good the loss by a corresponding reverse process For the mantenance of the stationary and isotropic character of the radiation, the moleoules or atoms are, therefore, constrained to work in two reverse processes

In the action of high-temperature radiation on a cold system, the atoms or molecules accommodate and utilise radiant cacrgy for any purpose by means of undirectional processes. The apsence of any constraint on their functioning as convertera of radiation leaves them free to run the different undirectional processes of conversion at rates compatible with their mechancal power under their workng condition The intensity of radiation is highest just at the surface of incidence, and falls off rapidly with the depth of peuetration, the energy being absorbed in the processes (1) of photo-electric ejection of electrons, (il) of exortation of atoms to states of higher energy, (in) of thermal degradation, and also (iv) of scattering or dispersion

Baperficially it appears anowalous that the atomic converters should work faster under some constrant than when they are free A little consideration, however, shows that molecules or atorus in the firat case cannot afford to be slower in one direction than in the other; so that, when matter and radiation are at one and the same temperature, the rivalhng process compels the atomic machines to diaplay a high mechanical power of conversion of radiation But they can afford to be lazy when they have no rivalling process with which to compete.

9. Raduation Theory of Thermsonic Emission

In a previous papar (loc. cut.) an atternpt was made by the writer to explan thermonic omission of electrons from hot bodies on the basis of the radiation theory. This phenomenon is the simplest of a class of thermal reactions which go by the name "evaporation." Some pointa of intereat in conneotion with the present dusoussion were not made clesr in the former paper. In new of the fact that this phenomenon is fully ulustrative of the principles involved in the atady of the action of radastion on matter in temperature equilibrium, a fresh diecusaion on the sabject is given below.

Oonsider a plece of metal mmersed in a bath of "black-body" radiation
with whech it is in equidbrium at a temperature T^{01}. If the absorption of a light-quant hy by the metal resulte in the evaporation of an electron with velocity v, it is belreved that the condensation of a veelectron is unvariably attended by the emusion of a light-quant $h v$. Tbe stationary atate of the redintion in the "Hahlraum" is maintained by the working of the two reverse procenser according to the unt mechaniam

$$
\begin{equation*}
h \nu \overrightarrow{-2} \frac{1}{2} m v^{3}+\phi, \tag{1}
\end{equation*}
$$

where ϕ represents the energy necessary to release an eleotron from ats bondage and is equal to $h v_{0}$

The number of "lught-quants" with frequencies between v and $v+d v$ passing through anit area in time $d t \mathrm{~m}$ a cone of aldd angle $d \Omega$ in the direction θ ne given by the expression*

$$
\begin{equation*}
2 \frac{K v d v}{h v} \cos \theta \cdot d \Omega d t, \tag{2}
\end{equation*}
$$

where $K v$ is the specific intensity of radation of frequency y Sumilarly, the stream of electrons moving with velocity v through unit area in thme $d t$ in a cone $\boldsymbol{d} \Omega$ in direction 0 is given by the expression

$$
\begin{equation*}
n, v \cdot \cos \theta \cdot d \Omega d t \tag{3}
\end{equation*}
$$

where N_{p} is the density of v-electrons in the Hahlraum
Let there be \mathbf{N} atomic centres of candensations or evaporstion of electrous per unit ares of the metal surface. The "cross-section" of a light-quant for collisen is $\pi \lambda^{\text {d }}$, but each quant-atom encounter we not inelastso. If $\mathrm{C}(v)$ be the chance that an atom-quant encounter resulta in the ejection of an electron, then we can take the "effective ares" for an melastic quant-atom oollusion to be α_{2} equal to $\pi \lambda^{3}$. $C(v)$. Thus the number \dagger of condensations of light-quants per unit area of the metal surface in time $d t$ is

$$
\begin{equation*}
4 \pi \cdot \alpha_{,}, \mathrm{N} . \frac{\mathrm{K} v, d v}{k v} \cdot d e \tag{4}
\end{equation*}
$$

α_{v} has the dumension of an area and may be defined as the atomuc co-efficient of absorption of radsation. Also if β, be the " effective area " presented by an atom to the oapture of a v-electron, the number of condensations of such electrons per unit area in time $d t$ is

$$
\begin{equation*}
4 \pi \cdot \beta_{1} \cdot N \cdot t_{4} \cdot v, d 4 . \tag{5}
\end{equation*}
$$

- The radistion in anpolaresed and isotroppa. So the feotor 2.

In the stationary state of temperature radsation the expressions (4) and (5) must be equal. Hence one obtauns

$$
\begin{equation*}
n_{0} v=\frac{a_{v}}{\beta_{v}} \frac{K d v}{h v} . \tag{b}
\end{equation*}
$$

The corpuecular theory of radiation regards the events of emission and absorption by atoms as inlependent phenomena, all involving the same energy $h v$, bat it bas no measure of the frequency of occurrence of such events. The presence of thermo-dynamic equilibrium between matter and radiation in the present problem, however, enables one to correlate the probablitues of photoelectrio ejection and the musociated reverse process of photo-electrc capture of electrons by the method of calculation introduced by Einstem in his well-known deduction of Planck's law of radiation, wherein he confines has attention only to the processes of excitation of atoms to states of higher energy and of reveraon of excited atoms to the normal state The relation* between α, and β_{0} obtained by the use of Einstein's line of reusoning is as follows -

$$
\begin{equation*}
\frac{\alpha_{v}}{\beta_{c}}=\frac{2 n u^{2}}{\sigma h^{2} v^{2}} \cdot\left(h v-h v_{0}\right), \tag{7}
\end{equation*}
$$

where σ is a alatistical weight factor determined by the relative a prion probabulities of an atom in the normal and ionised states,

The relation (7) embodien the nature of interdependence of the probabilities of the two competing processes On combining relations (7), (6) and (3), onc obtains after integration the following expression for the rate of thermionic emission per second per unit area:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{L} \text { marm }}=\frac{\partial \pi m k^{2}}{\pi h^{3}} \mathrm{~T}^{2} \quad \mathbf{v}^{-h_{0} t \mathrm{~T}} . \tag{8}
\end{equation*}
$$

Also from (7) it follows that

$$
C(v)=\frac{2}{\pi \sigma} \cdot \frac{m}{h} \cdot \beta_{1} \cdot\left(v-v_{0}\right),
$$

t.e. apart from the indirect dependence on y through β_{v}, the chance that a quant-atom encounter shall result in the ejection of a v-electron is proportional to ($v-v_{0}$). This conclusion will be found of interest in connection with the study of the action of high-temperature radiation on a cold system.

10. Photo-Electric Emisgion.

The absorption of radiation can be brought aboat by various concervable atomic processes. But attention will be confined here only to the process of photo-electric absorption.

- E. C. Roy, 'Roy. Soo. Proc.' A, vol. 110, relation (12), p. 840 (1028),
vol, CXII-A.

In the present problem there is no rivallung process with which to relate the process of absorption The couditions of the problem are such as to demand a fuller knowledge of the mechausm of photo-electric absorption of radiation than one possesses at present. All one knows is that the catastrophic event of the absorption of a light-quaut $h v$ by the atomic machine results in the expulaion of an electron with velocity r given by Einsten's equation,

$$
\frac{1}{2} m v^{2}=h v-k v_{0} .
$$

when $v i s$ greater than w_{0}. How frequeutly the atonis allow such catastrophic events to take place one does not know. The problem, however, entaile in it the idea of "continuty of happenng" of quantum peents in so far as such events are taking place smoothly in one direction, and one naturally enqures If oue can call in the and of the classical theory to formulate a scheme of the mechanjcal power with which the atomic systeme work out such catastrophic events A way of posable approach to the musang statistics of quantum eventa of photo-electric absorption is indicated in the fallowing pages The attempt, however, is only a tentative one, and the asamptions and arguments adopted are mainly of a provisional character

It is supposed that a lught-quant offers a target of area $\pi \lambda^{2}$ in its enoounter with an atom, and that the tume* for whelh the quant-atom encounter lasts is equal to $T / 8$, where T is the period of the radiation and is equal to $1 / v$
The effective time τ for an inelastic collision is, howerer, equal to only a fraction of the whole time of encounter A certam inference as to this "effective tune " τ is made from a well-known result \dagger of the olasacal electro-magnetic theory, namely, if an electron moving with a oonstant velocity η (i e. without radsation), at an instant t, has ita velocity changed by Δv in time Δt, and then again moves with the constant velocity $v+\Delta v$ (t, e, without radiation), then if v be ambll compared to the velocity of light,

$$
\begin{equation*}
\frac{\text { (Energy radiated) }}{\text { (Work done on the electron) }-(\text { Energy raduated) }}=\frac{a}{2 r} \frac{1}{\tau}, \tag{1}
\end{equation*}
$$

[^152]Total Photo-Electric Emission of Electrons from Metals. 619
where a is the radius of the electron and the reciprocal of the time τ is equal to $\frac{1}{v} \cdot \frac{\Delta v}{\Delta t}$.

In analogy with thas classical result, one infers that in the converse process of the photo-electric absorption of a light-quant $h v$. the "effective time" τ is given by the relation

$$
\begin{gather*}
\frac{h v \text { (absorbed) }}{h \nu \text { (absorbed) }-h v_{0} \text { (work done by the electron) }}=\frac{a}{2 c} \frac{1}{\tau} \text {, } \tag{2}\\
\text { ie } \tau=\frac{a}{2 c} \cdot \frac{v-v_{0}}{v} .
\end{gather*}
$$

Thus the chance that a quant-atom encounter shall be inelastic is given by

$$
\begin{equation*}
C(v)=\tau /{ }_{8}^{T}=8 v . \tau=\frac{4 a}{c}\left(v-v_{0}\right), \tag{4}
\end{equation*}
$$

and so the "effective area" for an melastic quant-atom collision is,

$$
\begin{align*}
\alpha_{v} & =\left(1(v) \times \pi \lambda^{2}\right. \\
& =\frac{8 \pi}{3} \cdot \frac{e^{2}}{m c} \cdot \frac{v-v_{0}}{v^{2}}, \tag{5}
\end{align*}
$$

Where the electronic radus is taken equal to $\frac{e^{s}}{m \boldsymbol{c}^{d}}$
The relation (5) is in accord with the various outstanding facts pertaning to the operation of monochromatic radiation on metals discussed in the introductory chapter

Consider first the photo-electric absorption of isotropic radsation in a thin metal alab of thickness $d x$ and of area $l \mathrm{sq}$ om. It K_{r} be the intensity of radiation at the aurface of iucidence, the amount of energy absorbed by $d x$ per sec. is given by,
$-d K_{r}=h v \times$ total number of inelastic atom-quant collisions per soc. in $d x$,
$=h v \times$ "effective collision-area " \times stream of light-quants \times number of atoms in the slab $d x$,

$$
\begin{equation*}
=h v \times \pi \lambda^{2} \quad C(v) \times \frac{\mathbf{K}_{v}}{h v} \times \frac{\mathrm{D}}{\mathbf{M}} . d x, \tag{6}
\end{equation*}
$$

where D is the density of the metal and M is the stomic mass of the element. The relation (6) can be re-written in the form

$$
\begin{equation*}
\frac{d K_{v}}{K_{1}}=-\pi \lambda^{2} \cdot C(v) \frac{\mathrm{D}}{\mathbf{M}} \cdot d x, \tag{7}
\end{equation*}
$$

so that,

$$
\begin{equation*}
\left[K_{r}\right]_{x}=\left[K_{r}\right]_{0} \cdot \varepsilon^{-\mu} x^{2}, \tag{8}
\end{equation*}
$$

where $\mu_{\text {, }}$ is the exponential co-efficient* of photo-electrio absorption of radiation of frequency v and an given by

$$
\begin{equation*}
\mu_{v}=\frac{8 \pi}{3} \cdot \frac{e^{2}}{1 n c} \cdot \frac{v-v_{0}}{v^{2}} \cdot \frac{D}{M} \tag{9}
\end{equation*}
$$

Putting

$$
\left.\begin{array}{rl}
c & =4.774 \times 10^{-10} \mathrm{ESU} \\
m & =8.495 \times 10^{-24} \mathrm{grams} . \tag{10}\\
c & =3 \times 10^{10} \mathrm{cms} / \mathrm{sec}
\end{array}\right\}
$$

For alver

$$
\frac{D}{M}=587 \times 10^{28}
$$

and

$$
\begin{equation*}
[\mu,]_{11}=4-16 \times 10^{21} \frac{\left(v-v_{0}\right)}{v^{2}} . \tag{11}
\end{equation*}
$$

The exponential co-efficient of extinction of light in silver has been determined very carefully by Hagen and Rubens and also by Minor over a considerable range of frequencies in the ultra-violet. The extinction of light is brought about by various atomic processes. The phuto-electric absorption, however, sets ad only when the frequency exceeds the threshold value. The co-efficient of photoelectric sbsorption starts by being zero at ν_{0}, and increases rapidly to higher values according to the relation (11) If, therelore, one plots $\Sigma_{\mu_{\Delta}} \dagger$ against λ, one would expect to find a break in the curve at a particular wave-length shorter than λ_{θ}, when the photo-electric absorption becomes a predommating process. How far this expectation is fulfilled will be evident from the graph (Gg. 8) obtained by pluting the experimental data of Minor, and Hagen and Rubens.

[^153]Total Photo-Electric Emission of Electrons from Metals. 821

The theoretical curve, according to expression (11). is also given side by side with the expermental one The expression (11) agrees quantitatively as well as qualitatively with experiment as far as observations go Theory predicta a maximum co-efficient of photo-electric absorption at a wave-length $\lambda_{0} / 2$. How far this is truo must be left for fature experiments to decide.

The long weve-length lumit λ_{0} for silver obtained from the $\lambda-\Sigma_{\mu_{\lambda}}$ curve is $330 \mu \mu$. This is in good agreement with the value $339 \mu \mu$ directly determined by Richard Hamer, and also with the value $321 \cdot 3 \mu \mu$ given by the present experiment on total photo-electnc emisaon from silver. This method* ahould form a very astiafactory way of computing short wave-length lumita. Unfortunstely, the experimental data on other metals avalable at present are not

[^154]S. C. Roy,

Table XII. Bilver.

Mınor		Hagren sad Rubens.	
$\lambda_{\mu \mu}$	$10^{-1} \times 2 \mu \lambda \mathrm{~cm}^{-10}$	$\lambda \mu \mu$.	$10^{-9} \times 8 \mu_{\mu}$ om ${ }^{-10}$
250	6697	251	5.007
2973	63015		4408
2740	5.485	30.5	3-256
208	4161	310	2.614
2081	3.837	916	1789
303	3.195	321	1644
308	2876	326	1788
300	2.411	322	2.083
311	2101	338	3187
314	1762	367	4806
316	1711	380	5.811
380	1650	420	- 818
324	1689	-	-
98	1724	-	
328	2131	-	--
358	2461	-	--
	3008	-	-
846	3006	-	-
3411	5.048	--	-
395	60771	-	--

- Taken from Landolt and Bornatein's Tables of L in the equanon
uufficiently close near the break to abcertain with any degree of precision the values of λ_{0}, but the experimental measures of the optioal absorption on the short wave side of the threshold are in good agreement with the theoretical formula for all metale for which I have been able to find optical data.

Caloulation of the photo-electric yield of electrons involves in it not only the problem of abeorption of radiation, but also that of absorption of electrona by metals. In the abseace of any knowledge of the law of absorption of electrona it is not posable to estimate what fraction of the electrons hberated unside a metal is sble to escape out of its surface. In making some measurements on the photo-electric absorption of ultra-violet light by a thin film of gold, Rabena and Ladenburg (' Verh. der. Deutsch. Phys. Ges. Jahrg.,' vol. 9, p. 749 (1907)) observed that whle the intensity of radiation on the uncident aide was about 1,000 times that on the emergent side, the emisesion of electrons on the front side was abopt 100 tumen greater than on the back side. From these data Partucch and Hallwachs ('Ann. der. Physik,' vol. 41, p. 260 (1913)) have caloulated the expozential co-efficients of absorption of radiation and electrons. The 'valuen are' $\Sigma \mu_{,}=1.03 \times 10^{6} \mathrm{~cm}^{-1}$ and $\Sigma \bar{\eta}_{0}=5.96 \times 10^{5} \mathrm{~cm} .^{-1}$, where
$\Sigma_{\bar{\eta}}$ rofers to the average value of the electron absorption co-efficient. It is known that $\Sigma_{\mu_{\nu}}$ is a function of frequency, and presumably $\Sigma_{\eta_{\nu}}$ also variea with the velocity of electrons, and hence 18 indirectly a function of frequency, Assuming exponential laws of absorptions, one obtains the following expression for the photo-electric yield of electrons promoted by the action of unit quantity of radiation falling per second per unit area of a inctal.

$$
\begin{align*}
\mathbf{F}_{\nu} & =\mathbf{N} \cdot \frac{8 \pi e^{2}}{3 m c} \frac{v-v_{0}}{v^{2}} \frac{1}{h v}\left[1+e^{-\left(\sum_{\mu_{\nu}}+2 \eta_{\nu}\right) d}+\varepsilon^{-2\left(\sum_{\nu}+\eta_{\nu}\right) d}+\right] \\
& =\mathbf{N} \frac{8 \pi e^{\mathbf{2}}}{3 m c h} \cdot \frac{v-\nu_{0}}{v^{3}} \cdot\left[1-e^{-\left(2 \mu_{\nu}+\eta_{\nu}\right) d}\right]^{-1}, \tag{12}
\end{align*}
$$

where $\quad N=$ number of atoms per unit area
and $\quad d=$ distance between successive atomic layers.
The experimental data on various metale for $\Sigma_{\mu \nu}$-given by Minor, Drude, Hagen and Rubens, and othrrs-abow that its value 18 greater than $10^{5} \mathrm{~cm} .^{-1}$ for all frequencien The maximum amount of photo-electric emission of electrons results from the action of radiation of frequencies near about $\frac{y}{3} v_{0}$ For frequencies in this range, the theoretical expression (ll) gives for $\Sigma \mu_{\text {, a }}$ valuc about $10^{6} \mathrm{~cm} .^{-1}$ for different metals in agreement with Partesch and Hallwach's computed value for gold. A rigid evaluation of the factor

$$
\left[1-c^{-\left(\Sigma_{\nu}+\Sigma \eta_{\nu}\right) d}\right]^{-1}
$$

in expression (12) is unpossible without a knowledge of the functional relation between Σ_{η}, aud frequency. One can, however, see the order of magnitude of thes factor by taking $\left(\Sigma \sum_{\nu}+\Sigma \bar{\eta}_{\nu}\right)$, equal to $1.6 \times 10^{6} \mathrm{~cm} .^{-1}$, and $d=4 \times$ $10^{-8} \mathrm{~cm}$. as an allustration. Toa first approximstion, the factor ia equal to

Multiplying (12) by the electrome charge and uaing the values of the constants,

$$
\begin{equation*}
F_{v}=719 \times 10^{13} \cdot N, \frac{v-v_{0}}{v^{8}} \text { coulombs/calorie per sec. per sq. om. } \tag{14}
\end{equation*}
$$

except for a factor of the order 15, whioh probably varies with frequency. It is not known whether Σ_{η}, nereases or decreases with frequency. To simplify the complexity of the problem, let us suppose that $\Sigma \eta_{\nu}$ increases with froquency in such a manner as to keep $\left(\Sigma \mu_{\nu}+\Sigma \eta_{\nu}\right)$ practically a constant. If this be so, then from (12),

$$
\begin{equation*}
\frac{d F_{y}}{\partial v}=-\frac{3}{v^{3}}+\frac{3 u_{0}}{v^{6}} \tag{15}
\end{equation*}
$$

For F_{r} to be maximum, one obtanas the condition

$$
\begin{equation*}
v_{m}=j v_{0} \tag{16}
\end{equation*}
$$

Experiments on photo-electric emission from several metala have confirmed this relation of $0, W$ Richardson It would be an additional support to the theory if extinction co-eflusents ahow a maximum at a frequency equal to $2 v_{0}$ It ought to be possible to verify this point by meusurements on metals whose long wave-length limits he in the visible apectrum

One important conclusion emerging out of the dscussion given in the foregoing pages is that the density of the incident stream of light-quants decreasen very rapidly with the ilppth of penetration As regards order of magnitude, it is sufficient, therefore, to estimate the number of electrons emitted from the first lnyer of atoms, for the bulk of the emitted electrons orignates certainly from quant-atom collasons in the first fers layers Hence the order of magnitude of the total photo-electric emission per second per unit aren is given by

$$
\begin{equation*}
N_{\text {puou }}=N \int_{D_{11}}^{2} \frac{f \mathbf{E}_{1} \mathbf{K}_{1} d v}{h y} \pi \lambda^{2} C^{\prime}(v), \tag{17}
\end{equation*}
$$

where

$$
K,=\frac{h v^{4}}{c^{2}} \varepsilon^{-b_{1} k 1}
$$

E_{v} is a function of the frequency, but lit \mathbf{O} Hulbert's ('Astrophy Sourn,' vol 45, p. 149 (1917)) experments show that ith variation with frequency towards the ultra-violet is limited to a very amall range The order of photoelectric emission of electrons cannot, therefore, be apprecisbly affeoted by its variation To all intente and purposes one can take E_{r} as constant \ln the present calculation. Thus, substituting for $\mathbf{C}(v)$ and K, in (12), and performing the integration, one obtains

For a perfeot ' black-body' radıator $\overline{\mathbf{E}}=1$

11. Comparison of Thermionic and Total Photo-Electric Currents.

The thermonic current from a aquare centimetre of a hot body at $T^{\text {as }}$ is given by
where

$$
\begin{equation*}
A_{\text {IMNXI }}=\frac{2 \pi m h^{2}}{\sigma h^{\pi}} . \tag{1}
\end{equation*}
$$

Total Photo-Electruc Emission of Electrons from Metals. 625
The total photo-electric current from unit area excited by radiation from a nource at $\mathrm{T}^{\mathbf{0}}$ is pliven as regards order of magnitude, by

$$
\begin{equation*}
\mathrm{I}_{\text {phot. }}=\mathrm{A}_{\text {phot }} \mathrm{T}^{\mathbf{2}} \mathrm{E}^{-h \mathrm{rpbot} / \mathrm{T}}, \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{A}_{\mathrm{phot}}=\int \overline{\mathrm{E}} \cdot \mathrm{~N} \cdot \frac{8 \pi \kappa^{2} k^{\mathrm{d}}}{3 \mathrm{~m} \mu^{3} h^{2} h^{2}} . \tag{4}
\end{equation*}
$$

Talong ${ }^{n t}=8995 \times 10^{-82}$ grams, $e=4-774 \times 10^{-10} \mathrm{ESCL}, h=137$ $\times 10^{-16} \mathrm{ergg} / \mathrm{deg}, h=6.55 \times 10^{-27} \mathrm{ergs}, \mathrm{sec} . c=3 \times 10^{-10} \mathrm{em} / \mathrm{sec}$, $\sigma=1, E=05$ (for tungsten),

$$
\begin{equation*}
A_{\text {uomm }}=181 \times 10^{11} \text { E.S.U. } ; \mathrm{cm}^{2} \mathrm{deg}^{2}=602 \mathrm{amp} / \mathrm{cm}^{2} \mathrm{deg}^{2} \tag{5}
\end{equation*}
$$

$A_{\text {rbot }}=8.22 \times 10^{-12} / \mathrm{N}$. ESU $/ \mathrm{cm}^{2} .^{2} \mathrm{deg}^{2}{ }^{2}$

$$
\begin{equation*}
=274 \times 10^{-21} f . \mathrm{N} \mathrm{nmp} . / \mathrm{cm}^{2} \mathrm{deg} .{ }^{2} \tag{6}
\end{equation*}
$$

The above calculation of $A_{\text {phot }}$ takes no account of the electrons emitted from the inside atomic layers The artual theoretical value of $A_{\text {plot }}{ }^{1 s}$ therefore greater than (6) by a factor of the order 10 as seen from the considerations given in the previous chapter But until one knows more about elertron absorption in metals, one has to remain satisfied only with the calculation of the order of magnitude of the total photo-electric emission

$$
\begin{align*}
& \begin{array}{c}
\text { Puttiog } \\
\text { nnd }
\end{array} \\
& \left.\begin{array}{c}
\mathrm{N}=1 / d^{2} \\
f=302 \times 10^{-3}
\end{array}\right\} \\
& \\
& \\
& \mathrm{A}_{\text {ploot }}=8.32 \times 10^{-84} 1 / d^{2} \mathrm{amp} / \mathrm{cm}^{2} \text { deg. }^{2}, \tag{7}
\end{align*}
$$

where d is the lattice-constant of the metal
The following table gives a comparison between the calculated and the experimental valuer of $A_{\text {phot }}$.

Table XIII

Kilomente	$10^{10} \times A_{\text {phot }}$ (observed)	10^{4} < $d \mathrm{~cm}$	10^{10} ~ Apliot (cnlculated)	$\frac{\text { Aphot (osloulated) }}{\text { Aphot (observed) }}$
Al	082	- 040°	508	61.9
Zn	134	-	-	-
Fe	282	$\pm 850^{*}$	1048	41.8
N 1	524	3 4990	098	132
A	1 H	$4078{ }^{\circ}$	511	26.3
Au	180	$408{ }^{\circ}$	513	26
Te	1.98	-	-	-
Pt	125	18120	85 8	4
Mo	2.45	3 148*	857	550
W	8.09	J 185*	85	9.6
C	17.8	-	-	\cdots

*W. P. Davey, 'Phys Rev,' vol. 25, pp 708-81 (1920)
S. C. Roy.

Table XIV

'	Tuntalum			Modytidenum			Tangsten			
$\mathbf{T}^{\mathbf{L}}$	1 Prol $\times 10^{184}$	Leherima	$\frac{1}{101} \times 10^{12}$	1 1rand $\times 10^{109}$	Itierme 10^{1+}		$1 \mathrm{Im}_{\text {max }} \times 10^{\text {a3* }}$	Indram $\times 10+$	$\frac{I_{\text {phode }}}{\text { Ithrem }}$	- 100
2500	272	528	$5 \cdot 15$	528	I 15	439	629	371		68
2410	6-65	13-4	497	141	3 mm	436	167	105		58
2500	182	314	4.84	351	776	4. 52	453	274		66

[^155]Total Photo-Electric Emission of Electrons from Metals.
The date in the following table suggests that thes is true generally.
$\phi=\frac{k b}{c}=0.862 \times 10^{-4}$
$\dot{\lambda}_{0}$

Flements.	Volame	Thermionic ${ }^{+}$			Tolal Photoeloctro. ${ }^{\text {a }}$			Dreet. $\lambda_{\mathbf{0}}^{\boldsymbol{i}} \mathbf{U}$	
		bturem	Hharem	${ }^{\text {atherm }}$ i. ${ }^{\text {d }}$	${ }^{\text {b phat }}$	\$phat	$\wedge_{\text {phate }}$ A.U.		
Cu \mathbf{K} \mathbf{N}	706 855 305		1.38 1.81 $\mathbf{2} .09$	8854 7600 6149	$=$	-	=		
$\mathrm{Ca}^{\text {a }}$	258	26,000 (1)	24	3017	-	357	390		
			-		41,430	357	340	3995 3000 304	
Zn_{0}	029	-	-	-	42,890	368	3358		
								$3010-3050$ (16)	
Fe	712	-	-	-	48,700	± 2	294	${ }^{3130-330} \mathbf{2 7 0}$ (16)	
								2800-3130 ${ }^{300}$ (15)	
${ }_{\text {A }}^{\text {A }}$	$\begin{array}{r}\text { ¢ } \\ \hline 1088\end{array}$	二	二	=	47,860	${ }_{3}^{+12}$	${ }_{313}^{2098}$	3000 37000 32050	
	102				5,610	471	2825		
${ }_{\text {Tho }}$	21 10 10		290		50,230	4.33	2854	${ }^{\text {H/GJ }}$ (2)	
${ }_{\text {Mo }}^{\text {Tis }}$	10 10	$\left.\begin{array}{l}30,000 \\ 47,800\end{array}\right\}$	${ }^{4} 812$	${ }_{3}^{2997}$	50,230 45650	403 103	${ }_{3148}^{2854}$		
Pt	- 12	41,500 ${ }^{4,680}$ (5)	$\left.\begin{array}{l}3.8 \\ 4.29 \\ 4\end{array}\right\}$	28200	51,020	1.4	2809		
		40,650 (6)	427 \}	2014				2800 (11)	
	- Moesa of the ditiorent determinationa in gíven. 								

S. C. Roy,

Remeata	Atomic Valuase.	Thermumen \dagger			Total Photo plectre -			$\frac{\text { Droet }}{\lambda_{0} \hat{\lambda} \mathrm{U}}$
		$\mathrm{B}_{\text {inerme }}$	Therm	$\lambda_{\text {a heren }} \mathrm{A}$ U	$b_{\text {plone }}$	Pphat		
W c	$\begin{gathered} 962 \\ 3.41 \\ \text { (Dhamand) } \end{gathered}$	52,600 $\left.\begin{array}{l}52,900 \\ 52,430\end{array}\right\}\left(\begin{array}{l}\text { (1) } \\ \text { (8) }\end{array}\right.$	$\left.\begin{array}{l}453 \\ 4 \\ 4 \\ 452\end{array}\right\}$	$\left.\begin{array}{l}2728 \\ 2738 \\ 2735\end{array}\right\}$	52,440	452	273	$\left.\begin{array}{l} 2015 \\ 2605 \end{array}\right\}_{(18)}^{(2)}$
	$\begin{gathered} 5 \text { a } \\ \text { (Craphite) } \end{gathered}$		451-497	276-250	55,640	482	2545	$\left.\begin{array}{r} 2815 \\ 2550-2 \operatorname{sen} \end{array}\right\}(16)$

(1) Direotly taken from a tablo given by S Dashman. 'Trans. Am Fisotrochem Soc; vol 44, p 111 (1923). (2) Richard Hamer, 'Jour. Am Optacel Soc,' vol. 9, pp $251-57$ (Sept., 1924)
(3) O. W. Heahardeon and A. F A. Young, loc. cu.
(4) O. W. Rechardeon, ' Phil Treans.' A, vol. 201, p 407 (1803).
(5) R. Suhrmann, 'Zots I Phyrik,' vol. 13, pp. 17-34 (1923),
(6) Sehliehter, ' Amo. der Phynik,' vol. 47, p. 573 (1915)
(7) C. Daveenon and L. H. Germer, 'Phys Rev.i' vol. 20, p 300 (1922)
(8) Iangranir, ' Phage. Rev,' vol. 11, p 450 (1913)
(A) Pring and Partor, 'Phil Mag,' vol. 23, p 102 (1012)
(10) D. W. Cormolsen, 'Phya. Rev,,' vol. 1, p 18 (1913).
(13) R. A. Mifitras, 'Physe Rev,' vol. 7, p 30 (1916).
(14) F. K. Richbreoyer, 'Phys. Rev.,' vol 30, p. 385 (1910)
(16) A. E. Heaninge and W. H. Kedeah, 'Phyn Rot ;'vol. \& p. 209 (1016)
(16) A. LL Enghea, 'Photo- Rhoctractity '
(17) 0 Stahbmann, ' Phys Rov,' val 15, p. 650 (1920).
(18) T. H. Harmon, 'Proo. Phys. Soc,' London, val 38, p. 214 (1820) (valoe for harge emmena).

10. Summary.

(1) This paper contans an dccount of the measurements of total photoelectric currents from eleven metals excited by complete radiation from a tungaten source at temperstures between $1900-2700^{\circ}$ abs. These currents are found to vary with the temperature of the radiating source according to Richardson's law of thermionic emission
(2) Considerations are brought forward to show that the interaction between matter and radiation in the state of thermal equilibrium can proceed much faster than the action of hagh-temperature radiation on a cold aystemi, and a tentative attempt 18 made to work out this idea in a quantitative form
(3) An expression is given for the exponential co-efficient of photo-electric abworption in the form

$$
\mu_{v}=\frac{8 \pi}{3} \frac{c^{3}}{m c^{2}} \frac{v-v_{n}}{v^{2}} \frac{D}{M}
$$

(where D and M are the deveity and atomuc mass of an clement), whoh is in quantitative as well as un qualutative agreement with Monor, Hagen and Rubens, and other observers' optical absorption data on the short-wave side of the threshold.
(4) The photo-electric yield of eleatrons promoted by the action of unit quantity of radiation of frequency v falling per secoud per unit area of a metal is shown to be given by

$$
\mathrm{F}_{v}=\mathrm{N} \frac{8 \pi}{3} \cdot \frac{c^{\mathrm{z}}}{m c h} \cdot \frac{v-v_{0}}{v^{3}} \cdot\left[1-\varepsilon^{\left.-\left(\Sigma_{1}+\Sigma_{n_{v}}\right)\right]^{-1}}\right.
$$

where Σ_{μ}, and $\Sigma_{\eta_{\nu}}$ are respectively the co-efticuents of absorption of raduation and electrons, d is the dustance between succesave atomic layers, and N is the number of atoms per unit area.
(5) An approximate calculation of the total photo-electric current leads to the expression,

$$
I_{\text {Dhot }}=f \overline{\mathbf{E}} \mathrm{~N} \cdot \frac{8 \pi c^{3} k^{2}}{3 \pi c^{4} h^{2}} \cdot \mathrm{~T}^{2} \cdot \mathrm{c}^{-\mathrm{in} \| / \mathrm{T}},
$$

which 18 in fair agreement with observed values, f being a constant of the apparatus equal to 307×10^{-5} and $\overline{\mathrm{E}}$ being the average emisaivity of tongaten.

In conclusion, the writer wishes to express his deep sense of gratitude to Prof. O. W. Ruchardson for his continued anterest and gridanoe dunng the progress of this work, and to Mr R. H. Fowler for looking unto the manusoript and advancing helpful criticisms
The writer is also indebted to the Government of Assam, Inda, for a research grant, which enabled bun to carry this work to its present condition

> The Crystal Structure of Meteoric Iron as determined by X-Ray Analysis.

By J Young, B.Sc, FRAS. Lecturer in Phyaics, University of Burmingham
(Commanicated by Prof S W. J Sinith, F R S -Received July 23, 1826.)
[Plate 20$]$

1. Introduction

The well-known " Widmanstatten " figures, obtained by etching the polished surface of meteoric iron, suggest the ocourrence of two types of crystal structure in alloys of the nickel-ron series
Those figures, easily obtained when the meteorite contans more than 7 per oent. and less than about 14 per cent. of nokel, owe their existence to the presence of two constituents One of these, "taemite," contains a hyher percentage of nuckel than the other, "kamacite," and is much leas easily attacked by etching reagents.
In typucal oasea the taenite occurs in thin lamallw, separsing much thicker lamelle of kamacite, arranged octabedrally with reapect to one another.

It was suggested to me by Prof. S. W. J. Smuth, who placed suitable meteontes at my dusposal, that it would be of intereat to examine the structure of kemacite and taenite by \mathbf{X}-rey methods.
In the matenals supphed, the cryatal grams were large enough to parmit good X-ray reflexions to be obtained trom prepared aurfacee of angle oryatala, and it was found to be possible to examme not only the apaoe latticen of kamacite and taenite but also the wey in which the two kinds of littive are orientated with respect to one another at their common boundary.

It is now known that segregation of the type to which the Widmanatatten structure is due is not confined to meteorites, but occurs frequently in artificial ulloya of various kunds. Consequently the results of a study of the kind here proposed are of general interest and are the more important in that the structure of artificial alloye 18 usually so fine grained that it would be difficult, if not impossible, to apply to them the X-ray methods which the large-scale structure of meteornc iron permits

The crystal structure of artificisl nickel-irou alloys has been studied by McKeehan,* who has found that in general the crystals are of two typer, whose occurrence depends upon the compositiou of the alloy. When leas than 25 per oent. of nickel is present, the structure is body-centred cubic with a parameter which increases from 2.87 A U for pure iron to about 2.89 AU in the alloy richest in nickel, when more than 25 per cent. of nickel is present, the atruature is face-centred cubic with a parameter which dmmashes from about 360 A U in the alloy richest in iron to $3 \cdot 51 \mathrm{~A} \mathrm{U}$. in pure nickel.

McKeehan found that when the percentage of nuckel hes between 25 and 30 , either or both of these structures can occur in the same alloy. Although hes observations seem to show that the body-oentred cubic lattice is unobservable in alloys containing more than 30 per cent. of nickel, they are insufficient to fix the percentage of nickel at which, in its turn, the face-centred latice dusppears It can, however, be inferred from the measurements described in the present paper that in meteoric nuckel-iron, at any rate, the faoe-centred lattice peraists until the percentage of nickel falls below 7.

2. The X-Ray Reflexums from the Odahedral Planes of Meteorv Iron

The first experituents were made to find out the particular crystal planes which the kamacite and taemte present to one another along ther common plane surface boundary The Carlton meteorite was selected for this investigation on account of the very regular development of the Widmanstatten structure in it and the consequent ease with which a small area of taenite may be exposed by grinding parallel to an octahedral plane of the structure. As the teenite plates are only about 10μ thick, it was found a somewhat difficult matter to obtain an area lurge enough to give a strong X-ray reflerion, but after a number of trials an irregular ares of about $\overline{5} \mathrm{sq}$. mm. was exposed, embedded In and surrounded by the kamacite to which it was expeoted it would be related crystallographically. This face was polished and then lightly etched in dilute nitric acid Plate $20(a)$ is a low-power photograph of the fece. Taenite appears

$$
\text { * : Phys. Rev.,' vol. 21, p } 401 \text { (1023). }
$$

as jet black areas and kamacite is shown in halt tope. The \mathbf{X}-ray reflemions from the surtace were examinod photographically, using a Shearer tube with unterchargeable anticathodes as a eonice of X•rafy, and a Muller X-ray apeotrograph made by Hilger. The prelinunary experiments were carried out with molybdenum as anticathode, but more accurate results were obtained with a copper antucathode, when it became apparent that the first-order reflexion angles would not be too great with this element. In computing the results the following wave-lengths were adopted -

The reflecting angles found for this prepared face of the meteorite are given in Table I, together with the nature of the radiation, the spacing of the crystal planes, the probsble source of the reflexions, and the probable parameters of the lattices Reuults from the same plate are bracketed together. Dunng the exposures the crystal was shghtly rocked about an axos parallel to the spectrometer slit.

Table 1.

Radiation	Retirnion Angle	Npacing	Crymal Plane	Parameter	Butrue.
		À		A.U	
1. $\left\{\mathrm{K}_{\boldsymbol{H},} \mathrm{Mo}_{0}\right.$	10.5	2-022	110	2800	Kymacite
$2\left\{\mathrm{~K}_{\mathrm{a}_{1}} \mathrm{Mo}_{0}\right.$	054	2000	111	d 670	Teenito
3 ¢ $K_{4} \mathbf{M o}^{\text {M }}$	1035	9.029	110	2.870	Kamacite
1 $\mathbf{K a}_{\text {a }}$, Mo	1075	2027	110	9867	Kameaite
A. $\mathrm{H}_{\mathrm{a}}, \mathrm{Mo}$	057	205	111	3 ET	Tremite
$6\} \mathrm{K}_{4} \mathrm{Cu}$	2145	2075	111	3 685	Teanite
7. $\} \mathrm{E}_{\mathrm{a}}^{1} \mathrm{Cu}$	2215	2020	110	2878	Kemanita
$8\} \mathrm{K}_{4} \mathrm{Ov}$	2210	2.022	110	8. 885	Kameote
$9\left\{\mathrm{~K}_{0_{1}} \mathrm{Cu}\right.$	2151	2.066	111	8579	Taenite
10. $\mathrm{Kal}_{4} \mathrm{Co}$	2154	8088	111	8.874	Teente

An examination of the above table shows that there are two difierent spacings parallel to an ootahedral plane of the metdorite. These spacings are very nearly equal, and un the photogrephn give rase to doublets, the components of which are of appronimately equal intenrity, but are found at different levels on the plate. These levela were found to correspond to the difierent levels of

(11) Oitaherlial xetion of ('urlton miteotite, she wing tarmite ('TT) and kamacite (KK)
 of kamacill
the kanncitic and tienitien regiope of the apeaimen, and a careful comparison inducated that in kamacite the rpacing is elbout 2-027 A.U., while in taeritte it 18 about 2 -063 A.U. In order to ogntim this reault the kamacitio region of the specirson was covered with a sheet of lead foil in which a small aperture had heen cut. The position of the abeet was adjuatied until only taenrte could be seen on looking through the apertare, and an X-ray photograph was then taken This photograph (ratult 10), indicated a stroitic reflexion at $21^{\circ} \mathrm{B4}$, and except for anme faint lines due to the lead, which were easily identified, there was no other line on the plate. It was therefore clear that the $2 \cdot 063$ A.U. spacing belonged to taenite.

There can hardly be eny doubt that kamacite, hle iron, is a body-centred cubic oryetal. The lattioe-constant, celoulated on this asmamption, agrees with that of iron, while photographs of kamacite taken for other purposea have yielded refexaons from the (211), (100) and (111) plenes of such a lattice The face-centred nature of taenite was shown by taking a powder photograph of a part of the apecimen relatively meh.in taemite. This ahowed atrong (111), (100), (110) and (311) lines from a faroentred lattioe. The kamacitio lines were weok and could only just be identified.

It is therofore olear that, as implied in Table I, tho kamanite and taenite grow with anpoot to one nother in suoh a, why thin a (110) plame of thre kanacite 12 qaxelled to (I11) piano of the twouike. The nert matter suggeating itsalf for Apmatigation was to And whether the asme relation oxisted betwean the surail' cryatals of kemacite and taonité passent in the relatively fine-grannod regions known as "pleasite" which "ro frequent in the Cerlton meteorite An octahedral area of plesilte was therefore X-rajed in the manner descmibed above. The reaulte of the two photographe are gaven in Table II, an eramination of which reveely the unme hind of zeletion in the pleasite. A comparian plotograph in which tha kamacitio-taenitio specimen wes manunted on the oryintal holder below the plemsitio specimen eatabliahed the completo identsty of the line from the plearite with thoos fom kanacite and teealte moparately. The pleasitio lines, however, were more difture than those ofbained from bameaite
 in the photographa giving Table II.

Table II

Redistion	Hefle eting Angle	Spacing	C'ryatal Plane	Paramoter	Source
	' ${ }^{\prime}$	A U		A U	
$\left\{\begin{array}{l}\mathrm{K} \\ \mathbf{k}\end{array} \mathrm{Mo}^{\text {M }}\right.$	102	2083	110	2874	Kamaoite
$\left\{\mathbf{K a ~ M o ~}^{\text {M }}\right.$	952	2010	111	3580	Tuentie
¢ K, Cu	2148	2073	111	3500	Tamito
$\underline{\mathrm{Ka}} \mathrm{Cu}$	22 145	2033	1110	2872	Kammite
$\left\{\mathbf{K}_{\mathbf{K}}^{\mathbf{K}} \mathbf{C u}\right.$	10 in	20065	111	${ }^{4} 500$	Tsenito
$\mathbf{K}_{\boldsymbol{\beta}} \mathbf{C u}$	2045	2024	110	2882	Kamaoite

3. The Determination of the Oriestation of the Kamacue Crystal with reapect to the Wudmanstidten Structure

The Widmanstatten stricture of the meteorite is determined by the platelike crystals of kamucite, of which there are four iamulee, corresponding to the planes of a regular octahedron. An shown in §2, the crystals of kamacite grow with a rhombic dodecahedral plane parallel to the plane of the plate, that is, to a Widmanstatten plane, but as this does not wholly determine the orientation of the humacite crystal, it is hoth intereating and mportant to examine whether thes orientation can be fixed more precosely.

As the thickness of the kamacitic plates in the Carlton meteorite (contaming about 13 per rent of nickel) is amall, necessitating long exposures when sections are examined, another meteonte, the Caion Diablo (containing about 7 per cent of nuckel) was selected for this test on account of the relatively large crystals of kamasite which it contains The Widmanstatten planes are not so well defined by individual crystals in this metcorite, but by considering the setiong of numerous crystals, a farrly good estimate of the position of these planes can be made X-ray examination of these planea showed that in this meteorite also the Widmanstlitten plane ia a rhombio dodecahedral plane of the kamacite

The apecimen was then cut perpendioularly to a Widmanstäten plane in such a way that the section exposed was parallel to one of the sides of the equilateral trangles formed by the intersections of the remaining Widmanstatten planes with the nbove-mentioued Widmanstatten plane.

For convenience, such a plane of section will be referred to as a " prismatio plane" and the sretions of the kamacitio plates which it exposes will be described as prismatic areas. The importance of a primatic plane lies in the fact that although it is not necessarily a rational plane of the kamacite, yet it belonge to a zone which contains several rational planes of both kamacite
and tuenite The determination of the angles which the kamacitic planes (100), (110) and (211) of this zone make with the associated prismatic plane would serve to tix the position of the kamacite crystal with reapect to the Widmanstatten structure

When the meteorite was cut in the way just described, the section exhibited, after etching, the structure shownin Plate $20(b)$ The prismatic areas A, B, C, and D of this section belong to a set of parallel kamacitic plates and show the true thicknesses of these plates These nreas were examined separately by X-rays from a molyblenum target, the apecimen being mounted on the crystal table so that the planes of the kamacite platen were horizontal By using cams varying from 4° to $05^{\prime \prime}$, the setting of the plane of section at which reflemon occurred in each case could be fixed within a degree

The results are given in Table III, which shows the c rystal setting (i e , angle between X-ray beam and plane of section), the reflecting angle ($i e$, the angle between the diffracted beam and the diffracting planes), the plane causing reflexion, and the angle which the reflecting plane makes with the plane of section

Table III.

	Ares	Cryatal Setting	Reflerting Anglo	Roflouting Plane	(Cryital Setting) - (Relleoting Angle)
		-	- ,		- ,
A		14.5	1740	(112)	- 310
R		100	10.6	(110)	+ 00
C		14	1740	(112)	-340
D		14	1740	(112)	-340

The inolination of each reflecting plane to the plane of section is indicated by an arrow in Plate 20 (b)

The actual plane of section was found by measurement to be about $1 \cdot 5^{\circ}$ from paralleliann with a truly prismatio plane as defined above, and, in consequence, the angles in the last column of Table III requre correction, by the addition of this amount. to give the inclination of the reflecting planes to a truly prismatic plane of section.

The results suggest two possible arrangements of the kamacite crystal in the meteorite. These are shown diagrammatically in fig. 1, in which the traces of prismatic planes on a Widmanstatten plane are ahown as the equalateral triangles, $a b o$ and $a^{\prime} b^{\prime} c^{\prime}$, and the traces of the (211) and (110) planes of the kamacite belonging to the same zone are shown as broken lines. The
angles which these latter planes make with the former planes are also indicated in the figure

An X-ray exammation of cach of the four crystals on another prismatic plane confirmed the existrnce of the alove types of growth in the meteorite. the orystals A and D belonging to type (a) and B and C to type (b) (sse figg 1).

Fia. 1.

4. Discussion of Resulis.

Adopting the values 2870 A . and $3 \cdot 590 \mathrm{~A} . \mathrm{U}$. for the respectuve parameters of the lattices of kamacite and taenite, it is eany to calculate the number of atoms per squaro $A \cup$ on the most important planes of the lattices These are given in Table IV.

Table IV.

It will be acen that the two connected planes, (110) of kamacite and (111) of taente, contan very nearly the same number of atoms per unit ares, the number being greater in taente by about 4 per cent

Fven without knowing the crystullographic nature of the solid solution from which the kamacite and taenite cryatallise out (though this is almust certain to be, like " γ " rron, face-centred cubic), it may be antiripated that these crystals will orient themselves to that solution in such a way as to make the rearrangement of the atoms a minimum, and, therefore, that the spacings of the atoms in the kamacite and tarnite in any particular direction will be those which most resemble each other. Whrn it is rempmbered that the spacings of the connected planes of kamacites and taemte only differ by 2 per cent. and the concentrutions in these planes by 4 per cent, it is immediately obvious that the above condition has been partly satistied
Fig. 2 ahows the atoms on a (111) plane of taemine, together wilh those on a (110) plane of knmacite on the same scale

Fia 2

In $2 a$ the lattices lave been superposed so that the traces of the (211) planes of kamacite which are perpendicular to the plane of the dagram make angles of 2° and 80°, respectively, with two of the aides of the equilateral triangles formed by joinng the taenite atoms. in $2 b$ the superposition is such that the corresponding angles are J^{0} and $12 \cdot 5^{\circ}$ These are the orientations of the kamacite crystal which were actually found to exist in the Cainon Duablo meteonte (nee fig 1)
Conader now the arrangement of atoms in fig. 2. In taente the atoms
are at the apices of equilateral triangles of side $\mathbf{3} \cdot 54 \mathrm{~A} \mathbf{U}$; in kamacite the atoms are at the apices of isosceles triangles of base $287 \AA$ U. and side 2-485 A.U. The approximate equality of the equal sides of the asosceles triangles with those of the equilateral triangles is very atriking, and no doubt the approximate coingadence of $A O D$ with $A^{\prime} O^{\prime} D^{\prime}$ is partly due to thas equality. Two other considerations should also be noted, viz .-
(1) In fig $2 a$, the trace $A \mathrm{~F}$ of a (110) plane of tacmete, at right angles to the plane of the figure, is molined at only $3 \cdot 25^{\circ}$ to the trace $A^{\prime} E^{\prime}$ of a (100) plane of kamacite, in fig $2 b$, the trace AC of a (110) plane of taenite at right angles to the plane of the figure is inclined at $7 \mathbf{2 5}$ to the trace $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ of a (100) plane of kamacite As the spacings of these planes differ by about 11 per cent and their atomic concentrations by about 10 per cent, some physical connection between these planes seems not unlikely
(2) In both dagrams of fig 2, the trace FB of a (110) plane of taenite at right angles to the plane of the figure 18 unclined at only 2 degrees to the trace $B^{\prime} N^{\prime}$ of a (111) plane of kamacite, and the atomic concentrations and spacings of the (110) planes of tamite are approximately one and a half timen those for (Ill) planes of kamacite

Here also there seems to be some evidence for physical connection between planes which are very nearly paralled in the two types of lattice

5 The Orgin of the Wumanstätten Structure.

It is of interest, in conclusion, to attempt to find reasons why the relationship hetween the kamacite and taenite lattices should be that which the experiments have disclosed

For this purpose it is necessary to adopt some view as to the sequence of the tranaformations from which the Widmanstatten atructure results

This sequence has been the subject of many investigations,* which it is outside the purpose of the present communication to discuss According to a view commonly held, the structure is a consequence of recrystallisation, beginning much below the solidification temperature of the meteorite, of which the first atage is the formation of kamacite and the second that of taenite. Pror to this recrystallisation, the masterial is a homogeneous alloy of iron and nuckel with a face-centred latice of which the parameter in about $3 \cdot 60 \mathrm{~A} \mathrm{U}, \dagger$ and thus not very different from that of taenite

To a first approximation, therefore, we may take the taenite lattice of - Cf., e.g, S. W J. Smlth, 'Phil. Trana.' A, vol 208, p. 21 (1000)
\dagger Cf., eg. Westgren, ' Joum, Iron and Eteel Inat.' (1921, 1022, and 1924).
fig 2 as representing that of the "sold solution 'from which the kamacite segregates.

In an attempt to form a bedy-centred lattice, the atoms \mathbf{G} and L , fig $2 b$, of the solid solution in octahedral planes respectively ahove and below the plane of the figure may be imagined to move in their own plance parallel to, AC no as to occupy positions respectively above and below the middle ponnt of 0 B This cannot take place without an outward movement of \mathbf{B}, because G and L would then be at distances from O and B less than the minimum distance permitted in the body-centred laitice Hut such an outward diaplacement is reasted by the aurrounding atoms, with the result that the displacrment of B takes the form of a alp $B B^{\prime}$, the atoms G and L reaching G^{\prime} and L^{\prime} In a simular way, C alps to $\mathrm{C}^{\prime}, \mathbf{E}$ to $\mathrm{E}^{\prime}, \mathrm{F}$ to F^{\prime}. etc

It is then possible to picture how, by shearing in rows approximately parallel to $A D$, the atome in an ortahedral plane of the solud solution can arrauge themselves in pmations conformmg with the latice of kamacite

It is interesting to nute, in this cominection, that rows of atoms such as $\mathrm{A}^{\prime} \mathrm{OD}^{\prime}$ are parallel to a (211) plane of the kamacite, whech we have found to be a cleavage plane of this type of crystal. This was proved by X -raying a cleavage plane of the Conhuila meteonte, of which the main constituent in kamacite

With respect to the movement of the aioms in the planem adjacent to those of fig 2 , it 18 to be noted that those of atoma $\mathrm{N}, \mathrm{K}, \mathrm{L}, \mathrm{H}$, etc , of fig $2 a$ are all very nearly in (100) planes of the kamacite. To a slightly lens extent, the same is true of the corresponding atums of fig. $2 b$

Cleavage along a (100) plane is wrll known to occur in "a iron," of which the space lattice is practically the same as that of kamacite.
Suce a cleavago plane is probably one of conaiderable atability, the formation of a (100) plane from a plane of the soldd solution, having approximately the required number of atoms per unt aren, by rearrangement of atoms already in thes plane, would not le surprising

Careful examination of the Widmanstatten structure bas led others* to suppose that it legme with the formation, along the octahedral planes of the onginal solution, of very thin lamellw of kamacite which, as tho structure develops, incrense in thickness by parallel growths outwards from the initial surfaces

It seema now to be posable to suggest more expluritly why growth should occur in this manner

On account of the marked resemblance of the (111) plane of the solnd solution and the (110) plane of kamacite, it is possible to form from the soldd solution, by amply shearing rows of atoms and rearranging the atoms m adjacent planes, as already described, a cryatal of kamante whach is only a few planes in thickness but of cousiderable area This crystal can spread andefintely in ite own plane without cansing very much dasturbance of the atoms, but 18 prevented from growing rapudly at right angles to the plane because the atomir movements requirell ure much greater and do not take Ilace in the same direction
Thus, while shearing of rows of atoms in an octahedral plane of the solsd solution is relatively eary, the atome movements involved in forming a (100) plane of kamactite from a (110) plane of the eoldil solution are more complicated Briefly, there is a "ready-made" plane of kamacite in the sold solution, and for this resson growth is rapid parallel to this plane but slon al right angles to it The parallel growth of the kamarite in Widmanstatten planes in probably emphasised still further liy the fact that these planes are not only the plaues of kamacite and of the solid solution in which the atomic denaitics are most nearly equal, but are also the planes of maximum atomic density
If, as is comiuonly assumed, the temperature at which kamacite begins to separato from the solid solution depends upon the peroentage of mockel which the latter contains, derreasing as that percentage mereases, it can be inferred that the composition of the kamucite must differ from that of the solution from which it separates The nuckel content of the kamacite must. in fact, be less thus that of the soldel solution with which, at a given temperature, it is in equalibrium Unfortunately, it does not aeem very likely at present that this inference can be tested satisfactorily ly X-ray methods, but it has two important consequences. The first is that the composition of the kamacitic layers must change continuously as they increase in wulth The second is that, during the growth towards one another, as the temperature falls, of two adjacent kamacite plates, the nuckel content of the narrowing layer of sold solution, which lies between them, must ateadily increase. It is probably not yet possible to deurde whether the final composition and structure of this latter tarnitic layer is always the rame Altempta to settle thas question by other methods are in progress in this laboratory Meanwhile, by the kundness of my colleague. Mr A A Dee, who has made a detaled photo-micrographis investigution of the C'arlton meteorite, I have been able to examune photographs, at high maguications, of transverse sections of taenite similar to that upon which my X-ray measurements were made. From these it is obvious that the
taenitic bunds are not homogeneous, although their surface layers are relatively unform and are probably those to which my measurements refer
Prof Sinith has suggested to me that, if the duplex structure of the tacuite band 18 duc to the fact that it contains a eutectorl of kamacite and a mickel-rich alloy, it is possible that when the eutectord strength of the solad solution is reached, at the surfure of a growing kamacite cryatal, the cutectord kamacite which segregates from the aurface layer of this solution may attach itself to the alreally existing kamacitr band. leaving behind a thin band of the nickelrich face-centred alloy which will separate it from the intenior of the solnd solution in which the conditions of recrystnllisation will be different, as Mr Dee'a oherrvations show

My warment thanhs are due to Prof Sinuth not only for auggeating meteontes as a suitable subject for X -ray study and for placing at my disposal the necessary apparatuas, but also for the great interest he has taken in the work and the many helpful suggestions he has made I am also indebted to Mr Dee for much information about the metallography of meteorites and of the nickel-ron alloys My best thanks are also due to Mr. G O Harrison of the Physics Workshop for his invaluable help with much of the high-vacuum techurque, and for making many of thi accessories required in the research

On the E.rcitation of Polarised Light by Electron Impact.

Hy H. W B. Skinner, Ph D, MA, Exhibition of 1851, Senor Student.

(Communicaterl by Sin Ernont Rutherforl, Pres R S -- Receved July 1, 1926)
(Plate 21)

§ 1 Introduction

In the course of minc experments* on polarisation efficte shown by mercury hines, emitted from a low-pressuro electron-mantained are, it was found that the yellow mercury lines λ 5770, b791 are weakly polarised even in tho absence of a magnetic field, the direction of the maxumum electric vector leing parallel to the direction of the discharge From the general characteristice of the effiect, it appeared hikely that the polarisation is due to the partly directed character of the electron tracks in the are, and, in this way, one was lod to the view that an electron is capable of exciting an atom to the emission of polarised light The present paper describes an attempt to anvestigate this point more thoroughly.

Whale the work was in progress, tro papers have appoared in which a acarch for aigns of polarisation in the light excited by electron impact has been made Tho first is by Kossel and Gorthsent who examined the case of the D lines of Sodium wnth a negative result This was confirmed by Eillett, Foote and Mohler, \ddagger who also investigated the case of the mercury line $\lambda 2537$ with a positive result, which will be described suberequently These experiments, however, only dealt with a few individual spectral lines. In the present work data have beon obtaned for all the more prominent lunes of the mereury spectrum §

§2 The Source of Light

It is clear that the chuef necessity for the experiments is an electron tube which is capable of producing an intense, perfectly directed atream of electrons.
After some trials, a tube was designed which has proved to work well The design is shown in fig 1 (approximately a quarter of actual size) and fig 2 (half of actual size).
It is an electron tube which runs on mercury vapour at a pressure of one-

- An acoount of theee un in the proes.
\dagger 'Ann d. Phyalk,' vol. 77, p 273 (1026).
\ddagger ' Phy: Rev,' vol. 27, p. 31 (1026).
8 Preliminary revulta were publshed in 'Nature,' vol. 117, p. 418 (1026),
thousandth of a mm. or less. The tube was exhausted continuously by inruns of a diffusion pump, and the pressure may be controlled hy altering the temperature of the mercury bead M

F is the filament, a narrow platinum strip coated with a mixture of $\mathbf{B a},{ }^{r} \mathbf{S r}$ and Ca oxides. The potental drop across it when heated 18 about 2 volts C is a cup mantained at a autable positive potential with respect to F and
acts as a focussing cylander P is a metal plate with a slit 2 mm . Wide, and Q a second plate with a slit $1 \AA \mathrm{~mm}$. wide Finally there is a third plate A as anode The space between \mathbf{Q} and A is aurrounded by a metal cylunder joined to Q Two holes are cut in it for observation and its funotion 18 electrostatic shelding

The filament, together with the plates C and P, can be removed by meane of a ground-glass joint The window W (of fluorite) had to be fixed on with wax, since it must pass the ultra-volet In spite of this the spectrum emitted is one of pure mercury, and the amount of impurity present was certainly less than $10^{-4} \mathrm{~mm}$.

The plate P serves as a grid Normally an accelerating field of 60 volts is appled between F and P, and a retarding field between P and Q. The object of thes double potential is to obtain an intense atream of alow clectrons Sufficlent visible hight is emisted for nasual observitions when the speed of the electrons corresponds to 20 volts A is connceted to Q through the galvanometer G which measures the current in the electron jet This at 20 volts is of the order of $1 / 10$ th $m a$

When the tube is working, a well-defined stream of electrons is obtaned in the region between Q and A This is made visble by the light emitted from the mercury atows along its track The light appears as a narrow lluish streak, which hardly apreads out at all in passug from Q to A , and little light comes from points outade the strcak. The spphcation of a magnetic fiold showod that the velocities of the clectrons wero very uniform, the bright streak was bent into a circle without being noticeably diffused

A photograph showing (alightly enlarged) the appesance of the stream (a) without a magnetic field, and (b) in a magnetic field of 5 gatiss 19 giveu in fig 3 (see Plate 21).

§ 3 Magnetw and Optroal Apparatus.

The tube is placed so that the electron stream runs vertically The light emutted from pointa ammediately under the slit Q is observed in a direction perpendicular to the stream A pair of Helmholtz coils 60 cm un diameter is provided, with axis in the magnetic meridian for balancing out the earth's field. With the and of a horizontal and a vertical magnetometer this could be accomplashed with great aucuracy. The main part of the metal portions of the apparatus are of molybdenum, вo as to be non-magnetio and not to absorb mercury The electrode seals through the glass are, however, of nickel-iron alloy, welded to molybdenum, olose to the seal, and were found to have a negligible magnetic effect in the region used for observation.

There remalns the dufficulty of heating the filament without providing a greater magnetic field than can be helped This is accomplished by bending the filament leads as shown in fig 2 With a heating current of 4 amps the field in the observation apace 15 mm away from the filament ia leas than $1 / 50$ th gauss, and thas accuracy of balancing was considered sufficient

A second pair of Helmholtz corls was provided in order to impose a magnetic field These can be placed in any position, but the standard position is with the exis in the direction of observation
For visual observation, an Ilford filter has been used to isolate the yellow mercury lines A Babinct compensatar and analyang Nicol prism have bren used for detecting polarised light, and measurement is performed by means of the interposition of glass plates at an angle.
Spectroscopic work has also been carried out, using a large Hilger quartz apectrograph (E_{1}) The hugh disperaion is necessary in order to separate the lines while uaing a brosd slit. This is required in order that faint fringes may be visible on the spectrum plate

The method adopted for the photographic work 18 to focus the electron stream on to the Babinct compensator by means of a fluorite lens. The Babinet fringes and eleotron atream are then focussed with a quartz lens on to the slit of the spectrograph

When the Babinet is employel, we have no direct means of determining the plane of polarisation ($\mathrm{g} g$, whether horizontal or vertical). This can, however, be determined by omitting the Babinet and using a Wollaston double-image primm of calcite The method then as sumply to place the prism at a distance ammediately in front of the tube and to focus the two amagos of the flectron stream with quartz lenses on to the sht of the spectroscope, which is aligned accurately with the direction of the stream. In this way we get two spectra, one corresponding to vibrations parallel to the electron stream and the other to vibrations perpendicular to it It is true that the reflexion losses for these two beams during their passage through the spectrograph may differ slightly, but to the present degree of aocuracy this correction proves to be neghgible. Thus the relative densities of the two images give the direction and percentage of the polarised light; but the determination of the percentages involves a considerable amount of photo metric work and has not yet been accomplished.

To find out whether the upper or lower image of the double-image prism corresponds to light polarised with the electric vector parallel or perpendicular to the stream, s source of light reflected from a glass plate was examined
through the prisn The strunger amage then corresponds to inght polarised with the eloctrio vector parallel to the glass plate.

§4. Results

In this way it has been found that, in the absence of a magnetic field, most of the mercury lines are polarised. If the speed of the electron 18 sufficiently near to that corresponding to the excitation voltage. In most cases, the lught ${ }^{14}$ prolarised with the direction of the maximum electric vector paralel to the electron stream, but ma few instances the perpendicular direction is found
The direction of the plane of polarisation rotates when the tube is turned through an angle about the direction of observation, and, ance the direction of the streain is the only factor which can determine the plane of polansation, there can be no doubt that the effect is caused by the um-direotional character of the electron stream Further, the fact that the light is concentrated in the electron stream instrad of spreading out throughout the tube ahows (sance the mean frec path of the mercury atoms is about 3 cm) that the light observed is eminted immediutely after an electron impact, and thus the light observed as that drectly oxcited by the impact We are, therefore, dealing with the direct excitation of polarised light by electron mpact
Fig 4 is an example of a plate taken with the double-image prism, showing the polarisation of some of the lines by intenaity difierences between the upper and lower spectra The upper spectrum corresponds to light polarised parallel to the stream $\mathrm{F}_{1} 5$ shows the lines $\lambda 4347$ and 4358 photographed, using a Bubinet compensator Here oblique bands show the polarisation of $\lambda 4347$ clearly (sce Plate 21)
The hines which we have investigated most completely are the lines λ b770 $\left({ }^{2} \mathbf{P}_{1}-3^{\prime} \mathrm{D}_{\mathbf{2}}\right)$ and $6791\left(2^{1} \mathbf{P}_{1}-3^{1} \mathrm{D}_{2}\right)$. These have been produced with a mercury pressure of one-thousaudth mm. in the tube Both are polarised with the manimum electric vector parallel to the electron atream. The polarisation measurements have been carried out vioually on the two lines together, using a filter for annlyes of the light.
The lines passed by this filter are the yellow hnes $\lambda 5770$ and 5791 , a faint and inseparable comparison to λ 5791, and three very faint red lunes. The red lines certanly, and probably the faint companion also, will have no appreciable inlluence on the resulto. The line 5770 is rather fanter than B791. An exact test of the equality of the degree of polarisation for these two hues hat not been performed, but no difference oan be noticed by mere inspection, and ac we shall
sec later, the percentages of polaneation cannot differ by more than about 5 per cent

The curve of fig 6 shows the variation with the voltage ($2 e$, with the energy of the exciting electrons) of the degree of polarisation of the two yollow hnes

together (for which the excitation voltage is 9 volts) The percentage polarisation is apprommately an exponential function of the energy of the electron after impact.

We now come to the effecta produoed by the application of a magnetic field, These measurements agan apply to the case of the two yellow lines together, a filter beng used

In the first place we consider the effeat of a magnetic field parallel to the clectron stream. Fields of strength up to 40 gause in this direction have been tried and have proved to be without influence on the polarisation.

A field applied at right-angles to the stream has a depolariang action which is at a manimom when the direction of the field concides with the durection of observation This, then, is the most interesting case. The depolariantion is
then eocompanied by a rotation of the plane of polarisation about the unis of the fald. The rotation produced by a freld of 2 gauas is quite appreciable, but in the strongest fields posaible (namely, 12 gatas) there is always some polarisation left. A limit is set to the atrength of fold which oan be used, for, of course. the electron atream is bent into a circle, and if the curvature in too great, observations are not possible In determang the rotation this curvature of the strean was allowed for.
Curves of the rotation and depolarisation due to a magnetic feld are given in fig 7. For a reason which will appear subsequently, we have hero plotted against $\mathrm{H}, \tan 28$, where 8 is the rotation, and $\sqrt{\Pi_{0}{ }^{8} / \Pi^{\prime \prime}-1}$, where 1 I is tho observod percentage polarisation" and Π_{0} is the percentage polarisation in a zero

Fhe. 7.
field. In both cases the method adopted is such as to exaggorate greatly amall errors in the measurementa, which casn herdily be made nore mocurately than to within 2° in the case of rotation and to within 1 per coant. in tha case of polerisation. Tho points in both curves corresponding to the stronger fields ore particularly biable to error, owing to the conaderable depolarimation.

If the rest of the mercury opectram is boing emitted, the bight from thas line
perpendioulkr to a giver direotion..

1'10 4
which is observed will not be wholly that dute to direct exentation of the $\mathbf{2 P}_{1} \mathbf{P}_{1}$ state by electron impact. We mast work therefore at such a voltago that the other meroury lines are not "emittout. One must also work at a much lower pressurc than is nocesaary in the case of the other lines on aocount of the fact that $\lambda 2037$ in absorbed by the normal mercury atom. In a recent paper* Ellett, Foote and Mohler have described the realte of this erperiment. Working at a pressure of meroury correaponding to a temperatare of $-18^{\circ} \mathrm{C}$. and with an electron spesed of 6-7 valts, they found $\lambda 2587$ to be 30 par cent. polarised in a plane perpendioular to the eleotron stream.
This rosult is, as was pointerd out by Ellett, Footo and Mohler, and as will be scen subsequently, difficult to interpret theoretically, and therefore it seemed worth while to obtain confirmstory evidence. With a mercury temperature of -12° and an electron speed of 8 volta, a conaderable polarisation perpondicalar to the stream was nhserved. The same result was also obtained using a amall spectrograph to analyse the light, thus removing any aljght doubt that the effect might be one belonging to "false" light. Kllett, Foote and Mobler arranged thar experimental conditions very carefully in auch a way that it serms impossibe that the light observed ahould have any other origin than direct electron imprect.
They further ahowed that the effieots of a magnetic field on the polariastion of $\lambda 2637$ are aimilar in nature to those we have found for $\lambda 5770,5791$. We have, in fact, also confirmed their conoluaion that the polarisationin a plane perpeandicular to direction of the electron stream is practionlly removed by a magnetic field of 9 geuss in the direction of observation. \dagger This is of importance in that it shows that the polarisation effect observed on $\lambda 2597$ is of a similar niture to those found for the remaining lines.
We have finally to give s list of the mercury lines which have been observed. Exact polarisation measurements have not yet been made in most cases.
Table I shows the observed polarisation of the mercury lines examined when produced with a pressare of $1 / 1000 t \mathrm{th}$ mun. of mercury in the tube. The residual magnetic field was not greater than $1 / 50$ th gause. The elootron voltage to which the observations correspond is 20 valte, while the excitation potentials of the linos are between 8 and 9 volte.
The algns || and \perp imply polarisation with the maximom electric vector parallel or perpendicular to the electron atream. The aymboles, m and w

[^156]Tinble I

give a soale of polarisation hased on visual eatimates, in which, very roughly spesking,

$$
s=40 \text { per cent. } \quad m=30 \text { per cent, and } w=20 \text { per cent }
$$

But these values, except for the value of m, nay need conslderable correction when photometric measurenienta have been made

[^157]The lines whose sprips arr given in bruckets are considerably weaker and useparable companions to the lines above them

The calculated vulues of the fifth column will recesve explanation later and arr connected with the values (column I) of the change of the quantum number J (which represents the angulur momentum of the atom) calculated for au absorption switch

§ 5 Ihachaston of Resules.

It can acarcely be iloubted that the polarisation efferta in question bave their origin in the fact that the electron atream is undirectional We must therefore assume that in the case of many spectral lines, at any rate, the mpact of an electron on unatom has the result of exciting the atom to produce plane-polarised light The effect is unalogous in some reapects to the hnown result that the X-rays emotted from an ordimery lurget are polarised But the analogy neems rather wuperficial lwause it has bern shown* that this polarisation is only found in the case of the continuous X-ray spectrum and not for the lines

Assuming that an atom is 14 a position to enit plane-polarised light, one would expect that the effecta of an external field on it will be independent of the mechanism by which it has renched thas excited state This fact suggeata an obvious analogy between the resulta we have described and the resulta found in experiments of the type instated by Wood and Ellett \dagger These experiments deal with observations of the polarisation of resonance radiation and the effects of a magnetic field on it In their case, the excitation of the atoms 14 by the absorption of radiation, and in our case by electron impact, but the effects of an external field on the polarisation may be expected to be the same

This actually proves to be the case The must oompletely studied case of resonance is that of the Mercury Line $\lambda .2537$, for which observations have been made most completely by Hanle \ddagger and von Kpussler, 8 who have found the depolarisation and rotation effects exactly as we have described them

The theory of the effect which Hanle has given is the following. -Suppose there is a linear vibrator in the atom which is emittang the light as on the clasaical theory. If a magnetic field is applied in a direction at right angles to the direction of vibration, a Larmor precession will be superposed on the motion. Sinoe, further, we must assume that the vibration is damped, the motion will be of the type shown in fig 8 It oan be seen from this that the plane of polarnse-

[^158]tion of the total light emitted can be considered as rotated to a direotion indicated by the arrow and the total light partially depolarised. II a Babinet

Fig 8
compeneator 18 used for detection, it ia raky to ralculate that the apparent rotation will be given by the relation

$$
\tan 2 \delta-{\underset{2 \pi}{ }}_{\omega}^{\omega}
$$

where ω is the magnetic rotation frequency corresponding to the field strength H, and β is the damping constant of the oscillation, defined by the statement that the amplitude of the vibration is given by

$$
a=a_{0} e^{-\beta 1} .
$$

The apparent depolariantion is also given by the formuls

$$
\left(\frac{\omega}{2 \pi \beta}\right)^{2}=\frac{\Pi_{0}^{2}}{\Pi^{2}}-1
$$

where Π_{0} is the percentage polarisation in a zerv field and Π the percentage in the Geld H .

In the case of the singlet $2^{1} \mathbf{P}_{1}-\boldsymbol{y H}^{1} \mathrm{D}_{2}$ combination, $\lambda 5791$, there 18 no ambiguity as to what we shall take for ω The Zeeman splitting 18 normal and so we naturally take the Larmor frequency. In the case of the line $\lambda 5770\left(2^{1} \mathrm{P}_{1}-\mathbf{s}^{8} \mathrm{D}_{2}\right)$, the Zeeman effect is anomalous, since the ${ }^{3} D_{\nu}$ term has a Lande spliting laotor (g) of $7 / 6$, that for the ${ }^{1} \mathbf{P}_{1}$ term being of course 1 . Hut since the value $7 / 6$ is not very different from 1 , it would seem that in this case also we shall not be much in error if we egraln take the Larmor frequency for ω.

We are now in a position to interpret the curves of the rotation and
depolarisation which have been given in fig 7 The curves should, according to the theory, be straight lines, which withon the limits of error they are The slope of these lines gives in each case the value of $\omega / 2 \pi \beta$ for a field of 1 gauss The values obtained niso agree well. From them one can calculate β, but it in of more agnificaner to calculate $\tau=1 / \beta \quad$ T, on the clasaceal theory, is the time taken for the vibrations to de down to $1 /$ eth of their intial value It correspunds on the quantum theory to the mean life of the atom in the excited state.

We obtain, in fuct, the following values for the mean life of the mercury atom in the $3^{1} \mathrm{D}_{2}$ and $3^{3} \mathrm{D}_{\mathrm{z}}$ states before the switch to the $2^{1} \mathrm{P}_{1}$ atate

From rotation $=285 \pm 01510^{-8}$ sec
From depolarisation $=2.88 \pm 01510^{-8} \mathrm{sec}$
We may therefore take 2910^{-8} see as the value of τ for these states.
The value found by von Keussler for the $2 \mathrm{P}_{1}$ state of mercury is $\mathbf{1 - 1 2} 10^{-7}$ sec, "* and that of the mean of the $2^{2} \mathrm{P}_{1}$ and $2^{2} \mathrm{P}_{2}$ states of yodum is considerably less. These resulte are in general agreeinent with the results of Wien on the mean time of hife of an atom in the excited atate

We maghere also note that if the τ for the $3^{3} \mathrm{D}_{2}$ and $3^{a} \mathrm{D}_{2}$ ataten are not the asme, we ahould not expect the curves of fig 7 to be straight linea The fact that they are approximately so shows that the r's must be nearly, at any rate, the same as has alrearly bren mentioned.
The t's for the other hnes have not so far been determined, but the method described evidently admits of a wide application

These effiects of a magnetic field on the polarisation have beeu interpreted on Hanle's classical theory We ure bere dealing with such weah niagnetic fields that the atoms are not space-quantised For if they were, it has been pointed out by Hanle that the rotation effect could not exist For this is essentally an interference effect betupen the light of different frequencies emitted by an atom in a magactic held, and he concludes that in the oase of these weak fields all the Zeeman components of a line must be emitted by the same atom We have here, thent, a case to which the cugid quantum theory seems quite inapplicable

This remark is of some importance uhen we attempt to frame a quantum theory of the mechanasm by which an electron can excite an atom to amit polarised light. For it shows that we cannot hope to do so while the atom remans in a degencrate state On this ground the theory of Ellett, Foote and Mohler would seem to be open to criticism They predict theoretioally that

[^159]polarisation should only occur for the transitions in which J, the quantum number representing the angular momentum of the atom, changes by one unit, and thes proves to be by no means the case
The simplest methol of treatment would seen to be to suppose a magnetic: field parallel to the electron beam, of sufficient strength to ensure ontentation of the atoms, but not strong enough to split the lines apprecisbly We have seen that erperimentally such a field produces no effect on the polarisation, and Hessenberg* has shown, in the case of resonance radiation, from arguments based on a generalised correspondence principle, that this may be expecterd
We now come to the fundamental basis of the theory To simplify matters we shall at first suppose that the impacting electron has just that velority necessary for excitation of the line in queation and no more Thus means that after the collision the electron is reduced to rest One may reasonably ansume that the angular momentum which is given by the clectron to the atom must be in a direction at right angles to the mitial clirection of motion of the election \dagger
Since the augular momentum transferred during the collsion is at right anglea to the direction of the electron stream, it in at right angles to the magnetic feld which we are supposing to be applied in the direction of the stream
We represent by j the quantum nuviber expressing the total angular momentum of the atom, and by \boldsymbol{m} its compouent in the direction of the magnetic field \mathbf{H} It follows that in the tranations induced by the impact of an electron moving in the direction of \mathbf{H} that the chauge in m, namuly,
\[

$$
\begin{equation*}
\Delta m=0 \tag{1}
\end{equation*}
$$

\]

This equation therefore expresses the condition that in the excitation of hight by electron impact the angular momentum commumicated munt be at right angles to the direction of motion of the impacting electron previous to collision

Now the maguetic field has the property of aplitting the levels of the atom. The way in which the spliting takes place is well known from the analysis of the Zeeman effect Actually, the normal unexcited state of the mercury atom, the $1^{18} \mathrm{~g}_{0}$ state, 19 not spht, the magnetic quantum number of this state being given by $m=0$ In general the states will, however, be aplit, and m will have for them, in the case of the inercury stom, the values $0, \pm 1, \pm 2$.. \pm $\left(J-\frac{1}{3}\right)$
We may represent these atates diagrammatically, for the sake of simplioity - ' Z. f. Physit,' vol. 91, p. 617 (1825).
\dagger Thla pount also forme the beasis of the theary of Ellatt, Foote and Mohler.
only three terms being taken the $1 \mathrm{~S}_{\mathrm{i}}$ term, the ${ }_{21} \mathrm{P}_{1}$ term and the $3^{1} \mathrm{D}_{9}$ term (fig 9).

Fiu
 (1) we sec that by the impact of an electron it must be tranaferred (for exsmple) into the $3 \mathrm{JI}_{2}$ term ($n=(0)$. Thas is represented by the upward arrow
The atom is now free to emut light, ard, uccordung to the rules of the Zeeman effect, it is hoown that the following transitions can orcur, for instance to the ${ }_{2}{ }^{1} \mathrm{P}_{1}$ state
(a) $m=0$ corresponding to light polarised parallel to H (||)
(b) $m= \pm 1$ corresponding to light polarised perpendicular to $\mathbf{H}(\perp)$.

Since there are no atoms in the ${ }^{1} \mathrm{D}_{2}$ state corresponding to $m= \pm 1, \pm 2$, the lines which will be elnitted are represented by the downward arrows.

The intenntien of these Zeeman components are calculable on the basis of the "Summataon rules" of Ornstenn, Burger and Dorgelo A useful account ${ }^{1 s}$ given by Kromg* of the application to the care of the Zeeman components.

We have in our case only three Zecmancomponents emutted, one polarised || and the other two polarised \perp The net polarisation of the emitted light is thus calculable. In the case of all transitions involving $\Delta_{J}= \pm 1$ (as in the example given) the intenasty of the component polarised in is greater than the sum of the intensitutien of the components polarised \perp The net polarisation is thus

[^160]a || polarisation, the value of which varies with the precise jand k values involved in the transition.

However, in the case of the transitions $\Delta_{j}=0$, the state of affairs is quite different The enarnital diatinction is that the analysis of the Zepman effect has shown that the transitions

$$
\Delta J=0 \quad \Delta m-0
$$

do not ocesur, and this also follows from the theory of Kronig.
If the atom is excited by electron impact, it will, as before, be in an $m=0$ state In the pmission of a lime corresponding to $\Delta_{j}-0$, therefore, only the transitions

$$
\Delta m- \pm 1
$$

can take place, and the light will bp polarised perpendicular to the direction of motion of the electron

These oonsiderations are based on the assumption that the electron has just enough energy to excite the atom, and no more However, observations at suoh velocities are not possible on account of the fantaess of the light, and hener the exparimental results apply to electrons of hagher apeed If the electron lias a finte velocity after the impact, it is clear that it will be possible for it to trannfer angulur momentum in a direction parallel to that of its initial motion to the atom

Unfortunately, it is not possible to calculate precisely the ratio of the amount of angular momentum perpendicular to the mitial direction of motion of the electron trassferrel in a number of collisions to the amount transferred in the perpendicular direction The reason for this is, that in the general case under consideration, the relations of euergy and momentum do not suffice. We require a more detaled knowledge of the forces acting on the electron during impact, and this at present is lacking

However, it would seem reasonable to suppose that the probablity of a collision in which angular momentum in a direction parallel to the initial direction of motion of the electron is tranaferred will increase with the emerging velocity of the electron. The magnitude of the polarisation offects will, therefore, be expected to decrease with the increasing initisl velocity of the electron In the case of $\lambda \mathbf{5 7 7 0}$, b791 a steady decrease with increasung velocity was ohserved (see fig 5)

In the case of λ D770, 5791 we have already sufficient material for a rough numerical teat between theory and experiments. The polarisation of these lines is parallel to the atream. We require the degree of polansation when the
electron speed corresponds to the excitation voltage of the line, and this can only be obtaned by extrapolation of the resulta obtained with greater electron speeds In fact, an extrapolation back to 9 volts by means of an exponential formula (ace fig 5) gives a value of about 05 per cent of pularisation This corresponds very nearly to the calculated value of $\mathbf{6 0}$ per cent

In the cases of the other lines, we have at the present moment to fall bark on a qualitative tent The values of the polarisation calculated for electrons of apeed correaponding to the excitution potential have been inserted in Table 1 and may be compared with the experimental reaulta for an electron speed of 20 volts

It is seen that, in spite of some exceptional rases to be mentioned later, there is a general agreement both as regarila the direction of the plane of polarisation and the relative magnitules of the polarisation

Wo may here also notice that the case of the D lines of sochum also agrees with the theory Thas case has becu investigated by Kossel and Gerthsen,* who found no polarisation effect, and their result was confirmed by Ellett, Foote and Mohler * The normal $\mathbf{l S}_{1}$ state of sodinm splita in a magnetic field into two states with $m=-11$ and one sees at ouce that ou thes account the efferts will be amaller than in the case of mercury with its unsplit normal state Actually. calculation ahows 0 per cent and 60 per cent with a mean (boaring in mund the relative intensities of the D lines) of 20 per cent, and remembering the rapid decrease of the percentage polarisation with increasing sjeed of electrons, an effect of this magnitude might well pacape detection

It will be aeen therefore, that the theory goes a considerable way towards explaining the facts But returning nou to the mercury lines it appears from Table I that there are four lines for which the observed polarisation meems definitely not to agrie with the calculated. 'These are .-

Table II

).	Series
25.37	$1^{1} S_{0}-2^{3} P_{1}$
4047	${ }_{2}{ }^{3} \mathrm{P}_{0}-{ }^{2} 5_{1}$
4368	$2^{3} \mathrm{P}_{1}-2^{3} \mathrm{~S}_{1}$
2967	$2^{3} \mathrm{P}_{0}-3^{3} \mathrm{D}_{1}$

Of these the most flagrant case is λ sisi37, which shows a \perp polarisation of 30 per cent. at 7 volts in place of the theuretical valne of 100 per cent || at

[^161]the excitation voltage. In the other cases the plane of polarisation is correctly given, but the observed inagnitude is amaller than expeoted.

It will be noticed that ull these lines involve mpact switches frou the normal $1^{1} S_{u}$ state of mercury for which $\Delta j=1$, while for the lines for which the theory secms to hold, in the impact transition, $\Delta J=0,2$ or 3^{*}

Let us take the case of $\lambda 2597$ as the clearest example for wheh the theory fals The obscrved \perp polerisation, if our picture is correct, at all, shows that the probability of the excitation of the atates $2^{3} P_{1}(m= \pm 1)$ must be greater than the probability of the excitation of the state $2^{2} P_{1}(n=0)$

It is not defintely proved yet, uhether or not this \perp polarisation ocrurs when the speed of the electrons correspouds exactly to the excitation voltage All that is proved is that there is a \perp polarisation at an electron speed of 7 volta This fact may provide a loophole for the applicability of the theory, for, as wo saw, if the electron goes away from the oxcited atom with a finite velocity, the impact awitches $\Delta m= \pm 1$ are posasble, and we have no means of determining the relative probabilities of these switches and of the inpeat switch $\Delta m=0$.

But although further work on this point is needed, it woudd seem fair to state that the experiments make it appear unlikely that, for an electron speer] of 49 volta (the excitation potential), the line $\lambda 25.37$ will be found polarssed 100 per cent if If thin is not the care, there wuuld be a definate disagrement with tho theory auggested abova. We may perbapa pilt forward some tentative speculations on this pount

The difficulty mught be avoided by making the assumption that the impactang elertron may pubsess angular momentum of apin This is the model proposed by Chlenbeck and Goudanud \dagger which has proved successful in resolving many of the difficulties conneoted with the multuplicity of upectra and the Zaemnn effect. On this hypothesis, when an electron in an atom is orientated by the magnetic field wathin the atom, it adds a half of a quant um of angular nomentum in tho direction of the field, or in the opposite direction. We may perhaps extend thas cuse by supposing that a free electron when urientated by an external field has half a quantum of angular momentum in the direction of the fiold or in the opposite direction

In the present problem, if we supposer, as before, that there is a magnetic field, in the direction of the electron stream, it is clear that, with the hypothesis of the apinning electron, wr have the posability that an electron (by changing

[^162]its direction of orientation) may on impact transler to the atom one quantum of angular monentum in the elirection of the fielld (We call this process " Procers B.")

Now it is just in the case of the lunes which involve impact awith hee $\Delta_{j}= \pm 1$ (i e. the atom, on impact, gaing or losea one quantum of angular momentum) that the simple theory ruggested above appears to break down, and this fact is suggestive.

Of course, we still have the powsibily of the transfer of any number of quanta of angular momentum in a direction perpendicular to the field, as describerl previously (" Proceas A') We may suppose, therefore, that a line hkr $\lambda 2637$ which involves an impact switch $\Delta \jmath= \pm 1$ may be excited either by Process A or by l'roress \mathbf{B}, and the degree of polarisation to be expected wall be indeterminate

In the arse of the limes invulving impact suituhes $\Delta J=2, \mathrm{~J}$, we have seen that, experimentally, the part played in excitation by Process B, if any, must be small. Since, by Process H , exactly one quantum of angular momentum must be transferred, it is evident that Process A must be concerued in every excitation of this type If both procerses were concerned in an excitation, the angular momeutuin tranaferred by process A would not be quantised.* If, therefore, we were to make the hypothess that the angular momenta transferred by Process A and Process B are quantised individually, the simple theory involving Process A only, which was described above, might be retained for these lines.

Experiments on the excitation of polaribed light by rlectron impart are stall in progress, and it is hoped that before long it will be possible to subject these niweculations to a more rigid test

Sumbary

J An electron tube producing an intense uvidirectional stream of electrons of slow speed is used for the excitation of the mercury spectrum, and polarisation measurementa are made on the light emitted from the tube in a direchon at right angles to the direction of the stream. It is found that with an electron speed correaponding to 20 volts many of the mercury lines are partablly planepolarised, most with direction of the maximum electric vector parallel to the stream, but some in the perpendicular direction. The experments of

[^163]Filett, Foote and Mohler, who found that $\lambda 2537$ was polarised in the latter direction, are confirued, In the cases of $\lambda 5770,5791$ the polarisation parallel to the stream decreayes rapidly as the speed of the electrons increases.

2 The application of a magnetic field in the direction of thr stream has no influence on the polarisation, but a weak field of the order of 2 gauss causes two effects to appear which merease with the field streugth, namely, (a) a depolarisation and (b) a rotation of tho plane of polarisation. These arp investigated in the case of the lines $\lambda 5770,5791$.

3 The nagnotic effiects are interpreted satisfactorily on a theory of Hanle put forward in connection with work on resonance radiation Each effect (a) and (b) leads to determination of τ. the mean life of the atom in the excited state, and these values are coucordant

4 The polarisation effecta are due to the direct excitation of polansed light by electron impact An attempt, is made to picture this process. The theory is based on the fact that, in excitaion, an electron may, if its speed corresponds nearly to the excitation voltage, le expected to transfer angular momentum to the atom in a direction perpendicular to the intial direction of motion of the electron The facts in the case of most of the lines agree well with the theorctiral expectation, but in a few cases the therory seems to be inadequate.

In conclusion, the author wiahes to express has thanks to Prof Sir Eirnest Rutherford, OM, PR.S, for his constant interest and helpful criticisin, and to Mr R. H. Fowler, F.RS, for valuable discunsion

On the Theory of Quantuin Mechanics.

By P A M. Dimac, St John's College, Cambridge

(Communicated by R H Fowler, FRS-Heceived Augurt 26, 1926)

§1. Introduction and Summary.

The new merhanica of the atom introduced by Heisenberg* may be based on the assumption that the variables that describe a dynamical system do not obey the commutative law of multiplication, but satisfy instead certain quantum conditions One can build up a theory without knowing anything about the dynamical variables except the algebraic laws that they are subject to, and can ahow that they may be represented by matrices whenever a set of unuform1ang variables for the dynamical aystem exists \dagger It may be ahown, however (see §3), that there ss no set of uniformising variables for a system contaning more than one electron, so that the theory cannot progress very far on these lines.

A new development of the theory has recently been given by Schrödinger. \dagger Starting from the idea that an atomio system cannot be represented by a trajectory, i.e., by a point moving through the co-ordinate apace, but must be represented by a wave in this space, Schrodinger obtains from a variation primciple a differential equation which the wave function ψ must satisfy This differential equation turns out to be very closely connected with the Hamiltonian equation which specfies the system, namely, if

$$
\mathrm{H}\left(g_{n}, p_{r}\right)-W=0
$$

is the Hamiltoman equation of the system, where the q_{r}, p_{r} are canonical vainable, then the wave equation for $\psi 1 s$

$$
\begin{equation*}
\left\{\mathrm{H}\left(g_{r}, \imath h \frac{\partial}{\partial q_{r}}\right)-\mathrm{W}\right\} \psi=0, \tag{1}
\end{equation*}
$$

where h is $(2 \pi)^{-1}$ times the usual Planck's constant. Each momentum p_{r} in H is replaced by the operator ih $\delta / \partial q_{r}$, and is supposed to operate on all that axists on 1 ts right-hand aide in the term in which it occurs. Bchrodinger takes the values of the parameter W for which there exists a ψ satisfying (1) that is

[^164]continuous, single-valued and bounded throughout the whole of q-space to be the energy levels of the system, aud shows that when the general solution of (1) 19 known, matrices to represent the p_{r} and $q_{\text {, mav easily be obtained, satiafying }}$ all the conditions that they have to satisfy according to Heisenberg's matrix mechanics, and consistent with the energy levels previously foumd The mathematical equivalence of the theories is thus established

In the present paper, Schrodinger's theory is considered in $\S 2$ from a slightly more general point of virw, in which the time t and its conjugate momentum -W are treated from the beginning on the same footing as the other variables A more general method, requiring only elementary symbolic algebra, of obtaining matrix representations of the dynamical varinbles is given.

In § 3 the problem is considered of a system containing soveral similar partwles, such as an atom with several electrons If the poritions of two of the electrons are interchanged, the new state of the atom is physically indistinguishable from the orignal oue. In such a case one would expect only symmetrical functions of the co-ordinates of all the electrons to be capable of being represented by matrices It is found that this allows one to obtain two solutions of the problem satisfying all the necessary conditions and the theory is incapable of deciding which is the correct one One of the solutions leads to Paulis principle that not more than one electron can be in any given orbit, and the other, when applied to the amalogous prublem of the ideal gas, leads to the Einstein-Hose statistical mechanics.

The effect of an arbitrarily varying perturbation on an atomic system is worked out in 85 with the help of a new assumption The theory is applied to the absorption and stimulated emission of radistion by an atom. A generalisation of the description of the phenomens by Einstein's B coefficients is obtained, in which the phases play their proper parts This method cannot be applied to spontaneous emiseion

82. General Theory

According to the new point of view introdaced by Schrodinger, we no longer leave unspecified the nature of the dynamioal variables that describe an atomic system, but count the $q^{\prime \prime}$ and ℓ as ordinary mathematical varıables (this being permissible since they commute with one another) and take the p 's and W to be the differential operators

$$
\begin{equation*}
p_{r}=-i h \frac{\partial}{\partial q_{r}}, \quad-W=-i h \frac{\partial}{\partial t} . \tag{2}
\end{equation*}
$$

Whenever a p_{r} or W oocurs in a term of an equation, it must be considered as meaming the corresponding differentual operator operating on all that aoours on tts
rughthand sule on the term an quesfon Thus, bv carrving ont the operations, one can reduce any function of the p^{\prime} s, q 's, W aud I to a function of the q^{\prime} s and l only.
The relations (2) require two olvious modlications to be made in the algebra governing the (lynamical variablea Firstly, onlv rational integral functions of the p^{\prime} s and W have a mennung and, secondly, one can multeply up an equation ly a fucton (integral in the $\boldsymbol{p}^{\prime} \Varangle$ and W) on the left-hand sude, but one cannot, in general, mulluply up by factor on the right-liand stde Thus, if one is given the equation $a=b$, one an infer from it that $\mathbf{X} a=\mathbf{X} b$, , here \mathbf{X} is abitrary, but one camot in general miner that $a \mathbf{X}=b \mathbf{X}$.

There are, however, certam equations $a=b$ for which it is true that $a X=b X$ for any X, and these equations we call ideutities The qumutum conditions

$$
q_{r} p_{r}-\dot{p}, q_{r}-i / i_{r r 1} \quad p_{r} p_{r}-p_{r} p_{r}=0
$$

with the similur relations mvolving $-W$ and t, are identitips, ne it can easily he verifed (and has been verfied be Schirodinger) thut the relations

$$
\left(q_{q} p_{u}-p_{t} q_{r}\right) X=\imath h \delta_{r,} X
$$

ate, hold for any X These relations form the man justrication for the assumptions (2).

If $a=b$ is an identity, we can deduce, since $a X=6 X$ and $X a=X b$, that

$$
a \mathrm{X}-\mathrm{X} a=b \mathbf{X}-\mathrm{X} b
$$

or

$$
[a, \mathrm{X}]=[1, \mathrm{X}]
$$

Thus we can equate the Poissoul bracket of either sile of an identity with an arbitrary quantily, and so our quantum identity is the analogue of an identity on the classical theory. We assume the general equation $x y-y x=t h[x, y]$ and the equations of motion of a dynamical kystem to be identities
A dynamical system ig apecified br a Hamiltonian equation between the variables

$$
\begin{equation*}
\mathrm{H}\left(q_{r}, p_{r}, t\right)-W=0, \tag{3}
\end{equation*}
$$

or mure generally

$$
\begin{equation*}
F\left(q_{r}, p_{r}, t . W\right)=0 \tag{4}
\end{equation*}
$$

and the equations of motion are

$$
d x / d s=[x, F],
$$

where \boldsymbol{x} is any function of the dynamical variables, and s is a variable which depends on the form in which (4) is written. and, in particular, is just ℓ if (4) is written in the form (3) On the new theory we consider the equation

$$
\begin{equation*}
F \psi=0, \tag{0}
\end{equation*}
$$

P. A. M. Dirac.

which, if we take ψ to be a lunction of the g's and t only, is an ordinary differential equation for ψ. From the general solution of this differential equation the matrices that form the solution of the mechanical problem may be very easily obtained.

Since ($(\mathrm{f}$ is linear in ψ, ite genaral solution is of the form

$$
\begin{equation*}
\psi=\sum_{e_{n}} \psi_{n} \tag{6}
\end{equation*}
$$

where the c_{n} 's are arbitrary constants and the ψ_{n} 's are a set of independent solutions, which may be called eigenfunctions Only solutions that are continuous, angle-valued and bounded throughout the whole domain of the q^{\prime} s and t are recognsed by the theory Instead of a diacreet set of eigenfunctions ψ_{n} there inay be a continuous set $\psi(\alpha)$, depending on a parameter a, and satisfyng the differential equation for all values of α in a certain range, in which case the sum in (6) must be replaced by an integral $\int c_{\Delta} \psi(\alpha) d a, *$ ol both a discreet set and a continuous set may occur together. For definteness, however, we shall write down explacity only the discreet sum in the following work.
We shall now show that any constant of integration of the dynamical aystem (esther a first integral or a second integral) can be repremented by a matrix whose elements are constanta, there being one row and column of the matrix corresponding to each eigenfunction ψ_{n} Let a be a constant of integration of the system, i.e., a function of the dynamical variables such that $[a, \mathrm{~F}]=0$ dentically We have the relation

$$
\mathbf{F} a=a \mathrm{~F},
$$

which, being an identity, we can multiply by ψ_{n} on the raght-hand side. We thas obtasn

$$
F a \psi_{n}=a F \psi_{n}=0,
$$

since $F \psi_{n}=0$ (although not identically). Hence $a \psi_{\text {n }}$ is a solution of the differential equation (b), so that it can be expended in the form (6), i.e.,

$$
a \psi_{n}=\Sigma_{m} \psi_{m} a_{m \times x}
$$

where the $a_{m y}$'s are constants. We take the quantities $a_{m n}$ to be the elements of the matrix that reprosents a. The matrix rule of multiphcation evidently holds, since, if b is another constant of integration of the ajstem, we have

$$
a b \psi_{\mathbf{n}}=a \Sigma_{m} \psi_{m} b_{m n}=\Sigma_{m k} \psi_{k} a_{k m} b_{m \times \prime}
$$

[^165]end also
$$
a b \psi_{M}=\Sigma_{k} \psi_{k}(a b)_{\lambda_{n}}
$$
so that
$$
(a b)_{k w}=\Sigma_{m} a_{\lambda m} b_{m n}
$$

As an exsmple of a constant of integration of the dynamical sybtem, we may take the value $a\left(l_{0}\right)$ that an arbitiary function x of the p 's, q 's, W and t has at a specified time $t=\ell_{0}$ The matrix that represents $x\left(t_{0}\right)$ will consist of elements each of whirh 18 a function of t_{0}. Writing t for t_{0}, we see that an arbitrary function of the dynamical variables, $x(t)$, or simply x, can be represented by a matrix whose elemente are functions of t only

The matrix representation we have obtajned $1 s$ not unque, since any set of independent eigenfunctions ψ_{n} will do To obtain the matrices of Hessenberg's onginal quantum mechanics, we must choose the ψ_{n} 's in a particular way We can alwaya, by a linear transformation, obtain a set of ψ_{n} 's which makes the matrix representing any given constant of integration of the dynamical nystem a diagonal matrix Suppose now that the Hamiltonian F does not contain the time explicitly, so that W is a constant of the system, and is the energy, and we choose the ψ_{n} 's so as to make tho matrix representing W a diagonal matrix, $i e$, so as to make

$$
\begin{equation*}
W \psi_{n}=W_{n} \psi_{n} \tag{7}
\end{equation*}
$$

where W_{n} is a pumerical constant Lat x be any function of the dynamical variables that does not anmolve the tume erpluculy, and put

$$
s \psi_{n}=\Sigma_{m} x_{m n} \psi_{m},
$$

where the $x_{m n}$'s are functions of the tume only We shull now show that the $x_{m n}$ ' y are of the form
where the $u_{\text {mn }}$'s are constants, as on Hersenberg's theory We have

$$
\begin{align*}
W x \psi_{v} & =\Sigma_{m n} W x_{m n} \psi_{m} \\
& =\Sigma_{m}\left(W_{r} r_{m n}-x_{m n} W\right) \psi_{m}+\Sigma_{m} x_{m n} W \psi_{m n} \\
& =\Sigma_{m} h h x_{m n} \psi_{m}+\Sigma_{m} x_{m n} W_{m} \psi_{m} \tag{9}
\end{align*}
$$

Also, since x does not contain t explicitly,

$$
\begin{align*}
\mathrm{W} x \psi_{n} & =x \mathrm{~W} \psi_{n}=x \mathrm{~W}_{n} \psi_{n}=\mathrm{W}_{n} x \psi_{n} \\
& =\mathrm{W}_{n} \Sigma_{m} x_{m n} \psi_{m} . \tag{10}
\end{align*}
$$

Equating the coefficients of ψ_{m} in (9) and (10), we obtain

$$
s h s_{m n}=x_{m n}\left(W_{n}-W_{m}\right),
$$

which shows that $x_{m n}$ is of the form (B).

We have thus shown that with the ψ_{n} 's chosen in this way the matrices satisfy all the conditions of Hessenberg's matrix mechanics, except the condition that the inatrices that represent real quantities are Hernitic (ie , have their $m n$ and $n m$ elements conjugate unaginaries) There does not asem to be any simple general proof that this is the case, as the proof would have to make use of the faot that the ψ_{n} 's are bounded It is easy to prove the partioular case that the matrix representing W is Hermitic, εe, that the W_{n} 's are resl, since from (7) ψ_{n} must be of the form

$$
\psi_{n}=u_{n} e^{-I w_{1} ; n},
$$

where u_{n} is independent of t_{1} and if W_{n} contains an imaginary part, ψ_{n} would not remann bounded as t becornes infinite. In general, the matrices representing real quantities could be Hermitic only if the arbitrary numerical constants by which the ψ_{n} 's may be multiphed are chosen in a particular way
We may regard an eigenfunction ψ_{n} as being associated with definite numerical values for some of the constants of integration of the systern. Thus, if we fiud constants of integration a, b, such that

$$
\begin{equation*}
a \psi_{n}=a_{n} \psi_{n}, \quad b \psi_{n}=b_{n} \psi_{n}, . \tag{11}
\end{equation*}
$$

where a_{n}, b_{n}, are numericul constants, we oan say that ψ_{n} reprosents a atate of the 日yatem in which a, b, have the numencal values a_{n}, b_{n}, (Note that a, b, must commute for (11) to be possible) In this way we can have elgenfunctions representing stationary states of an atomic system with definite values for the energy, angular momentum, and other constants of integration

It should be noticed that the ohoice of the time ℓ as the variable that oocurs in the elements of the matrices representing variable quantities is quite arbitrary, and any function of t and the q 's that mareases steadily would do. To determine accurately the radiation emitted by the system in the direction of the x-axis, one would have to use $(t-x / c)$ instead of t^{*}. It is probable that the representalion of a constant of integration of the aystem by a matrix of constant elemente 18 more fundamental than the representation of a variable quantity by a matrix whose elements are functions of some varnable such as t or $(t-x / c)$. It would appear to be possible to build up an electromagnetic theory in which the potentials of the field at a specified point $x_{0}, y_{0}, z_{0}, t_{0}$ in space-time are represented by matrices of constant elements that are functions of $x_{0}, y_{0}, z_{0}, t_{0}$.

§ 3. Systems containing Several Smilar Particles.

In Heisenberg's matrix mechamios it is assumed that the elernente of the matrices that represent the dynamioal variablea determine the frequancies and * 'Roy. Soo. Proc.' A, vol. 111, p. 405 (1026).
intenaries of the components of radiation emitted The theory thus enables one to calculate just those quantities that are of physical importance, and gives no information about quantities suol as orbital frequencies that one can never bope to measure experimentally We should expect this very satisfactory characteristic to parsist in all future developments of the theory

Consider now © aystem that contains two or more sumlar particles, say, for definiteness, an atom with two electrons Denote by ($m n$) that atate of the atom in which one electron is in an orbit labelled m, and the other in the orbit n The question arises whether the two states ($m n$) and ($n m$), which are physically industinguishable as they differ only by the interchange of the two eleotrons, are to be counted as two dufferent states or as only one state, $i e$, do they give rise to two rows and columns in the matrices or to only one? If the firat alternative is right, then the theory would enable one to calculate the intensities due to the two transitions $(m n) \rightarrow\left(m^{\prime} n^{\prime}\right)$ and $(m n) \cdots\left(n^{\prime} m^{\prime}\right)$ separately, as the amplitude corresponding to oither would be given by a definite elernent in the matrix representing the tutal polarisation. 'The two transitions are, however, physically indistingushable, and only the sum of the intensities for the two together could be determined experimentally. Hence, in order to keep the essential characteristic of the theory that it shall enable one to calculate only observable quantities, one must adopt the second alternative that (mn) and (nm) count as only one atate

This altemative, though, also leads to difficulties. The synmetry between the two electrons requires that the amplitude asacoiated with the transition $\left(m n^{\prime}\right) \times\left(m^{\prime} n^{\prime}\right)$ of x_{1}, a oo-ordinate of one of the electrons, shall equal the amplltude associated with the transition $(n m) \rightarrow\left(n^{\prime} m^{\prime}\right)$ of x_{2}, the correspondung co-ordinate of the other electron, $i \mathrm{e}$,

$$
\begin{equation*}
x_{1}\left(m n, m^{\prime} n^{\prime}\right)=x_{2}\left(n m, n^{\prime} m^{\prime}\right) . \tag{12}
\end{equation*}
$$

If wo now count ($m n$) and ($n m$) as both definugg the same row and column ot the matrices, and aimularly for ($m^{\prime} n^{\prime}$) and ($\left(n^{\prime} m^{\prime}\right.$), equation (12) shows that each element of the matrix x_{1} equala the corresponding element of the matrix x_{3}, so that we should have the matrix equation

$$
x_{1}=x_{1}
$$

This relation is obviously impossible, as, amongst other things, it is inconsistent with the quantum conditions. We must infer that angymmetrical funotions of the co-ordinstes (and momanta) of the two elcetrons cannot be represented by matrices. Sytnmetrical functions, suoh as the total polsrisation of the atom, oan be considered to be represented by matrioes without inconsistency,
and these matrices are by themselves sufficient to determine all the physical properties of the system.
One consequence of these considerations 18 that the theory of uniformising variables introduced by the author can no longer apply This is because, carresponding to any tranation $(m n) \rightarrow\left(m^{\prime} n^{\prime}\right)$, there would be a tenn $e^{t_{\text {akl }}}$ in the Founer expansions, and we should require there to be a unique state, $\left(n^{*} n^{n}\right)$, say, auch that the same term $e^{\prime(a \omega)}$ corresponds to the tranaition $\left(m^{\prime} n^{\prime}\right) \rightarrow\left(m^{\prime \prime} n^{\prime \prime}\right)$,
 bers, and we take the case of one quantum number per electron for definiteness we ehould have to have

$$
n^{\prime \prime}-m^{\prime}=m^{\prime}-m, \quad n^{\prime \prime}-n^{\prime}=n^{\prime}-n
$$

Sunce, however, the atate ($m^{\prime} n^{\prime}$) may equally well be called the state ($n^{\prime} n^{\prime}$), we may equally well take

$$
m^{\prime \prime}-n^{\prime}=n^{\prime}-m, \quad n^{\prime \prime}-m^{\prime}=m^{\prime}-n,
$$

which would give a different state ($m^{\prime \prime} n^{\prime \prime}$) There is thus no unqque state ($m^{\prime \prime} n^{\prime \prime}$) that the theory of unformising variables demands.
If we neglect the unteractiou between the two electrons, then we can obtan the ergenfunctions for the whole atom sumply by multiplying the eigenfunctions for one electron when it exists alone in the atom by the eigenfunctions for the other electron alone, and taking the same time variable for each." Thus if $\psi_{n}(x, y, z, t)$ is the eigenfunction for a suggle electron in the orbit u, then the eigenfunotion for the whole atom in the state ($m n$) is

$$
\psi_{m}\left(x_{1}, y_{1}, z_{1}, t\right) \psi_{n}\left(x_{2}, y_{1}, z_{1}, t\right)=\psi_{m}(1) \psi_{m}(2),
$$

say, where x_{1}, y_{1}, z_{1} and x_{1}, y_{1}, z_{2} are the co-ordnates of the two oleotrons, and $\psi(r)$ means $\psi\left(x_{r}, y_{r}, z_{r}, t\right)$ The ergenfunction $\psi_{m}(2) \psi_{n}(1)$, however, also corresponds to the asme atate of the atorn if we count the ($m n$) and ($n m$) states as adentical But two independent eigenfunctions must give rise to two rows and columns in the matrices If we are to have only one row and column in the matnces corresponding to both ($m \mathrm{~m}$) and ($n m$), we must find a set of ergenfunctions $\psi_{m n}$ of the form

$$
\psi_{m n}=a_{m n} \psi_{m}(1) \psi_{n}(2)+b_{m n} \psi_{m}(2) \psi_{n}(1),
$$

where the $a_{m n}$'s and $b_{m n}$'s are constanta, which set must contann only one $\psi_{\text {uin }}$ corresponding to both (mm) and (nm), and must be sufficient to ensble one to

[^166]obtain the matrix representing any symmetrical function A of the two electrons. This means the $\psi_{m n}$'s must be chosen such that A timen any chosen $\psi_{m n}$ oan be expanded in terms of the chosen $\psi_{m n}$'s in the form
\[

$$
\begin{equation*}
A \psi_{m n}=\Sigma_{m^{\prime} n} \psi_{m^{\prime} x^{\prime}} A_{m^{\prime} n^{\prime} m n} \tag{13}
\end{equation*}
$$

\]

where the $A_{\text {min }}$, mn's are constants or functions of the time only
There are two ways of choosing the set of $\psi_{m n}$'s to satisfy the conditions We may either take $a_{1, n}-b_{m n}$, which makes each $\psi_{m n}$ a symmetrical function of the two electrons, so that the left-hand sido of (19) as symmetrical and only symmetrical eigenfunctions will be required for its expansion, or we may take $a_{\text {min }}=-b_{m n}$, which makes $\psi_{m n}$ autisymmetrical, so that the left-hand side of (13) is antisymmetrical and only antisymmetrical eigenfunctions wall be required for its expanaion Thus the aymmetrical eigenfunctions alone or the antisyinmetrical eigenfunctions alone give a complete solution of the problem The theory at present ia incapable of deciding which solution is the correct one We are able to get complete solutions of the problem which make use of less than the total number of possible eigenfunotions at the expense of being able to represent only symmetrical functions of the two electrons by matrioes

These results may evidently be extended to any number of electrons. For r non-interacting electrons with coordinstes $x_{1}, y_{1}, z_{1}, x_{r}, y_{r}, z_{1}$, the symmetrical elgenfanctions are

$$
\begin{equation*}
\Sigma_{a_{1}, \ldots} \psi_{n_{1}}\left(\alpha_{1}\right) \psi_{n_{1}}\left(\alpha_{2}\right) \ldots \psi_{n_{1}}\left(\alpha_{1}\right), \tag{14}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{1} \quad \alpha_{r}$ aro any permutation of the integere $1,2 \ldots r$, while the antisymmetrical ones may be written in the determinantal form

$$
\left|\begin{array}{ccc}
\psi_{m_{1}}(1), & \psi_{n_{1}}(2) & \psi_{m_{1}}(r) \tag{15}\\
\psi_{m_{2}}(1), & \psi_{m_{m}}(2) & \psi_{m_{2}}(r) \\
\cdot & & \cdot \\
\psi_{n}(1), & \psi_{m_{m}}(2) & \psi_{m}(r)
\end{array}\right|
$$

If there is interaction between the electrons, there will still be symmetrical and antieymmetrical eigenfunctions, although they can no longer be put in these simple forms In any case the symmetrical ones alone or the antisymmetrical ones alone give a complete solution of the problem

An antisymmetrical eigenfunction vanushes identically when two of the electrons are in the same orbit This means that in the solution of the problem with antisymmetrical eigenfunotions there onn be no stationary states with
two or more electrons in the same orbit, which is just Paul's exclusion principle." The solution with symmetrical elgenfunctions, on the other hand, allowe any uumber of electrons to be in the same orbit, so that this solution cannot be the correct one for the problem of electrons in an atom \dagger

§4. Theory of the Ideal Gas

The results of the preceding section apply to nay systom contaning several similar particles, in particular to an assembly of gas moleoules. There will be two solutions of the problem, in one of which the eigenfunctions are symmetrical functions of the co-ordmates of all the molecules, and in the other sntisymmetrical.
The wave equation for a single molecule of rent-mass m moving in free space is

$$
\begin{aligned}
& \left\{p_{z^{2}}^{2}+p_{v}^{2}+p_{t}^{2}-W^{2} / c^{2}+m^{2} c^{2}\right\} \psi=0 \\
& \left\{\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{3}}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\frac{m^{2} 0^{2}}{h^{2}}\right\} \psi=0,
\end{aligned}
$$

and ite solution is of the form

$$
\begin{equation*}
\psi_{a_{1}, \alpha_{2}, 1}=\exp \cdot 1\left(\alpha_{1} x+\alpha_{2} y+\alpha_{3} z-E_{t}\right) / h_{1} \tag{10}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{9}, \alpha_{\mathrm{s}}$ aud E are constants satisifing

$$
\alpha_{1}^{2}+\alpha_{3}^{2}+\alpha_{3}^{2}-\mathrm{E}^{\mathrm{a}} / c^{\mathrm{a}}+m^{\mathrm{a}} c^{2}=0 .
$$

The eigenfunotion (16) representa an atom having the momentum components $\alpha_{1}, \alpha_{2}, \alpha_{8}$ and the energy E.

We must now obtain some restriction on the possible eigenfunctions due to the presence of boundary walls It is usually assumed that the eigenfunction, or wave function associsted with a molecule, vamehes at the boundary, but we should expect to be able to deduce this, if it is true, from the general theory. We assume, as a natural generaliastion of the methods of the preceding section, that there must be only just aufficient ergenfunctions for one to be able to represent by a matrix any function of the co-ordinates that has a physical meanng Sappose for definiteness that each molecule is confined between two boundaries at $x=0$ and $x=2 \pi$ Then only those functions of x that are defined only for $0<x<2 \pi$ have a physioal meaning and must be capable of being represented by matrices. (Thus will require fewer eigenfunctions than if every

[^167]function of x had to be capable of beang represented by a matrix) These functions $f(x)$ can always be expanded as Founer series of the form
\[

$$
\begin{equation*}
f(x)=\Sigma_{n} a_{n} e^{\ln x}, \tag{17}
\end{equation*}
$$

\]

where the a_{n} 's are constants and the n 's integers If we ohoose from the eagenlunctions (16) those for which α_{1} / h is an integer, thon $f(x)$ times any chosen eigenfunotion can be expanded as a series in the chosen eigenfunctions whose coefficients are functions of t only, and hence $f(x)$ can be represented by a matrix. Thus these chosen eigenfunctions are sufficient, and are esaly scen to be only just sufficient, for the matrix representation of any function of x of the form (17) Instead of choosing those eigenfunctions with integral values for α_{1} / h, we could equally well take those with α_{1} / h equal to half an odd uteger, or more generally with $\alpha_{1} / h=n+\varepsilon$, where n is an integer and ε is any real number. The theory is incapable of dooiding which are the correct ones. For statiatical problems, though, they all lead to the same results

When y and z nre also bounded by $0<y<2 \pi, 0<z<2 \pi$, we find for the number of waves associated with molecules whose energies lie between E and $\mathrm{E}+d \mathrm{E}$ the value

$$
\frac{4 \pi}{c^{1} h^{3}}\left(\mathrm{E}^{2}-m^{2} 0^{4}\right)^{4} \mathrm{E} d \mathrm{E}
$$

This value is in agreement with the ordinary assumption that the wave function veniabes at the boundary It reduces, when one neglects relativity meochanios, to the familar expression

$$
\begin{equation*}
\frac{2 \pi}{h^{3}}(2 m)^{2} \mathrm{E}_{1}^{\mathrm{d}} d \mathrm{E}_{1} \tag{18}
\end{equation*}
$$

where $\mathbf{E}_{1}=\mathbf{E}-\boldsymbol{m} \boldsymbol{o}^{2}$ is the kinetic energy. For an arbitrary volume of gas \mathbf{V} the expression must be multiplied by $\mathrm{V} /(2 \pi)^{3}$.
Tu pass to the engenfunctions for the sesermbly of molecules, between which there is assumed to be no interaction, we multiply the eigenfunctions for the separate molecules, and then take either the symmetrical eigenfunctions, of the form (14), or the antisymmetrical ones, of the form (15). We must now inake the new aasumption that all stationary states of the assombly (each represented by one eigenfunotion) have the same a prion probablity. It now we adopt the solution of the problem that involves symmetrical eigenfunotions, we should find that all values for the number of molecules assooiated [with any wave have the a日mo a prion probability, which gives just the Einstein-Bose statistical mechanics.* On the other hand, we should obtain a dufferent

[^168] p. 281 (1024) and p. 3 (1925)
statistical mechanics if we adopted the solution with antisymmetncel eigenfunctions, as we should then have either 0 or 1 molecule associated with each wave The solution with syinmetrical eigeufunctions must be the correct oue when appliod to light quanta, aince it is known that the Einstem-Bose statistical morhanics leads to Planck's law of black-body radiation. The solution with antigymmetrical eigenfunctions, though, is probably the oorrect one for gas molecules, since it is known to be the correct one for electrons in an atom, and one would expect molecules to resemble electrons more closely than lightquenta.
We shall now work out, acourding to well-known principles, the equation of atate of the gas on the assumption that the solution with antisymmetrical ergenfunotions is the correct one, so that not more than one molecule can be associated with each wave Divide the waves into a number of seta such that the waves un each set are associated with molecules of about the same energy. Let A, be the number of waves in the ath set, and let E, be the knnetic enargy of a molecule associated with one of them. Then the probability of a distribution (or the number of antisymmetrical eigenfunctions correaponding to distributions) in which N , inolecules are assoonated with waves in the oth set is
$$
W=T_{a} \frac{A_{1}!}{N_{0} \mid\left(A_{\mathbf{t}}-N_{t}\right)^{\prime}}
$$
giving for the entropy
\[

$$
\begin{aligned}
\mathrm{B}=k \log \mathrm{~W}=k \Sigma_{,}\left(\mathrm{A}_{4}\left(\log \mathrm{~A}_{4}-1\right)\right. & -\mathrm{N}_{1}\left(\log \mathrm{~N}_{1}-1\right) \\
& \left.-\left(\mathrm{A}_{1}-\mathrm{N}_{4}\right)\left[\log \left(\mathrm{A}_{1}-\mathrm{N}_{0}\right)-1\right]\right)
\end{aligned}
$$
\]

Thes 18 to be a maximum, so that

$$
\begin{aligned}
0=\delta 8 & =k \Sigma_{1}\left(-\log N_{1}+\log \left(A_{4}-N_{0}\right)\right\} \delta N_{4} \\
& =k \Sigma_{s} \log \left(A_{4} / N_{4}-1\right) \cdot \delta N_{a \prime}
\end{aligned}
$$

for all varnations 8 N , that leave the total number of molecules $\mathrm{N}=\mathbf{S}_{\boldsymbol{s}} \mathrm{N}$, and the total energy $\mathbf{E}=\boldsymbol{\Sigma}, \mathbf{E}, \mathrm{N}_{\text {, }}$ unaltered, so that

$$
\Sigma_{,}, \delta N_{\mathrm{s}}=0, \quad \Sigma_{\mathrm{r}}^{\mathrm{E}, \delta \mathrm{~N}_{4}=0 .}
$$

We thus obtain

$$
\log \left(A_{2} / N,-1\right)=\alpha+\beta L_{1}
$$

where α and β are constants, which gives

$$
\begin{equation*}
N_{0}=\frac{A_{1}}{e^{0+\beta B_{2}}+1} \tag{19}
\end{equation*}
$$

By making a varistion in the total energy E and putting $\delta \mathrm{E} / \delta \mathrm{S}=\mathrm{T}$, the temperature, we readily find that $\beta=1 / k T$, so that (19) becomes

$$
N_{t}=\frac{A_{1}}{e^{a+R_{k}, k T}+1}
$$

This formula gives the distribution in energy of the molecules On the EmstemBose theory the corresponding formula is

$$
\mathrm{N}_{\mathrm{a}}=\frac{\mathrm{A}_{4}}{e^{t+\mathrm{K}_{4} \mathrm{~T}}-1}
$$

If the sth set of waves consists of those associatel with molecules whose energiey he between E_{n} and $\mathrm{E}_{n}+d \mathrm{E}_{p}$, we have from (18) [where $\mathrm{E}_{\text {, now means }}$ the E_{1} of equation (18)],

$$
\mathrm{A}_{4}=2 \pi \mathrm{~V}(2 m)^{2} \mathrm{E}_{\mathrm{s}}^{d} d \mathrm{E}_{d} /(2 \pi h)^{3}
$$

where V is the volume of the gas This gives
nnd

$$
\mathrm{E}=\Sigma \mathrm{E}_{\mathrm{N}} \mathrm{~N}_{4}=\frac{2 \pi \mathrm{~V}(2 m)^{i}}{(2 \pi h)^{3}} \int_{0}^{\infty} \frac{\mathrm{E}_{0}^{3} \cdot d \mathrm{E}_{n}}{e^{\pi+1}, k T}+1
$$

By eliminating \propto from these two equations and uwing the formula $\mathrm{PV}=; \mathbf{E}$, where P is the pressure, which holds for any statistical mechanios, the equation of state may be obtained

The saturation phenomenon of the Einstein-Bose theory does not occur in the present theory. The specific heat can easily be shown to tend steadly to zero as $\mathbf{T} \rightarrow \mathbf{0}$, instead of first mereasing until the saturation point is reached and then decreasing, as in the Einstein-Hose theory

§5. Theory of Arbutrary Perturbations.

In this section we shall consider the problem of an atomic system subjected to a perturbation from outside (e.g, an incident electromagnetic held) which can vary with the time in an arbitrary manner. Let the wave equation for the undsturbed system be

$$
\begin{equation*}
(H-W) \psi=0, \tag{20}
\end{equation*}
$$

where II is a function of the p^{\prime} s and q^{\prime} only It general solution is of the form

$$
\begin{equation*}
\psi=\Sigma_{n} c_{n} \psi_{n}, \tag{21}
\end{equation*}
$$

where the c_{n} 's are constants. We shall suppose the ψ_{n} 's to be chosen so that one is associated with eath stationary state of the atom, and to be mudtiplied
ly the proper constants to make the matrices that represeat real quantitios Hermitic

Now suppose a perturbation to be apphed, beginning at the time $t=0 \quad$ The wave equation for the dasturbed system will be of the form

$$
\begin{equation*}
(\mathrm{H}-\mathrm{W}+\mathrm{A}) \psi=0, \tag{22}
\end{equation*}
$$

where Ais a function of the p^{\prime}, $q^{\prime} \boldsymbol{q}^{\prime}$ and t, and is real. It will be shown that we can obtain a solution of this equation of the furm

$$
\begin{equation*}
\psi=\Sigma_{n} a_{n} \psi_{n}, \tag{23}
\end{equation*}
$$

where the a_{n} 's are functions of t only, which may have the arbitrary values c_{n} at the time $\iota=0$ We shall consider the general solution (21) of equation (20) to represent an assembly of the undisturbed atonis in which $\left|c_{n}\right|^{2}$ is the number of atoms in the nth state, and shall assume that (23) representa in the same way an assembly of the disturbed atoms, $\left|a_{n}(t)\right|^{2}$ being the number in the nth state at any time t We take $\left|a_{n}\right|$ instead of any other function of a_{n} because, as will be shown later, this makes the total number of atoms remein constant

The condition that ψ defined by equation (23) ahall satisfy cquation (22) is

$$
\begin{align*}
0 & =\Sigma_{n}(\mathrm{H}-\mathrm{W}+\mathrm{A}) a_{n} \psi_{n} \\
& =\Sigma_{n} a_{n}(\mathrm{H}-\mathrm{W}+\mathrm{A}) \psi_{n}-\imath h \Sigma_{n} a_{n} \psi_{n} \tag{24}
\end{align*}
$$

since \amalg and A commute with a_{n}, \dagger while $W a_{n}-a_{n} W=\imath h a_{n}$ identically. Suppose $A \psi_{n}$ to be expanded in the form

$$
A \psi_{n}=\Sigma_{m} A_{m n} \psi_{m}
$$

where the coefficients $A_{m n}$ are functions of t only, and satisfy $A_{m n}{ }^{*}$ - $A_{m m}$, where the " denotes the conjugate imaginary. Equation (24) now becomes, since $(H-W) \psi_{n}=0$,

$$
\Sigma_{m n} a_{n} A_{m n} \psi_{m}-i h \Sigma_{m m} a_{m} \psi_{m}=0
$$

Taking out the coefficient of ψ_{m}, we find

$$
\begin{equation*}
t h a_{m}=\Sigma_{n} a_{n} A_{m n} \tag{25}
\end{equation*}
$$

which is a simple diflerential equation showing how the $a_{\text {in }}$'s vary with the time.
Taking conjugate imagnaries, ne find

$$
-\imath h a_{m}{ }^{*}=\Sigma_{n} a_{n}^{*} A_{m s}{ }^{*}=\Sigma_{n} a_{n}^{*} A_{n m}
$$

Hence, if $N_{m}=a_{m} a_{m}{ }^{*}$ is the number of atoms in the m th state, we have

$$
\begin{aligned}
\imath h \mathrm{~N}_{m} & =i h\left(a_{m} a_{m}^{*}+a_{m}^{*} a_{m}\right) \\
& =\sum_{n}\left(a_{n} A_{m n} a_{m}^{*}-a_{n}^{*} A_{m m} a_{m}\right)
\end{aligned}
$$

\dagger The statement a commates with b meana $a b=b a$ identionly.

Thas gives

$$
\iota h \Sigma_{m 1} N_{m 1}=\Sigma_{n m}\left(a_{m}{ }^{*} A_{m n} a_{n}-a_{n}{ }^{"} A_{n m} a_{m}\right)=0 .
$$

as required.
lf the perturbation consists of incident electromagnetic radiation moving in the direction of the x-axis and plane polarised with its electric vector in the direction of the y-exis, the perturbing term A in the Hamiltonian is, with neglect of relativity mechanics, $\kappa / c \quad \eta, \dagger$ where η is the total polarisation in the direction of the y-sxis and $0, \kappa, O, 0$ are the components of the potential of the incident raduation We can expand $\eta \psi_{n}$ and $\eta \psi_{n}$ in the form

$$
\begin{aligned}
& \eta^{\prime} \psi_{n}=\Sigma_{m} \eta_{m n} e^{\prime\left(\psi_{m}-w_{-}\right) / \Lambda} \psi_{m},
\end{aligned}
$$

where the $\eta_{m n}$'s and $\eta_{m n}$'s are constant 4 and $\gamma_{m n}=i\left(W_{m}-W_{n}\right) / h \eta_{m n}$ Our

We can integrate this equation to the first order in κ by replacing the $a_{n}{ }^{\prime}$ a on the right-hand aide by their values c_{n} at the time $\ell=0 \quad$ This gives

$$
\begin{equation*}
a_{m}=r_{n}+1 / 4 h c \cdot \Sigma_{n} c_{n} \eta_{m n} \int_{\|}^{t} \kappa(s) e^{i\left(u_{m}-w_{0}\right)} w^{\prime \prime \prime} d s \tag{27}
\end{equation*}
$$

To obtain a aecond approximation, we write for the a_{n} 's on the right-hand aide of (26) their values given by (27) We thus find for the value of a_{m} at the time T,

$$
\begin{aligned}
& a_{m}=r_{m}+1 / t h c \quad \Sigma_{n} c_{n} \eta_{m n} \int_{11}^{T} \kappa(t) e^{\prime\left(W_{0}-W_{0}\right) \mid / h} d t
\end{aligned}
$$

$$
\begin{equation*}
=c_{m}+c_{m}{ }^{\prime}+c_{m}{ }^{\prime \prime} . \tag{르}
\end{equation*}
$$

say, where $c_{m}{ }^{\prime}$ and $c_{m}{ }^{\prime \prime}$ denote the firat-and second-order terme respeotively
This gives for the number of atoms in the slate m at the tume T

$$
\mathrm{N}_{\mathrm{m}}=a_{\mathrm{m}} a_{\mathrm{mm}}{ }^{*}=c_{\mathrm{m}} \mathrm{c}_{\mathrm{m}}{ }^{*}+c_{\mathrm{m}}{ }^{\prime} c_{\mathrm{la}}{ }^{*}+c_{\mathrm{m},} c_{m}{ }^{\prime *}+c_{\mathrm{m}}{ }^{\prime} c_{\mathrm{m}}{ }^{\prime *}+c_{\mathrm{m}}{ }^{\prime \prime} c_{\mathrm{m}}{ }^{*}+c_{1 m} c_{m}{ }^{\prime \prime *}
$$

If we wish to obtain effecte that are independent of the initial phases of the atoms, we must substitute $c_{m} \exp . \gamma_{m}$ for c_{m} and average over all values of γ_{m}

[^169]from 0 to 2π. This makes the first-order terms in N_{m}, namely, $c_{m}{ }^{\prime} c_{m}{ }^{*}$ and $c_{m} c_{, \ldots}{ }^{\prime *}$, vanish, while the second-order terms give
which reduces to
\[

$$
\begin{equation*}
1 / h^{2} c^{2} \cdot \Sigma_{n}\left\{\left|c_{n}\right|^{2}-\left|c_{m}\right|^{2}\right\}\left|\eta_{n m}\right|^{2}\left|\int_{0}^{T} x(t) e^{1\left(u_{-}-u_{-}\right) t / h} d t\right|^{2} \tag{29}
\end{equation*}
$$

\]

Thes gives $\Delta \mathrm{N}_{\mathrm{m}}$, the increase in the number of atoms in the state \boldsymbol{m} from the time $t=0$ to the time $t=T$. The terri in the summation that has the suffix n may be regarded as due to transitions between the state m and the state n.

If we remolve the radiation from the time $t=0$ to the tume $t=T$ into its harmonic components, we find for the intensity of frequency v per unt frequency range the value

$$
\mathrm{I}_{1}=2 \pi v^{2} r^{-1}\left|\int_{-1}^{T} \kappa(t) e^{2 \pi r 1 v} d t\right|^{2}
$$

Hence the term in expression (29) for ΔN_{m} due to transitions between atate m and state n may be written
where

$$
1 / 2 \pi h^{2} v^{v} c \quad\left\{\left|c_{\mathrm{a}}\right|^{2}-\left|c_{m}\right|^{2}\right\}\left|\eta_{\operatorname{man}}\right|^{2} \mathbf{I}_{\nu}
$$

$$
2 \pi v=\left(W_{m}-W_{\nabla}\right) / h
$$

or

$$
2 \pi / h^{2} c \cdot\left\{\left|o_{n}\right|^{2}-\left|c_{m}\right|^{2}\right\}\left|\eta_{m m n}\right|^{\mathbf{e}} I_{r} .
$$

If one averages over all directions and states of polarisation of the incident raclistion, this becomes
where

$$
2 \pi / 3 h^{2} c,\left\{\left|c_{n}\right|^{2}-\left|c_{m}\right|^{2}\right\}\left|P_{n n}\right|^{2} I_{n}
$$

$$
\left|P_{n m}\right|^{2}=\left|\xi_{m m}\right|^{2}+\left|\eta_{m m}\right|^{2}+\left|\zeta_{m m}\right|^{2}
$$

$\xi_{1} \eta$ end ζ being the three components of total polarisation Thus one can say that the radiation has caused $2 \pi / 9 h^{2} c\left|C_{n}\right|^{2}\left|P_{\text {new }}\right|^{2} I_{v}$ transitions from state n to state m, and $2 \pi / 3 h^{2} c .\left|c_{m}\right|^{2}\left|P_{n m}\right|^{2} I_{v}$ transitions from state m to state n, the probability coefficient for either process being

$$
\mathbf{B}_{n \rightarrow m}=\mathbf{B}_{m \rightarrow n}=2 \pi / 3 h^{2} c . \mid \mathrm{E}_{n m!}: 9
$$

in agreament with the ordinary Einstein theory.

The present theory thus accounts for the absorption and atimulated emission of radiation, and ahows that the elements of the matrices representing the total polarisation detemnine the tranation prohabilities One cannot take spontancous emission into atcount without a more elnborate theory involving the positions of the various atoms and the interference of their individual emissions, as the effects will depend upon whether the atoma are diatributed at randoun, or arranged in a cryatal lattice, or all confined in a volume small compared with'a wave-length The last alternative mentioned, which is of no practical interest, appears to be the simplest theuretically.

It should be observed that we get the simple Einstern resulte only because we have averaged over all intial phases of the atoms The following argument shows, however, that the initial phases arr of real fhysical importance, and that in consequence the Einstein coefticients are inadequate to describe the phenomena except in specinl (ases if mitially all the atoma are in the normal state, then it is easily seen that the prpression (29) for $\Delta \mathrm{N}_{\mathrm{m}}$ hollds without the averaging process, so that in this case the Einstein coefficients are adequate If we now consider the case when some of the atoms are initially in an exorted state, we may suppore that they were brought into this atate by radiation uncident on the atoms before the time $t=0$. The effect of the subsequent ancident radiation must then depend on its phase relationshipa with the earher incident radıation, since a correct way of treating the problem would be to resolve both incident radiations into a aingle Fourier integral If we do not wish the earlier radiation to appear explicitly in the calculation, we must suppose that it impresses cortain phases on the atoms it excites, and that these phases are important for determuning the effect of the subsequent radiation. It would thus not be permissible to average over these phases, but one would have to work directly from equation (28).

The Stricture of γ-Brass.

By A. J. Bradley, M.Sc, Ph D, and J Thewlis, B Sc, the Physical Laboratories, the University of Manchester.
(Communicated by Prof W L Bragg, FR S --Received August 31, 1926)

(1) Inlroducion

Westgren and Phragmén* have recently described the reaults of investigations on the structures of $\mathrm{Cu}-\mathrm{Zn}, \mathrm{Ag}-\mathrm{Zn}$ and $\mathrm{Au}-\mathrm{Zn}$ alloys. As a result of X -ray analyas by the powder method, five different types of atructure were found in the case of the $\mathrm{Cu}-\mathrm{Zn}$ alloys. Structures were successfully assigned to four of these phases, but in the case of the γ-phase a complete elucidation was not attempted The atructure 18 cubic, end contains 52 atoms to the unit cube. The following table is taken from Westgren and Phragmén's paper -

T'able I - Lattice Dimensions and Number of Atoms per Elementary Cube in the γ-Phases

Alloy.	$\begin{aligned} & \text { Perconlagl } \\ & \mathrm{Zn} \end{aligned}$	Av Alomic Wt	Lemaity	d_{100} III \hat{A}	Number ul Atoma per Elamantary C'ube
Cumin	61 7	6487	804	8840	6322
Cu-Zu	64 7	6472	7-90	8800	5205
Cu-Zn	677	0478	782	8870	5202
$\mathbf{A g}_{\mathbf{g}-\mathbf{Z n}}$	603	8128	8611	0327	82-37
$\mathrm{Au} \mathbf{Z n}$	969	11307	1225	0.248	5227
$\mathrm{Au}-\mathrm{Zn}$	411	10771	1178	- 223	5180

Further information was obtained from examination of single orystals of a $\gamma \mathrm{Cu}-\mathrm{Zn}$ alloy. Laue photograms and rotation photograms were both used for this purpose. By way of conjeoture, Westgren and Phragmen suggested the formulat $\mathrm{Cu}_{4} \mathrm{Zn}_{0}, \mathrm{Ag}_{1} \mathrm{Zn}_{9}$, and $\mathrm{Au}_{4} \mathrm{Zn}_{4}$, as these correspond to componitions conciding with one of the homogeneous γ-phase ranges. We have found that these formulm are incorrect, the true formulw being $\mathrm{Ca}_{6} \mathrm{Zn}_{8}, \mathrm{Ag}_{6} \mathrm{Zn}_{81}$ and $\mathrm{Au}_{5} \mathrm{Zn}_{8}$.

It is at first sight surprising to find such a large number of stome in the unit,

[^170]but the is by no means an isolated instance The γ^{\prime}-phase of the Cu-Al alloys,* and even two distiact modifications of the element mangancese. \dagger_{+}^{1} present the same phenomenon. It is a remarkable fact that α-manganese, § $\gamma \mathrm{Cu} \mathrm{Zn}$, $\gamma \mathrm{Ag}-\mathrm{Zn}, \gamma \mathrm{Au}-\mathrm{Zn}$, and γ^{\prime} Cu-Al all have a unit cell of about the ame dimensrons, and containing about the same number of atoms Moreover, the intensaties of the reflexions from many planes of these structures are found to be extraordinarily slike, whatever substance is examined Jn partinular, the two atrongest lines on a powder photograph invariably occur at the same pait of the film, so that for all these substances two interplanar spacings are particularly pronounced. It is signoficant that these are the spacings of the (110) and (211) planes of a body-centred cubic lattice whose lattice constant is about $a=2 \cdot 95 \mathrm{~A}$
There is clearly a fundamental relationship between the atruotures of the above substances and the simple body-centred cubic structure The present paper gives the results of an attempt to determme the relationship in the case of the Cu-Zn alloys

(2) Pussible Space-Groups for γ-Brass.

The only reflexions found for $\mathrm{Cu}-\mathrm{Zn}$ and $\mathrm{Au}-\mathrm{Zn}$ are those from plaues (hkl), for which ($h+k+l$) is even. In the case of the $\mathrm{Ag}-\mathrm{Zn}$ alloy there are lines which are exceptions to this rule, but these extra haes are all very weak, and are probably ether β-lines or are due to impurities Thero are no extra lines on the rotation photogram of γ-brass, taken from a single cryatnl This may be taken as conclusive evidence that the struoture is built up from the apecelattice $\Gamma^{\prime \prime}$. According to Westgren and Phragmén, there are 52 atoms per unit cell, so that the structure contains 26 inter-penetrating body-centred cubic latticer, each of dimensiona 885 A

From a Laue photograph Westgren and Pbragmen deduce that the symmetry of $\boldsymbol{\gamma}$-brass is etther $\mathrm{T}_{4}, 0$, or O_{n} The only abnormal spacings are ($h k l$), where ($h+k+l$) 18 odd, which are halved Three space-groups satisfy these condtiona, namely, $T_{d}{ }^{3}, O^{5}$, and $O_{h}{ }^{0}$. These are therefore the only posaible space-groups

The above are the only conclusions for which there is direct experimental evidence

- Jette, Pbragmén and Westgren, 'Journ. Inst Met.,' vol, 31, p 193 (1024).
† Weatgron and Phragmón, ' Z f Phyak,' vol 33, p 777 (1920)
\ddagger A J. Bradley, ' Phll. Mag.,' vol 60, p 1018 (1025)
1 In order to avoid farther confusion the asthore have deolded to edopt the nomenelature devised by Weatgrea and Phrigmén for the modiliontionn of manganeve.

(3) Approxtmate Poations of the Atoms.

To test directly every possible arrangement of atoms which would satisfy the above space-group conditrons would be almost imposesble We have selected the most probable types of structure, and tested such arrangements of atoms by comparing the intensities culculated for these arrangements with the intensities of the lines as observed by Westgren and Phragmén. In order to determine which arrangemente were feasible, use was made of the following criteria -
(1) A clue to the approximate positions of the atoms is obtained by considering the positions and intensities of the strongost lines
(2) The distance of closest approach of the atoms is not likely to be very different from that in other cryatals of a sumilar type contaning the same atoms

Wuth one exception, the strongest lines on the filn of γ-brass are udentical in position and untensity with the lines on the β-brass film

The lattice of β-brass is body-centred cubio, the lattice constant d_{100} is $2945 \AA$, tho unit oell contams two atoms The lattice constant of γ-brass (617 per cent. Zn$) d_{100} 188.85 \AA$, and each unit cell contans 52 atoms The side of the unt cube of γ-brass is therefore exactly three times that of β-brass, and its volume 1827 times as great. It follows that if γ-brass had 54 atoms to the unit cell, they mught be arranged in exactly the same way as the atorus of β-brasa, namely, on a body-centred lattice.

In such a case, γ-brass would only give rise to those hnea which appear on the film of β-brass. The exiatence of extra lines on the film of γ-brass can be accounted for if we suppose two of the 54 atoms to be removed without greatly displacing the remaining 52 atoms

These considerations alow that a possible structure for γ-brass consista of a body-centred cubic arrangeruent with 1 atom in 27 removed, the remaining atoms being slightly diaplaced, but necessanly in such a manner that the cubre symmetry ${ }^{18}$ preserved.

Fig. 1 showe a unit cell containing the whole 54 atome in the correct positions for a body-centred cubic atructure. With the exoeption of one atom at the centre, all the atoms lie on the Rurfaces of three concentric cubes which are shown in the figure The dagram ilhustratos the special osse where every stom is situated at exactly the same position as in a body-centred lattice, bat since the unit cell contains so many atoms, they need not all be structurally equivalent. Cubic synmetry will be preserved and the spsoe-group requirements fulfilled

If the atoms are divided into four or five groups of equivalent positions. The most general case, which corresponde to the space-group $\mathrm{T}_{\mathrm{d}}{ }^{3}$, 18 shown in the

Fra. 1.-The DerIvation of the Struoture of $\boldsymbol{\gamma}$-Brase from a Simple Cube-Oentred Arrangement of $\mathbf{A t o m a s}$.
figure. Structurally equivalent atoms are denoted by the same symbols. The 54 atoms are divided between five groups of equivalent positions in the following manner -

Table II.

Type of Alom	Nymbol of Tyre	No of Aloma per Umit Cell
"X"	0	2
"A"	0	8
"B"	0	8
"C"	\square	19
"D"	\square	24

There are more than 54 atoms shown in the figure, as the atoms on the outer finess of the cube are shered with the nejghbourng cubes. The eight atoms at vol. CIII.-A.
the cube corners are each shared between eight cubes. The atoms on the cube edges are each shared between four cubes. All the other atoms on the outer faces are shared between two cubes.
The atoms may be dusplaced in diferent ways while still conforming to the space-group $T_{d}{ }^{2}$, but atoms belonging to the same set must be dapplaced in the mame manner Fig 1 will also represent the case of the space-group $0_{n}{ }^{9}$, the additional condition berng imposed that the " A " and " B " atoms must be equivalent. Consideration shows that it is not necessary to discuss the case of 0^{5}, since any displacements from the arrangement of fig. 1 which are consistent with the symmetry elements of 0^{s} also satisly the requirements of $\mathbf{O}_{\mathrm{h}}{ }^{\text {n }}$

A possible structure of γ-brass must have two atoms per unit cell less than the arrangemeut of fig. 1 It is clear that the only two atomes which could be removed, if our general scheme of arrangement is correot, are the " \mathbf{X} " atoms, beoause there are more than two ntoms of each other type in the unit cube

Fra. 2 -Atructure of $\boldsymbol{\gamma}$-Bram
Fig. 2 represents a unit cell from whioh the " X " atoms have been removed. The remaming atoms are slightly dusplaced from the positions of fig. 1 , the displacement being shown by the short lines. The extents of the displeoementa sotually shown in the figure are those ansigned to γ-brass by the preeent
analysis. The diaplacements have carried some of the \mathbf{D} atoms, which were formerly on the boundary faces of the unit cell, entirely into neighbouring cells. Theae atoms have been inserted in fig, $\mathfrak{\geq}$, in order to facilitate comparison with fig 1

(4) Choier of Space-Groups

The arrangement of fig 2 would correspond to the space-group $0_{n}{ }^{7}$ only if " A " and " B " atonıs were made equivalent As actually drawn it correaponds to the space-group $T_{d}{ }^{3}$. We need not consider space-group 0^{\prime}, as thas requires the atoms to be placed in exactly the same positions as $\mathrm{O}_{n}{ }^{\prime \prime}$, if the structare 18 to be at all similar to the body-centred rube.

To deonde betwren $\mathrm{T}_{d}{ }^{9}$ and $\mathrm{O}_{n}{ }^{\prime \prime}$ requires a determunation of the parameters of the atoms, which cun be made fron considerations of intensities and interatomic distances.

The co-ordinates of the atoms are aq follow,
" A" Atoms.
" \boldsymbol{B} " Aloms

$$
\begin{aligned}
& (-b-b-b),(-b b b),(b-b b),(b b-b), \\
& \left(\frac{1}{1}-b \frac{1}{t}-b \frac{1}{2}-b\right),\left(\frac{1}{2}-b \frac{1}{2}+b \frac{1}{2}+b\right)\left(\frac{1}{2}+b \frac{1}{\frac{1}{2}}-b \frac{1}{2}+b\right),
\end{aligned}
$$

"C," Atoms.

$$
(c 00),(-c \cup 0),(0 c 0),(0-c 0),(00 c),(00-c),
$$

$$
\left(\frac{1}{2}+c \frac{1}{2} \frac{1}{2}\right),\left(\frac{1}{2}-c \frac{1}{2}\right),\left(\frac{1}{2} \frac{1}{2}+c \frac{1}{2}\right),\left(\frac{1}{2} \frac{1}{2}-c \frac{1}{t}\right),\left(\frac{1}{2} \frac{1}{2}+c\right),\left(\frac{1}{2} \frac{1}{2}-c\right)
$$

" D " Atoms.
$(d d e),(d-d-e) .(-d d-e),(-d-d e)$,
$\left(\frac{1}{1}+d \frac{1}{2}+d!+d\right),\left(\frac{1}{2}+d \frac{1}{1}-d \frac{1}{2}-e\right),\left(\frac{1}{2}-d!+d \frac{1}{1}-e\right)$, $\left(\frac{1}{2}-d \frac{1}{2}-d \frac{1}{2}+e\right)$.
$(d e d),(d-e-d),(-d e-d),(-d-e d)$,
$\left(\frac{1}{2}+d \underline{1}+e \frac{1}{2}+d\right),\left(\frac{1}{2}+d \frac{1}{2}-e \frac{1}{2}-d\right),\left(\frac{1}{2}-d \frac{1}{2}+e \frac{1}{2}-d\right)$, $\left(\frac{1}{2}-d \frac{1}{2}-c \frac{1}{2}+d\right)$.
$(e d d),(e-d-d) .(-e d-d),(-e-d d)$,
$\left(\frac{1}{1}+e \frac{1}{1}+d \frac{1}{2}+d\right),\left(\frac{1}{2}+r-d \underline{1}-d\right),\left(\frac{1}{2}-e \frac{1}{2}+d \underline{1}-d\right)$, $\left(\frac{1}{2}-e \frac{1}{2}-d \frac{1}{2}+d\right)$.
For space-groups 0^{3} and $O_{n}{ }^{9} a=b$ and $e=0$.

$$
\begin{aligned}
& \text { (} a \operatorname{a} a),(a-a-a),(-a a-a),(-a-a a), \\
& \left(\frac{1}{2}+a \frac{1}{1}+a \frac{1}{2}+a\right) \cdot\left(\frac{1}{2}-a \underline{1}-a \frac{1}{2}-a\right) .\left(\frac{1}{2}-a!+a!-a\right) \text {, } \\
& (\underline{1}-a\rfloor-a \downarrow+a)
\end{aligned}
$$

At thes atage no disorimination will be made between Cu and Zn atams. The atomic numbery are so nearly equal that Cu and Zn may be considered to scatter X -raya by the same amount \quad No appreciable error will be introduced into the calculations by this assumption. The structure-amplitude of any plane (kkl) is given by the following equation :--
$S=8 \cos 2 \pi h a . \cos 2 \pi k a . \cos 2 \pi l a+8 \cos 2 \pi h b \quad \cos 2 \pi k b . \cos 2 \pi b b$.

$$
\begin{aligned}
& +4(\cos 2 \pi h c+\cos 2 \pi h c+\cos 3 \pi h)+8(\cos 2 \pi h d . \cos 2 \pi k d . \\
& \quad \cos 2 \pi l e+\cos 2 \pi h d \cdot \cos 2 \pi h e \cdot \cos 2 \pi h l \\
& +\cos 2 \pi h e \cdot \cos 2 \pi k l \cos 2 \pi l d) \\
& +\iota(-8 \sin 2 \pi h a . \sin 2 \pi h \cdot \sin 2 \pi l a+8 \sin 2 \pi h b \sin 2 \pi k b . \\
& \sin 2 \pi l b-8(\sin 2 \pi h l \sin 3 \pi k l \sin 2 \pi l e+\sin 2 \pi h d . \\
& \quad \sin 2 \pi k e \cdot \sin 2 \pi l d+\sin 2 \pi h e \cdot \sin 2 \pi k d . \sin 2 \pi l d))^{*}
\end{aligned}
$$

In the arrangement shown in fig. $1, a=\frac{1}{6}, b=\frac{1}{d}, c=\frac{1}{3}, d=\frac{1}{3}, e=0 \quad$ If the atoms of γ-brass were situated in these positions, the " \mathbf{X} " atoms being absent, the interatomic distances would be $2 \mathrm{SK} A$. This is the same value as the dastance of closest approach of the centres of copper atoms in the latice of pure copper The zinc atom in metallo zune has two interatome distances, namely, 266 A and 2.91 A , whilst in β-brass the interatome distance 18 again 2.65 A . One may anticipate that in γ-hrass the interatomic distances will agann be of the same order of magnitude
Displacements of the atoms consistent with the symmetry requrenents of $\mathrm{O}_{\mathrm{h}}{ }^{4}$ and Ta^{8} may now be tried in order to explain the observed intensities of reflerion. The parameter values were tested by the use of the structureamplitude formula, comparing the values of \mathbf{B} so obtanned with the observed intensities. In such a comparison allowance must be made for two other factors which affect the observed intensities. These are the frequency factor N, giving the total number of planeß corresponding to the form \{ $h \mathrm{l}\}$ \}, and a factor expressing the general falling off in intensity as the angle of reflarion uncreases. This is due to a number of superimposed effects, and to allow for each separately would bring in many unproved assumptions. The net effect may to some extent be compensated for by the insertion of a factor cosec${ }^{2} \theta$ in the intansity formula. We then obtain the expression Ns@ $/ \sin ^{2} \theta$ for comperison with the observed intensaties. The use of thas purely emprical formula is only justufied by its value in afiording a rough comparibon between refleuons at not too widely duffering angles of reflexion. In the present case of a cubio crystal it may be expressed as $\mathrm{NS}^{9} /\left(h^{5}+k^{9}+l^{2}\right)$.

- In order to out down the erthmetic, the above eapretaion for s wea divided by a fector in in all cilculation.

Table III.

h사	Obs Intrinut	$\left.\mathrm{NSP}^{1} / h^{\mathbf{2}}+\boldsymbol{b}^{\boldsymbol{L}}+\boldsymbol{r}\right)$		
		$\begin{aligned} & \text { Holohedral } \\ & a^{\prime}=b^{\prime} \\ & c^{\prime}=192^{\prime \prime \prime} \\ & d^{\prime}=120^{\prime} \\ & c^{\prime}=0 \end{aligned}$	Hemihedral	
			$\begin{aligned} & a^{\prime}=37^{\prime} \\ & r^{\prime}=120^{\circ}, \end{aligned}$	$\begin{aligned} & b^{\prime}=\boldsymbol{a 0} \mathbf{0}^{\prime \prime} \\ & \mathbf{f}^{\prime}-1 \mathbf{f}^{\circ} \end{aligned}$
			$d^{\prime}=120{ }^{\circ}$	$d^{\prime}=111{ }^{\text {d }}$
110	nbw	00	08	4
901	abm.	114	$0 \cdot \mathrm{~B}$	01
211	nbw	05	15	00
220	alus	24	04	09
311	ath	13	$0_{0} 0$	07
228	weak	32	0 -	29
321	weah	32	61	$\bigcirc \pi$
4010	athe	111	90	00
390	introng	1093	${ }^{681} 2$	6s 1
411	ntrony	$\begin{array}{r}24 \\ 0 \\ 0\end{array}$	114	
332	aby	(103	117 411	0 9 9
481	weak	00	55	61
581	ntar	011	38	00
440	aby	8.2	$1{ }^{10}$	01
438	alsa	15 82	08 0 0	${ }_{1}^{1} \mathrm{~J}$
AE0	Bbs	1 0 0	10 0 0 0	18 0.7
	sha	10	12	09
14	mod.	418	23	${ }^{\text {P }}$
${ }_{642}$	very weak	$\begin{array}{ll}108 \\ & 18\end{array}$	1.4	2.5 8.3
730	Abm	110	13	16
800	athen	18	03	12
603	very weak	26	01	1.4

- For convenience in oalculation the paremeters aro expresed hefo io degrees, so thet n^{\prime} is equal to 360 rr .

Table III compares the calculated and ohserved intensity values for a number of planes selected from the powder photograph data. In the case of the holohedral structure the symmetry requirements, oombined with the criterion that the interatomic diatance must not depart too widely from 2-65 A, limit the displacement of the "A" and "B" stome to a small amount, and hardly permit the "C" and "D " atome to be displaced at all. On the other hand, the lower symmetry requirements of $T_{d}{ }^{3}$ allow much larger displacements. In Columan III sre given valuea calculated for the holohedral atructure with thoee parameter values which give the beat correspondence between the observed intensities and the calculated values. This is so unsetisfactory as to make it clear that conniderable readjustrents are required in the parameter values. So long as the structure remanss holohedral, no appreoiable obange can be brought about without bringnag aome pairs of atome much closer together
than 2 bb A. It may be concluded that no arrangement based upon spacegroup $\mathbf{O}_{n}{ }^{8}$ can satisfy all the requirements, and that it remans to consider arrangements based on $T_{d}{ }^{d}$.

The values ahown in Column IV of Table III were obtained by givng the a^{\prime} and e' parameters the greater duaplacement which is permitted by $\mathrm{T}_{\mathbf{d}}{ }^{\mathbf{d}}$. The much oloser correspondence indicates a closer approximation to the correct struotare. These parameter values are actually the maximum displacements allowed by considerations of interatomic distance. The other parameter values were unchanged A much better agreement was obtanned by putting $d^{\prime}=110^{\circ}$, as in the last column of Table III

Table IV

Further information with regard to parameter values was obtained by the use of the rotation crystal data. Table IV ahowa that the best agreement is obtained by increaning the value of a^{\prime}.

Table V.-Yowder Photogram of γ-Brass from Westgren and Phragmén's Observations.

- Thay line corresponds to the K a line of (332)

Table VI.--Photogram of a γ-Brans Cryatal rotating abont (001), from Westgren and Phragmen's Observations.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline hal \& \mathbf{N} \& $\mathrm{NS}^{2} /\left(h^{2}+h^{3}+\mathrm{C}\right)$ \& Obs Int \& $\boldsymbol{H} \boldsymbol{H}$ \& N \& $N \Psi^{\prime}\left(A^{\prime}-L^{\prime}+\boldsymbol{r}\right)$ \& Obm Int,

\hline 110 \& 4 \& 010 \& aba, \& 002 \& 4 \& 060 \& atha

\hline 200 \& 4 \& 000 \& blya, \& 112 \& 4 \& 0 11. \& aba

\hline 220 \& 4 \& 0) 12 \& $n \mathrm{bm}$ \& 412 \& 4 \& 0 08 \& -bm.

\hline 310 \& N \& 0 On \& A1m \& 222 \& 4 \& $2 \mathrm{d7}$ \& t

\hline 400 \& 4 \& 001 \& uln \& 312 \& N \& 1162 \& W

\hline 330 \& 4 \& 172 \& nt \& 412 \& 4 \& 1111 \& V ${ }^{*}$

\hline 48) \& N \& 022 \& n \& 332 \& 4 \& 182 \& m

\hline 510 \& * \& 111 \& m \& 422 \& - \& 183 \& m.

\hline 440 \& 4 \& $1)^{2 M}$ \& 1 n \& 612 \& B \& 0111 \& w

\hline 530 \& 8 \& 0 1H \& abs \& 442 \& 4 \& 0.98 \& m

\hline 400 \& 4 \& 2 64 \& nt \& 5122 \& \% \& 631 \& v w

\hline \& A \& 001 \& alm \& \& 4 \& $0 \cdot 01$ \& \pm

\hline 710 \& 8 \& 0 (15) \} \& \& 1032 \& S \& (1) 24 \& abm

\hline 800 \& 4 \& $229\}$ \& nt \& 712 \& H \& J 45 \& st

\hline 640 \& 8 \& 084 \& mod \& 652 \& 4 \& (0.6) $\}$ \& Bt

\hline 730 \& 8 \& 026 \& muxl. \& 142 \& N \& 0 48 \& w

\hline 800 \& 4 \& 0 (3 ¢ \& mond \& 732 \& N \& 1182 \& m

\hline 820 \& A \& 10 \& At \& 812 \& 4 \& 05 \& m

\hline \& 4 \& 1 NT \& At \& \$29 \& 8 \& 112 \& dt

\hline 750 \& 8 \& 0 OR \& \& 048 \& 4 \& 079 \& st

\hline \& \& \& \& 732 \& 8 \& 061 \& t

\hline 101 \& 4 \& 010 \& aln \& \& \& \&

\hline 211 \& N \& 010 \& nlm \& 103 \& 4 \& 004 \& sba,

\hline 801 \& 4 \& 0104 \& a ba \& 213 \& B \& 0.102 \&

\hline 321 \& 8 \& $0 \mathrm{H2}$ \& - \& 513 \& 4 \& 172 \& st

\hline $$
411
$$ \& A \& 130 \& 日t. \& 323 \& 8 \& 314 \& t

\hline 501 \& 4 \& 0 \% \& \& 413 \& 8 \& 010 \& sbe

\hline 441 \& 8 \& 016 O \& w. \& 404 \& $\stackrel{1}{ }$ \& 012) \&

\hline 521 \& ${ }_{6}$ \& 0 IH \& W. \& 003 \& 4 \& 01013 \& V 0

\hline 011 \& 8 \& 0.71 \& m \& 023 \& $\stackrel{H}{\mathrm{H}}$ \& 031 \& $$
\nabla W .
$$

\hline 641 \& 8 \& 1101 \& nim \& 015 \& $\stackrel{1}{8}$ \& 13 \& At

\hline 691 \& H \& 1 310 \& m \& 543 \& 8 \& $0 \cdot 48$ \& \%

\hline 701 \& 4 \& 00^{14} \& alos \& 035 \& 8 \& 408 \& 日t.

\hline 721 \& ${ }_{8}^{8}$ \& 345 \& H. \& 708 \& 4 \& 0.13 \& w.

\hline 651 \& A \& 0.10 \& , \& 783 \& H \& (1.82 \& m

\hline 811 \& H

4 \& 008 \& -t. \& 068 \& 8 \& 081 \& m

\hline 841 \& H
8 \& 275
0
0 \& - \& 183

743 \& | H |
| :--- |
| | \& $\begin{array}{ll}0 & 92 \\ 0 & 28\end{array}$ \& m

\hline
\end{tabular}

- (annerdes with (392) Ka

The best value is about $c^{\prime}=129^{\circ}$. No further change is indicated in the values of the other parameters.
The parameter values, now expressed again an fractions of the side of the unit cell, which give the best agreement between the observed and calculated intensity values, are $a=0.10_{1}, b=0.16_{7}, \rho=0.35_{\mathrm{a}}, d=0.30_{\mathrm{B}}, \mathrm{e}=0.04_{\mathrm{g}}$.

Tables V and VI give complete lists of observed and calculated intensitiea from the powder photogram and the rotation photogram. With regard to the powder photogram, it may be noted that lides 36 and 72 are marked "strong"
by Westgren and Phragmén, while lides 46 and b0 are marked "weak," but on the reproductions of their photographs all four lines appenr to have about the same intensity as line 48 , whuch is marked " moderate" With these exceptions, the agreement between observed and calculated values is sufficiantly good to afford strong confirmation of the correctness of the purameter values and entirely confirms the origmal supposition that γ-brass has very nearly a body-rentred cubic atructure

(f) Idenafication of the Alomes

The acattering powers of copper and zinc are so nearly equal that there was some dufficulty in dastinguishing the respective copper and zinc atoms, and au indirect method had to be employed for thas purpose.

The powder photograms of $\gamma-$ - 'u-Zn, $^{\boldsymbol{Y}}$-Ag Za, and Y Au-Zn are so sumilar that there can be no doubt that they have the same type of atructure. Table VII gives a liat of the lines which have slightly different intensities for the three seriey of alloys. Lines 48,50 and 72 need not be considered. as the remarks made above are applwable again hore In all other camer the differences in

Table VII.

HLI		Obwerved Intensitims			Poaleiong of Atomn which would eccount for Intenaty ('hangem			
		Cu-Zn	$\mathrm{A}_{\mathrm{H}-\mathrm{ha}}$	All-Zn	A	B.	('	D
211	0	nin	v w	ω	\%n	CuAgAu	(in Ag Au	--
222	12	w.	\cdots	nbe	7 n	('u $\mathrm{Hg}_{\mathrm{g}} \mathrm{Au}$	(u AH Au	$\mathbf{Z n}$
321	14	W	abu	als	-	CuAg Au	\rightarrow	711
420	20	v w,	ata	\dagger	7 n	C'u Ag Aut	\cdots	7 n
939	22	m,	w-	w	Z	-	--	Zn
422	24	W	"	m	C'n Ag An	CuAgAu	('u Ag Au	Z ${ }^{\prime \prime}$
631	1) 24	W	V w	1w	$\mathbf{Z n}$	Cu Ag Au	On Ag An	Zn
449	82	$n \mathrm{~lm}$	W	rw	Cu Am Au	C'u $A_{s} A_{1}$	('u Ag Au	7n
480	\} 34	abm	als	t.w.	$\mathbf{Z n}$	${ }^{\text {a }}$	$\xrightarrow[-]{\square}$	Cu Athat
041	42	aba,	V ${ }^{\text {w }}$	t	7 n	('u Ay Au	$\mathrm{Cu} A \mathrm{gau}$	--
444	4	m	m	nt				
40	7							
710	\} 00	w	w,	m				
640	H6	V W	nim,	1	Zn	-	-	Zn
84) 68	W	*	t.				
408	70	V w	abu	alu	/70	-	-	Zn
880	13 72	st.	41	m.				

intensity are either due to slight differences in parameter values or to the replacement of the copper atoms by the more efficient scatterers, silver and gold. The table shows what distribution of stoms wonld produce the observed intensity changes. Evidently "A" and " D" atoms are zinc and "B" and "C" atoms are either copper, silver or gold There is no indication of any change in the values of the parameters.

(7) Dhacusston of the Strudure

The complete arrangement of atoms in the structure found for γ-brass is shown in fig. 2 The open squares and eircles represent copper atoms, the sold ones represent zinc atoms The arrangement corresponds to the spacegroup $\mathrm{T}_{\mathbf{d}}{ }^{\mathbf{d}}$, the atoms being aituated in the following positions Zn Atoms.

$$
\begin{aligned}
& (0 \cdot 100 \cdot 100 \cdot 10)(0 \cdot 100 \cdot 80090)(0900 \cdot 10090)(0900 \cdot 900 \cdot 10) \\
& (0.600 \cdot 600 \cdot 60)(0.600 \cdot 400 \cdot 40)(0 \cdot 400 \cdot 600 \cdot 40)(0.400 \cdot 40060) \\
& \text { (} 031031005 \text { (} 0.310690 \text { 95) (} 0690.310 .95 \text {) (} 0.690 .690 .05 \text {) } \\
& (0.810 .810 \text { 55) (0.81 0.19 } 045 \text {) (} 0.190 .810 .45)(0.190 .190 .55) \\
& (0.310 .050 .31)(0310.95069)(0.690050 .31)(0.690 .050 .69) \\
& \text { (0 } 810 \text { Б5 } 0.81 \text {) (} 0810.450 .19)(0.190 .450 .81)(0.190 .55019) \\
& \text { (} 0.050 .310 .31 \text {) (} 0950.690 .31 \text {) (} 0.950310 .69 \text {) (} 0.050690 .69 \text {) } \\
& \text { (} 0.550 .81081 \text {) (} 0.450 .190 .81 \text {) (} 0.450 .810 .19)(0550.190 .19)
\end{aligned}
$$

Cu Atoms.

$$
\begin{aligned}
& (0.890830 .89)(0830.170 .17)(0.170 .830 .17)(0.170 .170 .83) \\
& (0.390 .330 .33)(0.330670 .67)(0.670 .330 .67)(0.670670 .33) \\
& (0.3600)(0.6400)(00.360)(00.640)(00036)(000 \cdot 64) \\
& (0.8600)(0.1400)(00.860)(00.140)(000.86)(000.14)
\end{aligned}
$$

There are 32 zinc atoms and 20 copper atoms in the unit cell. The corresponding formula is $\mathrm{Cu}_{5} \mathrm{Zn}_{8}$. A confirmation of this formula is given by metallographic data. Several properties of γ-brass alloys exhibit a maximum at compositions corresponding to just over 60 per cent. einc For this reamon metallographers ascribed the formula $\mathrm{Cu}_{3} \mathrm{Zn}_{3}$ to the alloy. In view of the X -ray data this formula must now be considered untenable. However, $\mathrm{Cu}_{3} \mathrm{Zn}_{6}$ contains $62 \cdot 5$ per cent. Zn , and this accounts equally well for the observed maximum.

Table VIII given a list of the interatomic dstances fonnd in $\mathrm{Cu}_{\mathrm{g}} \mathrm{Zn}_{\mathrm{g}}$. This completely confirms the bypothesis put forwand in section 3, that these distancea
would prove to be very nearly the same as the interatome distances in Cu, Zn and CuZn .

Table VIII.

The two dastances marked with a * were assumed as gudes for selecting parameter values for purposes of calculation. The agreement of the intensity valuen shows the validity of this choice. With regard to the remainung distances, no assumption whatever was made They are deduced dreetly from the parameter values which were found to give the beat agreement for the intensities. The accuracy is about $0 \cdot 1 \mathrm{~A}$. The mean value, not including the value 2.95 A , which probably does not represent any real point of contsot between two stoms, is 2.6 A . This is just a little greater than in CuZn, which would be expected from the fact that there are fewer atoms per unit volume in $\mathrm{Cu}_{5} \mathrm{Zn}_{\mathrm{g}}$

The copper and zino atoms are distributed symmetrically throughout the unit so thast each atom has the greatest possible number of neighbours of the opposite sort. These neighbours are distributed as follows - -
Coppar Aloms.
" C " atoms have 10 zinc and 9 copper atoms as neighbours.
"B" atoms have 9 zinc and 9 copper atoms as neighbours.

Zine Atoms.

" A" atoms have 6 zino and 6 copper atoms an neighbours.
"D " atoms have 5 zinc and 6 copper atoms as neighbours.

Sumnary

(1) The atructure of γ-brass has been deduoed from the data of Westgren and Phragmén, who had already ahown that it was cubic, the lattice dimensions of the unt cell beng about $8-9 \mathrm{~A}$
(2) γ-brass has the forumla $\mathrm{Cu}_{\mathrm{B}} \mathrm{Zn}_{\mathrm{a}}$, esch unit rell containing 20 oopper atoms and 32 zinc atoms.
(3) The space-group is $\mathrm{T}^{\mathbf{s}}$. There are four sets of equivalent positions containing, respectively, 8, 8, 12 and 24 stoms.
(4) The arrangement of atoms is almost body-centred, but in ench unit cell there are two atoms leas than would be required for such a sumple arrangernent.
(B) The different nets of atoms are displaced by definite amounts from the body-centred positions These displacements have been messured.
(6) The interatomic distances are about 2-6 A, which is about the same value es in the elementa Cu and Zn .
(7) γ - Ag-Zn and $\gamma-\mathrm{Au}-\mathrm{Zn}$ are similarly constituted, the formaleo being $\mathrm{Ag}_{9} 7 \mathrm{Zn}_{8}$ and $\mathrm{Au}_{5} 7 \mathrm{n}_{8}$, respectively

The authore desire to express their thanks to Prof. W LL Bragg, F.R.B, for his kind interest and valuable suggestions during the progreas of the work and to $\mathbf{M r}$ A P. M Fleming. C.B.E, M $\$ \mathbf{c c}$. (Tech.), Director of Reseanch of Metropolitan-Vıckers Flectrical Co, Led., for permission to publish the results

INDEX то VOL. CXII. (A)

Absorption of gasea by charcual (Smith), 290
Acetylacetones, tervalent metalho, struchure (Autbury), 441
Adam (N K) and Jeamop ((i) The itructure of Thin Filmed. Part Vill-Expanded Fima, 362. Part IX -Dhbnsic Substances, 376
Adbeaion, studiea in, 1 (Hardy and Nottage), 62.
Allibone (T E) 'The Infra red Secondary Spectrum ol Hydrogen, 196.
Allmand (A J) and Cocka (H (') The Effect of superposed Alternaling Current on the Polarisable Prmary ('ell Zinc-Sulphunc Acrd-Carbon Part Il-Hygh Frequency Current, 252. The Polarnsution of Zne Blectrodes in Neutral and Ach Solutione of Zind Salta hy Direct and Alternatiny Currents-Part 1, 250
Alcernatung current, effect on polarisable primary rell, 11 (Allmand and Cocka), 2020.
Alty (T.) The Ongm of the Eluctrical Charge on Small Particleg on Water, 235
Are apoetrum of gold (Mulennan and McLay), 85
Autbury (W. T) The Ntructure and Inotnmorphism of the Tervalent Metalina Acetylacetones, 448 . Addendum by G. T Margan, 465.
Astbury (W. T.) See also Morgan and Astbury.
Atomio utatea and apsectral terma (Mclennan, MeLay and Smath), 78.
Atoins and ions, forces betwepn, II (Lennard-Jones and Dent), $2 s 0$.
Band ajatem of cyanogen (Jevons), 407.
Beryluinma sootates cryatal structure (Margan and Autbury), 441
Beta-rey apeotra of thorium, number of particles (Gurney), 380.
Bone (W. A.) Stodiea upon Catalytio Combartion. III-The Influence of Steem upon the Catalytio Corabuation of Carbonic Oxde, 474.
Bradloy (A. J) and Thewlis (J.) The Structure of γ-Brass, 978
Brang, gannme, atructure (Bredley and Thowlis), 678.
Butlor (J. A. V.) The Equlibrian of Heterogeneous Syatema including Elertrolyter-I Fondenental Equations and Pbame Role, 129.

Carter (F W) On the Action of a Locomotive Driving Wheel, I5I.
Catelytio combrution, III (Booe), 474.
Onree (C.) and Wateon (R. E.) A Comparison of the Recorll from British Magnewo BLations U'nderground and Sarfane, 304.
Olemmov (C. A.) The Flerure of Thel CYrouler Piates, 450.
Cooke (H. C) See Allmand and Cocks.
Cook (W. R.) See Lannard-Jonet and Cook.
Crystal atracture and ohemical constitation of basic berylium acetate and ite homologuat (Morgan and Aatbury), 441.
Crystal atructure of meteoric iron (Young), 630.
Cryitel atructare of tervalent metallio sootylecetomes (Astbury), 441.
Cryatala, large, of gold, alver and ooppar, teando terta (Elam), 240.
Oryusala, from, distortion (Taylor and Elam), 387.
Oyapogen, band ayrtem (Jevons), 407.

Darmin (C. G) On the Gyration of Light by Multiplet Lidees, 314.
Dent (B M) See Lennard-Jones and Deat.
Dewar veasela, effecta of veriation in the raduation factor on efficionoy (Lambert and Hartley), 138.
Dirao (P. A. M.) On the Theory of Quantum Meohanics, 681.
Distortion of ron cryatala (Taylor and Elam), 387.
Elam (C F) Tenale Teats of Large Gold, Sllver and Copper Crystals, 289.
Elam (C F) See almo Taylor and Elam
Electalcal charge on amall particlea in water, origun (Alty), 235
Eleotrolytem, equilibrium of hoterogencous aystems including-I (Hutler), 129
Electron impact. exotation of polarised lyght (Ekinner), 642.
Eleotrons, total photo-electric omission from metsin (Roy), $\mathbf{5 9 9}$.
Felle (H. A) and Firth (J B) Change of Crystal Structure of nome Salte when C'ryatallised from Siliono Acid Gel-The Structure of Sllero Acid Gel, 468
Ferromagnetic eubetances apecific hest (Sucksmith and Potter), 157
Firth (J. B.) See Fulle and Furth.
Flenare of thick circular plates (Clommow), 651.
Garrett (M. W.) Experimenta upon the Reported Transmutation of Meroury Into Cold, 301
Gel, freenung of gelatin (Moran), 30
Gel, mecosoopio study of the freezing of (Hardy), 47
Gel, alionc acid, atruoture (Felis and Firth), 468
Glase, offects of thermal troatment ahown by precise viscometry (Stott, Taraer and Sloman): 409
Gold, anc speatrum (MoLeanan and McLay), 98.
Gurney (R. W) The Number of Partiolea in Beta-Ray Spectra. IL.-Thorium B and Thoriam ($\mathrm{B}+\mathrm{C}+\mathrm{D}$). 380.
.Cly ration of light by mulliplet linen (Darwin), 314.
Hardy (Sir William) A Mioroscopic Stady of the Froesing of Gei, 47.
Handy (Bir William) and Nottage (M) Eludiea in Adherion, I, 62
Hartley (K. T.) See Lambert and Hartley,
Heterogeneous ayatems inaluding eleotrolytes, equihbrum-[(Butler), 129.
Hydrogen, nitrogen and neon, moleoular lealds (Lennard Jones and Cook), 214
Intar-treotion, burther note upon (Wright), 213.

Jessop (G) See Adam and Jeseop

Jevons (W) The More Refiengible Band Byatem of Cyanogen an Developed in Aotive Nitrogen, 407
Johnson (F M. (${ }^{()}$) See Steacie and Johnson.
Lambert (B.) and Hartley (K. T.) An Investugation of the Lifeote of Varnation in the Radiation Factor on the Efficiency of Dewar Venels, 188.
Laurle (A P) On the Change of Retractive Lidex of Linoeed OUl in the Proosen of Drying and ita Effect on the Deterioxetion of OL Painting, 176, ${ }^{\text {a }}$
Lemard-Jones (J E) and Cook (W E.) The Molecular Fivide of Hydrogen, Nitrogen and Neon, 214.

Lennard-Jones (J. E.) end Dent (B M) The Foroes between Atoms and Ions-II, 290
Linseed oil, refractive mdex, and oil paintings (laune) 176
Jocomotive dnving wheel, action (Carter), 151,
McIsy (A. D.) See McLennan nad McLay, and McLenann, MeLay and Smath
MeLennan (J. (') and McLay (A B.) Un the Structure of the Arc Spectrum of Gold, 90
MoLennan (J C), McLay (A R) and Smith (H G) Atomic Staten and Spectral Terma, 76.
Mclemina (J C) and Kinitlı (H. G) On the Seriew Spectra of Palladium, 110
Magnetsc stations, Brithb, a comparian of recorfls (Chiree and Watson), 304.
Mercury, tranamutation into yold (Garrett), 301.
Meteoric iron, crystal atricture (Young), 630
Molecular fielda of hydrogen, mitrogen and neon (Lennard Ionew and Cook), 214
Moran (T.) The Freazing of Gelatin Gel, 30
Morgan ($\mathrm{C} . \mathrm{T}^{2}$) and Astbury ($\mathrm{N}^{\prime} \mathrm{T}$) Cryatal Structure and (heuncal ('onatitution of Hasic Bervllum Acetate nond ite Homologues, 441
Morgan (G' ' ') Sea also Ast burv
Nitrogen, neon und hydrogen, molecular fiedda (LAnnend-Jones and ('ook), 214
Nottage (M) Nec Hardy and Noltage
Oceluded hydrogen, offect on tensile strength of iron (Pfeil), 182
Oil paminga, change of refractive index of lunseed oul and Its offect on detemoration (Laurie), 176.

Palladlum, reries spectra (MrJennen and Smith), 110
Pearson (K) Researohes on the Mode of Distribution of the Constanta of Samples taleen ut Hendora Irom a Bivarlate Normal Popalation. 1
Pteil (L. B) The Effect of Occluded Hydrogen on the Tenme Strength of Iron, 182.
Pipes, amplitude of sound waves (Bichardson), 522.
Polerised light, exoltation by electron mppoct (Skinner), 642
Polariantion of zincelectrodew in molutions of zine anlta hy direct and altornating ourrenta I (Allmand and Cooks), 20.
Potter (H. H) See Sucksmith and Potter
Qrantinm meohanlea, theory (Drac), 061.
Rayleigh (Lord) Further Npectriesopic Studies on the Limmous Vapour Dustillad trom Metallio Arcs, 14
Refrative index of linseed oil and deterioration of ol pantings (Laurie), 17t
Rlohanda (R (') A Method of Studying the Behaviour of X.Hay Tuben, 280)
Riohardion (E ($)$ Amplitide of Hound Waven in Pıpes, 622.
Roy (S_{A} C.) On the Total Photo-Flectrio Enussion of Electrons from Metuls as a Function of Temperatire of the Exciting Radiation, 590

Samplen taken from a bivamate normal population, mode of diatribution of the constanta (Pearman), 1
Berlem npectra of pallndium (MoLennun and Smith), 110.
Sitioke seid gel, structure and ohango of some nalts (Fells and Furth), 469.

Mloman (H. A.) Ser Stott, Turier and Slomen

Smith (H G.) Sce McLennan, McLay and Smith, and MoLennan and Smith.
Smith (R. A.) The Absorption of Clases by Charocal, 296.
Solubility of oxygen in ailver (Steacic and Johntion), 612.
Sound waves in pipes, smplitude (Ruchardeon), 822.
Epeonio heal of ferromagnetic mubstanoea (Suelkamith and Potter), 157.
Spectra, eenet, of pelledium (Melennan and Emith), 110
Spectral terma and a tomic atates (McLennan, McLay and Smith), 76.
Speotroncopio atudica on the laminous vapour distilled from metalisu aron (Rayleigh), 14.
Speatrum, aro, of gold (McLennan and MoLay), of
Npsectrum of hydrogen, InIra-red sucondary (Allbone), 106
Steacto (E W F.) and Johnson (F M. G) The Solubilty and Rate of Solution of Uxygel in Sulver, 642
Stott (V H), Turnor (D) and Sloman (H A) Effects of Thermal Treatment on Giles at shown by Precinc Viscometry, 409
structure of γ-Brass (Bradley and Thewhs), 678
Suckumith (W) and Potter (H H.) On the Speosfic Hent of Ferromagnetio Subutanoes 157

Taylor (G I) and Elam (C F) The Distortion of Iron Cryatals, 3 37.
Temile strength of iron, effeot of oooluded hydrogen (Pfell), 182.
Tenale teats of large gold, allver and oopper cryatala (Elam), 280
Thewlin (J.) See Bradjey and Tbowhas
Thin filma, structure-VIII \& IX (Adam and Jennop), 382, 376.
Thorlum, number of partioles in β-ray epeotra (Gurney), 360
Transmatation of mercury into gold (Gerretl), 301.
Turner (D) Sec Stott, Turner and Sloman.
Viseometry and effecte of thermal treetment on glass (Stott, Turner and Sloman), 409.

Wateon (R. E.) See Chree and Watpon

Wight (BIr Almaroth) A Further Note apon Inter-traction, 218.
X-ray tabea, mothod of atudying therr bebaviour (Richarda), 280.
Young (J.) The Cryatal Struoture of Metcorio Iron as determined by X-Ray Analysis, 6dn.
Zinc eleotrodes, polarination in solations of was malts-I (Allmand and Cocken), 2059,

[^0]: deall with the regression and soedeaticity of avriaces of the type of (xiv) in an eariter paper, 'Bometnks,' vol XV, pp 23I-244 (1025)
 \dagger 'Roy. Soo. Proo,'A, vol. 106, p. 262 (1025).
 \ddagger LaC cel. p. 266.

[^1]: - Loc. 0if. P. 990.
 t Relorenges in above :-Stoinheasem's peper la In 'Zaitn f. Wisaen,' Phot 3, p. 46 (1005). Eitila in 'Artroply, J.,' val. 90, p. 48 (1009) Carrol's cleasufation of apark Ilned Is referred to by Tharear and Compton, 'Phys, Rev.,' vol 25, p. 613 (1025).

[^2]: FOL, WII.-A.

[^3]: * Loc. ent, Pp. 287-289.

[^4]: - 'Zerta f Physik,', vol 4, p. 46 (1021)
 \dagger ' Zeita I. Phyik.,' vol 17, p 202 (1823).
 \ddagger 'Phll. Mas,' vol. 48, p. 421 (1824).
 8 The vlew taken by Sahe and Sur is interceting and auggeative, but I aannot regard it as free from senous 山fficulty. In particular, attention may be drawn to some erperiments whioh I desoribed ln 1012 (Etrutt, ' Roy Boc. Proc.,' A, vol 86, p 264 (1012)) Theme expenmonts show that active nitrogen emita ite energy mat repidly when oompreseed to a emall volume. It is difficult to explana thle except on the vew that a bimoleoular reaction if talang place, or at loast that oollisions determane the emistion of light.
 || Strutt, ' Roy Soc Proc,' A, vol 90, p. 364 (1914)

[^5]: * Special Report No. 7 of the Food Inveatigation board." Pubhahed by H M. Stationery Office (1022).

[^6]: * The diameter of the gelatin masses between these ive spaces is roughly of the rame order of magnitude. It in inlereating, therefore, to oite the observation of Hardy ('Roy Soo Proc.,' vol 68, p, 05 (1000)) Je dissolved 135 grama of gelatin in 100 e.o. of 60 per cent. aloohol and found that on cooling fluid droplets appeared of the order of $\mathbf{3} \boldsymbol{\mu}$ whoh later went solnd and linked up in linear rows.

[^7]: * ' J. Chem. Soo.,' vol 121, p. 1071 (1022)
 †'J. Amer. Chem, Soo ,' vol 42, p. 840 (1920); vol 44, p. 1 (1822); 'J Phys Chem ;' vol. 29, p. 1 (1025) ; vol. 29, p. 220 (1025).

[^8]: * Loc cat
 \dagger 'J Ind Eng. Chern.,' vol. 13, p. 429 (1821).
 \ddagger ' Z. physital. Chem.' vol. 45, p 75 (1003).
 f'J Amer Chem Soa.,' vol, 46, p. 2678 (1024).

[^9]: * 'Moy. Soo. Proo ,' A, vol. 103, p, 678 (102s)
 \dagger ' Koll. Chem. Berhelte,' vol, 9, p. 1 (1917)
 \ddagger ' Whad. Annalen,' vol 25, p. 145 (1885).
 f ' Blochem. J.,' vol, 14, p. 147 (1920).

[^10]: - 'Roy. Soo Proo,' B, vol. 97, p 304 (1825).
 \dagger 'J of Gen, Phytiol .' vol 4, p. 733 (1022).
 \ddagger ' Roy Soo. Proc.,' A, vol, 108, p. 807 (1026).

[^11]: - ' Journal of Phyilology,' vol. 24, p. 158 (1699).

[^12]: ' 'Roy. Soc. Proo ,' A, vol. 108, p. 307 (1825).

[^13]: - Vide mupra, p. 39.

[^14]: - E. A. Wibson, ' Proo. Oamb. Phil. 800 ;' Vol. 10, p. 26 (1898)

[^15]: - Loo. at.

[^16]: * Hoy Soe Proc,' A, vol. 80, p 25 (1011)

[^17]: - ' Roy. Soc. Proo.,' A, vol. 108, p 12 (1925).
 \dagger Loc. cut
 \ddagger The latent period in friotion is diroused in 'Roy, Soc. Proo.,' A, vol, 104, p, 28 (109s), and A, val. 108, p. 9 (1025).

[^18]: *'Roy. Soe. Proo, A, vol. 104, p. 27 (1023).

[^19]: * ' Roy. Soc. Proc ;'A, vol 100, p. 663 (1821-22):

[^20]: * 'Roy. Soc Proo.,' A, vol. 188, p. 16 (1025), and A, vol. 101,'\%. 187 (1927).

[^21]: - Pauln, ' Zort Itir Phya,' vol 31, p 785 (1025)

 4 Heisenberg, ' Zeit fitir Phys,' vol 32, P 841 (1025).
 \ddagger Hund, 'Zest fur Phys,' vol. 39, p 345 (1025).
 § We wish to note here that after this communioation wa prepared our attention wat drawn to a paper by Fowler and Hartroe in the 'Roy Soc. l'roc,' vol, 111, p. 88 (May, 1026), in whioh an outhne in given of the Heisenberg-Huad theory.

[^22]: * Paul Foote, ' Tran』 of the Am. Inst. of Mining and Metal. Eng.,' p. I, No. 1647 D (Febraary, 1026).
 † Stomer, ' Phil. Mag.,' vol. 48, p. 710 (1024)
 \ddagger Main Smath, 'Chemistry and Atomio Structure,' Van Noatrapd (1924).

[^23]: - 'J. Physique et Red.,' vol. VI, 4-5, pp. 105 and 154 (1925).

[^24]: * Kageer and Konen, ' Handbook,' vol VII.

[^25]: - Table VI gontalna a number of wave-length, glven by Quinoke, that we were not able to deloot in the emiasion aro speotrum of gold,

[^26]: *'Trans Roy Hon Can ' Sed III (1HzG).
 \dagger ' Roy. Sor Proc .' A, val. 100, p. 369 (1025).
 \ddagger Papers to appear in ' 'Irans Roy Boc Cinn,' Seo. III (1026)

[^27]: * ' Z. f. Phymb,' vol. 30, p 44 (1826); elso ' Kay. Boo. Proc.,' orpra, p. 76.
 †' Z. I. Physik,' vol. 38, p. 845 (1025).

[^28]: - Z. 1. when. Phot.', vol. 11, 10, p. 217 (1919).
 \dagger ' Wien Ated. Wisa. Sitab, 'IIA, vol 123. p. 1267 (1014), \ddagger Loo. cw.

[^29]: - '"Trana, Oonin Acad,' vol. 3. p. 108 (1876) ; wd., p. 349 (1878); 'Solenthe Paparen' vol. 1, p. 5 .
 \dagger 'Solentifio Papern,' vol 1, p. 429. Aleo 'Jour Phys. Cham,' vol. 1, p. 416 (1003).

[^30]: - J. J van Laar, ' Verel. Kon Akad. v. Weta' val. K, p. 4s1 (1809); 'Seoha Vortrige uber dea Thermodynamusohe Potential,' Braunnohwedg, 1006, p. 109 ; Fierzfeld, Artiole on "Fhynikalische und eleotrochenmie," In ' Enoyo. der ruath. Wiseensohaft,' vol. d, d. 1. , part 11. Conditsons (8) below are given by Milon as a generaliestion from Gabba, ' Proc Camb Phil. Soo.,' vol. 28, p 408 (1025) Cf alma Tolman, ' J Amer. Ohem Soc,' vol, 35, pp. 907, 385 (1918), and Riot, ' J. Phyn Chem ,' vol 30, p. 188 (1826).

[^31]: - For cortain proportions of aino and ulvar lona in the solotion. For othere (which are probably not ittainable praotionally) tho frec energy woald be reduoed by the farmation of cing from aliver and the solation. [Nole added June 97 : Stuoh owee have been realised Bee e nota on the "Depontion of Notallo Zino on the Positive Pole of a Bimple Voltaic Cell," by Humby ead Parrin in 'J. Chem Soc ,' vol. 129, p. 959 (1929)]

[^32]: - Elee Love's ' Mathemstiosl Theory of Elestioity,' neoond edition, chap. VIII, j 188
 \dagger Loc. onf , ohap, IX, 1162 (c).

[^33]: - Lac. en , ohap. IX, 1144.
 \dagger The matter is here disenssed ln terms of wheel and rail. For the oase of o parr of equal wheole in contert, R should be repleoed by R/a throughout.

[^34]: - Harter, ' I'hll Mag.,' vol 10, p. 430 (1005)
 \dagger Oberholfer, ' Metallurgie,' p. 427 (1807).
 \ddagger Meuten, ' Ferrum,' p 1 (1012).
 Dumns, 'Aroh Soı Phyn Nat,' 27, pp. 352 and 453 (1000).
 || Welse, Piecard and Cerrserd, ibud, 42. p. 378 (1918) ; 48, pp. 22, 118, 109 (1017).
 If Cf Picoard and Carrard, abud, 58, p. 451 (1015).
 ** Weiss, 'Journ de Phys,' vol, 6, p. 691 (1907).
 †† Honda and Ôkubo, ' Phys. Rev.,' vol. 10, p. 738 (1917).

[^35]: * Lorenta, 'Revue Belentıfque,' p 1 (1912)
 † Weatgren, ' Journ. Iron and Steel Inst,' vol 1, p. 241 (1022)
 \ddagger Weise and Forrer, 'Annalen de Phys,' vol 5, p. 153 (1026).
 f Honda and Óluba, ' Phys Rev,' vol 10, p 738 (1917)
 || Ashworth, ' Phil Mag.,' vol 43, p 401 (1922).
 II de Weard, ' Z I Phys ,' vol. 32, p. 789 (1925)

[^36]: * Take, ' Ann. der Phyb,', vol. 20, p. 949 (1008).

[^37]: - Weies, 'Journ, de Phys, ' vol 6, p. 681 (1807), ' Phye, 7eit.,' vol. 9, p. 358 (1008).
 † A reodifled torm of the Clurie law haa been given by Weine for ferromagnetio aubatanoes at temperatures above the oritical point, c.f. Welss, ' Phys Zest.,' vol. 9, p 358 (1808).

[^38]: - Ous thanke are due to Dr. Malkin and Meeary Bull and Polland, of the Ohomitry Department of this Unuversity, for the analyes.

[^39]: * The critioal point han been deflied as the temperature at which spontaneous fercomagnetiom disappesen, and also that at whoh $d / \mathrm{dT}^{\left(I^{6}\right)}$ reeohee a maximum These pointh differ, however, by about $2^{\circ} \mathrm{C}$ only. Our experiments are not sufficiently mocurste to enable us to diecriminate betweon the two See Honda, 'Soi Rep,' Tohoku, I, vol 10, p. 433 (1029).

[^40]: * Benedlake, ' Jourr Iron and Steel Inst.,' II., 1018; I., 1014.
 \dagger Honda and Ogura, 'Soi. Rop.,' Tokohu, vol. 3, p. 113 (1014).

[^41]:

[^42]: *Throughout this report the worde 'tranacryatalmay fractare" are used In a rather rentricted senme to meen lracture through the aystala after they have drawn down by severe slipping. A sudden fracture through oleavags planes, although in point of faot transorystalline, in diatinugritheil by being referred to throughont as " deavage Iracture."

[^43]: * Intemational Iron Aro Secondary Standards, Burna, ' OR ,' vol 156, p 1612

[^44]: "Porlezen and Nora, " Atti. Aocad. Lincei,' vol. 20 (1), p. 819 (1911).

[^45]: \dagger Theae Ilnes woro not tnoluded in Fulahers onginal band but are given br Curtis, ' Roy Soc. Proo,' A, vol 107, p 673 'I'holr wata-numbere were caleulnterl frotn the author'a meanurements.

[^46]: - Loc. cul., p 7 .
 \dagger ' Phyi. Z.,' vol 10, p. 185 (1009).
 \ddagger Kimure and Nakamora, 'Jsp. J. of Physics,' vol J. Noe 日, 10 (1923)

[^47]: *' Roy. Boo. Proc ,' B, vol 82, p. 118 (1021).
 \dagger 'Roy. Soti. Proo.,' A, vol. 101, p 531 (1822).
 \ddagger 'Hoy. Soc. Proo ,' B, vol 98, p. 206 (1825).

[^48]: - 'Roy. Soo Proo,' A, vol. 106, pp. 441, 489, 709 (1894)। vol. 107, p. 157 (1895); vol, 109, pp. 476 and 584 (1025).
 f' Z f. Phywik.' vol. 23, p. 77 (1924) , vol. 30, p 320 (1024) ; rol. 38, p. 1 (1025).
 \ddagger 'Roy Soc. Proc.' A, vol 107, p 167 (1026).
 ('Roy. Soo Proc.,' A, vol. 106, p 469 (1824).

[^49]: - Birgo, ' Nature,' vol, 117, p. 300 (1096).
 \dagger 'Roy. Soc. Proc.,' A, vol. 107, p. 157 (1225).
 $\ddagger{ }^{\prime}$ Roy. Soo. Proo ;' A, vol, 106, Pp. 41 and 463 (1824).

[^50]: ' ' Roy. Soo. Proo,' A, vol. 107, p. I57 (2025).
 †' Roy. Soc. Proo.,' A, vol 106, p 489 (1924)

[^51]: - The sum of the equares of the dutances for $n=0,11,14 \mid$ and ∞ wore in the ration 293 : 186:144:1804.

[^52]: - 'Roy. Soo Proc ,' A, vol. 107, p 168, Table VI (1920)
 \dagger 'Roy. Soo Proc.' A, vol 109, p. 485 (1925).
 \ddagger Holborn and Otto, loc. cit.
 I See prooeding paragraph

[^53]: *The sum of the equares of the distanoes af the erperimental pointa from the theoretceal ourves for $n=9,11,14 \dagger$ and ∞ were in the ratica $52: 64-88,870$.
 \dagger The sum of the squares in this case for $n=0,11,14$ and on were in the ratioe 18: 49 : 64 : 943, whth the same unit of measurement as used above for neon and hydrogen

[^54]: * For referonoen, see ' Roy. Soo. Proo.,' A, vol, 107, p. 165 (1025).
 \dagger Chepman, ' Phll Trans,' A, vol, 216, p. 279, Table V (1016).
 \ddagger Jeane, ' Dynamion Theory of Geses,' Srd eda., p. 110 (1021).
 f ' Memolra Manoheater Lltt, and Phil. Soc '' vol. 68, No. 1 (1022).
 || ' Roy. Soc. Proc ;' A, vol. 106, p. 466 (1024).

[^55]: * Compare the correaponding ettreative foros conatanta for nitrogen in Teble \mathbf{V} ebove.
 \dagger ' Ann. d. Phyuk.,' rol. 30, p. $3: 89$ (1809).
 \ddagger 'Ann. d. Phyult ,' vol. 49, p. 1288 (1016).
 f ' Phil. Mag.,' vol 88, p. 682 (1019).
 || ' Roy. Soo. Proo.,' A, vol, 100, p. 411 (1024).

[^56]: - ' Roy. Soo. Pron ,' A, vol. 106, pp 461 and 477 (1914); the firot of these eote of reaulta in to be supplamented with the values $\lambda_{1}=302.10^{-6}$ and $\sigma_{n}=3 \cdot \mathrm{da} \cdot 10^{-1}$ for an an 11 . in the peoond set $\sigma_{n}=7053 \quad 10^{-1}$ and nol 7-630. 10-1 as printed for n in θ.

[^57]: - ' Roy. Soo. Proo,' A, vol, 109, p. 478 (1980).
 \dagger The feot that these attreotive force conrtanta dopend on the lat of force ennumed for the ropulaive fiold in lmmatarial. It doea not affect the reletive ordern of magaltude

[^58]: - Lennard-Jones, 'Roy, Soc. Proc.;' A, vol. 100, p. 884 (1925).

[^59]:
 \dagger Debye, ' Phys. Zeils,' vol 13, p 97 (1912), Smyth and Znhn, 'Journ. Amer Chem Soc.,' voL 47, p. 2501 (1925), Zuhn, ' Phyn, Rev.,' vol. 27, p 4wS (1028)
 $\ddagger C C^{\prime}$ Roy, Soc. Proc ,' A, vol 108, pp 715 and 716 (1024).
 § Bimon and Nimmon, ' Z i Phy日le,' vol 21, p 188 (1024), and vol 25, p 160 (1024).
 || 'Roy. Boc. Proo,' A, vol. 109, p. 884 (1020)

[^60]: * 'Roy. Soo. Proo ', A, vol. 109, p. 102 (1820)

[^61]: * 'Roy Soe lioc , A, vol. 109, p. 684 (102s).

[^62]: * This asaumes that only one feos of the immersed rod carries the current The real ourrent deneity will oertainly be leas than this, and will vary from point to point of tho eleatrode.

[^63]: - p. 252 supea

[^64]: * In all the experimanta desoribed in this papor with compound, or superposed alternating on direct currenta, the direot-current oomponent was kept throughout at 50 milliamperes

[^65]: * Fbrster, ' Eloktroohemie whemeriger Losungen,' pp. 355, 399 (1822). In our expenmente with $\mathrm{Zn} / \mathrm{N} \mathrm{ZnSO}_{4}$, the observed enodic and oathodlo polarizations were also about 20 and $70 \mathrm{~m} . \mathrm{v}$ renpeotively, whioh, with a current of $50 \mathrm{~m} . \mathrm{a}$., Indioates that we had an sotíve electinode ares of 10 om ${ }^{1}$.
 †'Abhandluagen der Deuteohen Bunsen-Gesellschaft,' No, 3, pp 40 ff, 48 fi (1010).

[^66]: - 'Jour Amencan Chem Noc ,' vol. 44, p. 078 (1922).
 \dagger ' Teit fur physikal C'hem,' vol 56, p 108 (1906)
 \ddagger 'Trans Chern. Soc ,' vol 119, p. 1081 (1021)
 § 'Trentise on Inorgenic Chembatry,' vol 4, p 759 (1023).
 $\|^{\|}$'Trans. Faraday Soc.,' vol 19, p, 788 (1824).

[^67]: * Taylor Jones, " The Theory of the Induotion Corl " (Iitman).

[^68]: - 'Proo, Amer, Achd. Saa, ,' vol. ©0, Nas, 6, 7 end 8.
 \dagger ' Phys. Rev.,' vol. 20 (February, 1095).

[^69]: - Lac ett.
 t Lee oil.
 \ddagger Taylor and Elam, 'Roy. Soo. Proo, A, roll 108.

[^70]: * Taylor and Elam, 'Iloy. Soo, Proe,' A, vol 103
 \dagger 'Iaylor and Elam, ' Hoy, Spo, Proo,' A, val. 102,

[^71]: * Loo. cu., No. 24, 1g. D, p. 14.

[^72]: " These experimenta were repeated until the rexults became familar
 " Finding that charcoal absorbed oxygen rapidly, leaving nitrogen untouched,

[^73]: * 'Hoy Soc Phil. Trans,' A, vol 181, p d9 (1800)
 \dagger ' Roy Soc Proc,' vol 17, p 236 (1869)
 $\ddagger C f$ 'Inst Electrical Engineori' Journal, 'vol 57 p 593 (1810)
 5' Roy Sow Phil Trana,' A, vol 204, p 373 (1005).
 || ' Itoy Soc Phil Tranm.,' A, vol. 210, p 9 (1910)

[^74]: * ' Z. f. Phynk,' vol. 11, p 681 (1928).
 \dagger ' Z 1 Phyaih,' vol 36, p. 215 (1026).
 \ddagger ' Z. I. Phyml,' vol 34, p. 808 (1025).

[^75]: - Throughout thls paper frequency will meen the namber of nibrations un 2π seos., so as to avoid the perpetnal recurrence of the feotor 2π whoh has disfigured the printiag of so much reoent work

[^76]: - Btriotly apeaking, the value should be doubled, but as we are only conoerned with the ratio of gyration to refraction, this in immataria).

[^77]: * See for exemple Panh, ' Z. f. Ph ;' vol. 20, p. 871 (1984).

[^78]: * There can be no doubt that this a the proper process, but it may be loft open whether the averaging ia really over the onentations of meparate atoma For example, in the 18-2p1 Hg line (though this is not a casempoint here) the eingle atom is inotropic, whereas our modol neceasanly imples that a angle atom ahould bave a gyratory effect But as we are considering radiation which is cohoront from the dufereat atoms, it makea no difference whether we sum over different stoms or over the phase apace of a single atom.

[^79]: - 'Roy Soc Proc.' A, vol 102, p 643 (1923)
 \dagger Taylor and Ferren, "Dratorion of Crystala of Alummium under Compriasion," ' Roy.

[^80]: *Taylor and Elam, "The Plastic Extension and Fracture of Alummurn Crystala," 'Roy Soo Proc,' A, vol 108, p 33 (192d)

[^81]: - Thla notation x the same as that adopted in the previon work on compreasion tests. It usea some aymbols which have already been used in other sensea in thla peper in connection with tenalle apecumens, but no confualon need erse.

[^82]: - See Maller, 'Roy. Soo Proc ; A, vol. 105, p. 500 (1024), and 'Taylor and Farren, " Distortion of Crystals of Aluminum under Compreasion," 'Roy. Soc Proo.,' A, vol. 111, p 520 (1828)

[^83]: * In fig. 6 the pertioular ootwhedral plane calerred to is given the symbol (lil)in order to conform to the conventions of crystallography

[^84]: - The aymbel is here used to denote a atato of the material, if "the total amount of compreanion the oryatal liws undergone nance it was [ormed The ngmbol γ us used to denote the ratio of the thickneas at the end of any erperiment to that at the baginaing, so that if t_{a} in the unstrained thickneas, t_{I} that after one compreasion and t_{g} that after a second compreanuin, G_{1} ts the value of γ used in raiculating the unatretched oons for f_{1} the seoand compression After the firt comprosion $:-t_{1} / f_{0}$ and alter second oompreesion $\cdot=t_{1} / h_{0}$

[^85]: - This specimen was orminally circular, but three flats were ground on ita ourved edgo for a reamon whlch will be explamed later, no that the plan furm in not ellipticel, an is alway: the cane when a curcular dise in compressed

[^86]: * Ruch a model cannot hithout modificalion fully reprosent the cryatal because a cubic crystal hike iron has no hexagonal axis of symmetry, but only triponal, on, ania through diagonal of rube which is threfold For the present purpose, however, this point is immaterial
 \dagger These two Hath are not those referred to later, p 358

[^87]: *The cese of aluminum in tresiad in our Makeman Lecture, loc aif The dasen of oopper, niver and gold which have latticea sumalar to alummium wall be treated in a paper by one of un which will be pobluged nhortly
 \dagger Gough, Haneon and Wrights, Phal Trana' (1925).

[^88]: * Rosenhan and Ewing, 'Pbil Trana,' A, vol 83 (1000) ; Howe, ' Motallography of Steel '; Polany1, 'Z. I. Kristallographic,' vol 01, p. 49 (1925); Weissenberg, ibndemp, p. 68, Mert, undem; P 75
 \dagger Onmond and Cartand, 'Jourb. Iron and Steel Inatitute,' No. 111'(1806),

[^89]: *We eatimate the acouracy of these ourvea aa fullows, the presauren aro probebly corroot to 0.1 dyne, exocpt above 10 dynes, the lampratures from 7° to 20°, to 01°; outside theae llmits there may bo error of $03^{\text {a }}$ The noouracy of the areas per moleoule is Haited by the preosion with whoh drups can be dropped trom a finc pupette, rather repidly, ance the eolvente must be volatile In single experimente of a serios it is nometimes posaible to detect over 5 per oent error, the curve being shifted latarsily parallel to itsolf. We have seleoted curven for reproduction in which no suoh lataral ghift was visible.

 In oalibrating the dropping pipotto, a oorrection for the evaporation of the volatile solvent is neoesnary and was made as lollows:-The pupette oharged with the molation is fitted loosely into a nrall teat tube by a oorls and weighed It is than removed and tweaty drope delivered at about one per second, the pipette helng atoedled (as in ase on the trough) in a vertioal poaition. The pipette is immediately repinoed in the tube and re-weighed.

[^90]: - The subatances will be deatgnated by s number mdigating the number of CH, groope in the moleorle.

[^91]: * 'Roy. Soo. Proo-,' A, rol. 100, p. 166 (1026).
 - Lion. oit.

[^92]: - For the eake of oonvenrence flg. 1 has been drewn to oorrespond to the name number
 ganma-rey effeot has mors didntegreting atoms than ($\mathbf{B}+\mathbf{C}+\mathbf{D}$) when mearored throagh 6 mm of lead.

[^93]: - 'Comptes Rendur,' vol. 182, pp. 773 and 1215 (1896).
 \dagger ' Phye. Z.' vol. 20, p. 410 (1025).

[^94]: - ' Neture ' (Jan. 3, 1025)
 \dagger Meyer, 'Jahrb. d. Red ,' vol. 17, p. 86 (1820); Marndep and Darwin, ' Roy. Soo, Proo.,' vol. 87, p. 17 (1012).
 \ddagger Meitner, ' Z. I. Phy日is,' vol. 17, p. 54 (1029)

[^95]: - • Proo. Cemb. Phll 8oc.,' rol. 22, p. 840 (1825).

[^96]: - 'Neknen ,' vol 12, p 107 (1924) ; 'Nature;' vol. 114, p. 197 (1824),
 + Stammedoh, 'Neturw, vol. 12, p 744 (1024) I Mleths and Stanmarelah, 'Netarw.,' vol. 18, p. 685 (1025) , 'Z. techn. Phys.'. vol. 6, p, 74 (1925); ' Z. anorg. Ch.;' vod 100, p 300 (1926).
 vol. ©ITI - A.

[^97]: * Huber, Jaeniolew and Matthlas, loc, cil, and Feber and Jnomoke. '7. anorg. Oh,' vol. 147, p. 150 (1025).
 †' Z. anorg. Ch.,' vol. 140, p 388 (1024), and vol. 148, p. 98 (1925)

[^98]: - 'Ann. d. Phyaik,' vol. 64, p. 513, and vol 66, p. 846 (1921).

[^99]: - Stutt and Fowler, 'Roy. Boo. Proc-;' A, vol. 80, p. 119 (1912).
 + Throughout this paper the word "group" is used in the rense in whlob it was employed by Raylolgh and Fowler, and by the writar in a recent paper ("Roy. Soo. Proo.,' A, vol. 110. p. 360 (1926)); (c., to denote a set of neighbouring bands characterised by a common value of $x^{\prime \prime}-n^{\prime}$, derignabed in "band-sequenoe" in the reoetat work of many of the Amerionn investigentora,

[^100]: * In the case of the $\lambda 4816$ gronp the " new " heed wel reconded in the are by A. ©, King and by Hearlinger ; it is the head of the (5,6) band (see Table I).

[^101]: * 'Abh. Akad. Wing Berlin' (1888), see also H. Kayser, ' Handbuoh der Speotrascopio,' vol. 6, p. 289 (1810) (Firat four orders of a grating giving a fourth order dinperaion af ebout 1.21 A. par mm.)
 \dagger Digeartation, Bonn (1804); 'Z. I. Wiss. Phot, vol 2, p. 89 (1004); 'Astrophys. J.,' vol. 20, p. 297 (1004) (Grating dispersion used about 0.80 A. per mm.)
 \ddagger 'Antrophys, J.' vol, 42, p. 434 (1915). (Gratang dimpertion used sbout 0'ti6 A. per mm.)
 \int Dingertation, Land (1018). (Heurlinger aksted that the data he tabulated for the $\boldsymbol{A} 416$ group, and the nopublished date for the $\lambda 4606$ and $\lambda 2500$ groupa were oltanted by J. Ontmer in the thind, fourth and fith orlors of a grating giving a flith onder diepersion of about 070 A. per mm.)

[^102]: "The difference between $\mathbf{B}_{\mathbf{0}}{ }^{\prime}$ and $\mathbf{B}_{\mathbf{a}}{ }^{\prime \prime}$ must bo due to the dififorenoe between the initisl and final eleotromo configurationn R 8. Mulliken (' Naturo,' vol 114, p 858 (Deo 13, 1924) , 'Phys. Kev.,' vol. 26, p 061 (1820)) has pointed out that the common final elootronio atate for the "red" and "violet" syatems is probably the normal atate of the CN molocule, and further that it resomblen an a atate, the initial (azoited) atate for the "violet" aystem also resembleanna state, and that for the "red" syistem an inverted doublet-p state.
 \dagger ' Phym Zeitachr.,' vol. 22, p 652 (1921)
 \ddagger^{\prime} Ann. d. Phyyk,' vol 67, p 127 (1922) (eee eepeoially lootnote, p. 150), 'Elizb. Bajer. Akad Munohen,' p. 107 (1022), and next reforence
 f 'Ann d. Physik,' vol 71, p 72 (1928) (see eapeoinlly pp. 83-88).
 || For example, in Uhlor and Pattergon's measures of the \mathbf{R} branoh of the (0,0) band

[^103]: *Tho obeerved wave-numbers given in Tablea I end II for the band-heeds differ from those tabulated in two papers by Kratzar, namely 'Phyn. Zerteohr, vol. 22, p. 602 (1021) (Table III), and ' Ann, der Phys,' vol. 67, p. 127 (1922) (Teble 5). The obeerved waveuumbers quoted by Kratzer are obtained from wave-lengths in alr mearared on the Rowland scale, not, as hore, in pacso on the Intarnational scale Tho wavo-lengtha (I,A.) In Table I are Uhler and Patterson's for the heads of the $\lambda \$ 590$ and $\lambda 3888$ groupa, Heurlingar's for thoee of the $\lambda 4218$ group, and Kaysar and Range' (0 onverted trom R-A.) for thase of the $\lambda 4608$ group.

[^104]: * In I'rhle III, tho valuee of vobe do nol inolude those tabulated by Uhier and Pattermon for the $(0,0)$ band All valuea for the $\lambda 3883$ group have been oomputad by those observers' $\lambda_{\text {air }}$ (I.A) using the vanuum corrections of W. F. Meggori and C. G. Potera (' Bull Bur Stand,' 14, p 697 (1917)). Hearlunger's valuee of ν_{0} be have been used without modifiostion, as the use of the newer viouum correotions did not appoar to produce marked differsaces
 \dagger Though the data obtamed by different observers mey not generally be combined with safety, it is probable that the aggregate error of combining Uhlor and Pattarson's and Heuringer's data will never be seriou, for the present parpose at any rate The former observers estimated that thenr wave-lengths are correct in abeolute value to $\pm 0005 \mathrm{~A}$ and in relative valuo to $\pm 0.002 \mathrm{~A}$, while Heorilinger's ertimated errora aro from $\pm 0.002 \mathrm{~A}$. to $\pm 0004 \mathrm{~A}$.
 \ddagger Thin limitation will, presumably, soon be removed as R. T. Burge han reoently announoed that he has obtained new date for tho $\lambda 3889$ group. (' Nature,' vol 116, p. 783 (November 28, 1825).)
 f Converted from the Rowland to the fortarzictional sala by the uubtraction of 0.10 A throughout

[^105]: Notes to TaRLes III axd IV
 U P.- Whar and Pabternon. H -Hearthiger Kr-Kritzer. K.B.-Kayser and Range \mathbf{N}-Null-lune.

[^106]: - ' Antrophya J,' vol. 65, p. 273 (1029) ; ноe expeoially p. 280.
 \dagger On Heurlinger's numeration. Heurlinger's $H(28)$ and $P(28)$ are oalled R(271) and $\mathbf{P}(\mathbf{2 8} \mathbf{d})$ reapeotively in the numeration employed In thia paper
 $\ddagger{ }^{\prime}$ Rey. Soc. Proc ,' A, vol 89, p. 187 (1919) (see p 189 and Plate 9).
 (' Phys. Rov.,' vol. 26, p 310 (1925) (see pp. 320 and 220, and Plate 1).
 || ' Phys. Kev.,' vol. 20, p 282 (1025) (BO), vol. 28, p. 21 (CaI); vol 26, p. 338 (BiN).

[^107]: - In the case of the BO apeotrum in the atterglow a corresponding shortaning was obeerved by the writer (' Roy. Soc. Proo.,' A, vol 91, 1 , 182 (1018)). 'The advantaye (ariaing from the ahortening) of sotive nitrogen over the are as a meenn of produoing band-upeotre hat been emphadeed by Mulliken in two of his papers on Inotopen (loc. out.; BO, p. 268; CuI, p. 16, (cotnote 18).

[^108]: - In Hourtinger's origunal notation the four haes named aro reapeotavely $A_{1}(-2)$ to $A_{1}(-16)$ and thence to K_{1}, and $A_{1}(+3)$ to $\left(A_{1}+10\right)$. The tranitions am corresponding
 $\mathrm{A}_{\mathbf{y}}$ doublete are absent.
 \dagger Heurlnger'm C_{s} linea : $m>m_{\text {hend }}$

[^109]:

[^110]: * Of Deslandree' Neuond Law for heeds.
 \dagger The writer is indelited to Dr Mulliken for n privately commundentel deseription of thin interprotation.

[^111]: - To avold unduly larye arrora on certaln linea which are partly or wholly hidden in the overlap of the ON and Fe apectra, further measures were made at a distanoo from the latter, using well-defined CN hnen (already oarefully measured) ma atandarda
 \dagger In order to diminimh the extent of the table it was thought that the wave-lengthe might be onutted, as the uro wave-lengtha have been published fully by Uhler and Patlarson and by Kaymar and Rugge The wave-longthe in air may be Ideantifed at onoe by the une of Kayser's "Tabelle der Schwingrigrzehlen" (Laipalg, 1925), which eppeared white the inveatigation was in progress and has boen uned in the later stages of the work.

[^112]: - See Tables III and IV, and the aro oolumn of Table VI.
 $\dagger \boldsymbol{R} \boldsymbol{\rho}$, Seta V and X cech include only three lines, of whinh one is not completely resolved from a etronger line. VWI also inolades only three lines, whioh, however, might well reprement the P branch of the $(2,1)$ band,

[^113]: * ' Astrophyt. J ,' vol. ©, p. 65 (1807)
 \dagger ' Antrophym. J, ' vol 14, p 329 (1901).

[^114]: * In group IV Rayleigh and Fowler notexl an mddtional band near a 4030 and another near 3883.
 \dagger Soe, for inatanoe, note t to 'l'uhle VI, where Uhler and l'atlonson's remark on the "tall" nt $\lambda 3803$ 上 quoted
 \ddagger One apparent exception Is, howover, noted below Table VII.

[^115]: * Bragg and Morgan, ' Roy Soc Proc; 'A, vol 104, p 437 (1023)

[^116]: " Leoombe, ' Oompt rend ,' val. 134, p. 778 (1008).
 † Bohable and Lobl, 'Monatah.' voL \%8, p. 1094 (1804).

[^117]: * P Niggli, 'Geom. Kryst dea Diskontinuuma', R W. G. Wyckoff, 'Analytional Expreasion of the Theory of Space-Groupe '; W. T Astbury and K Yardley, ' Phu, Tran. Roy. Soc.,' A, vol 224, p 221 (1924)
 \dagger Bee diagrame at und of Autbury and Yardley's paper

[^118]: * P Nuggh, 'Geom Kryat. dea Duhentinuume.' R W. G Wyakoff, 'Analytioal Expremon of the Theory of Epene-Groape' (a) W. T. Actbury and K Yardley, 'Phil. Trane Roy Soo, A, vol 224, p. 221 (1824).

[^119]: - F. M. Jegor, ' Reo. d. Trav. Chica. d. P.B ;' vol 38.

[^120]: - R. Lucan, ' C. R.' vol. 178, p. 1880 (1024).

[^121]: * 'Ann Hhystk,' vol 18, p. 395 (1806), 'Z. snory Chem,' vol. 48, p 364 (1806),
 'Z Chem Ind, Koll,' vol. 12, p. 74 (1913), and vol. 14, p 31 (1914).
 †'Z Chem Lnd Koll;' vol. 10, p. 124 (1012): 'Koll. Z,' vol. 14, p 115 (1014)
 \ddagger Holmen, 'J Am Chom. Soo.' vol 40, p 1187 (1818), Bredford, 'Soienco,' vol B4, P 403 (1021), 'Bloohem J.,' vol. 11, p. 14 (1017).
 5^{\prime} Zart Chem Ind. Koll ;'vol 10, p 268 (1012)

[^122]: * The vessels \mathbf{E}_{1} and $\mathrm{E}_{\mathbf{y}}$, which were aimular to those shown at \mathbf{E} in the dugram on p. $\mathbf{4 6 5}$ of Part I hereol (' Prooeedingu,' val 109, pp 469-476), are not reproduoed here

[^123]: - 'Prooeedinge,' A, vol. 110, pp. 10-8s (1026)

[^124]: - Weahbarn and Bhelton, ' Bullotin No. 140, Engineering Erpariment Station, University
 Turner, 'Rloy. Boo, Proo.,' A, vol 108, p. 104 (1025).

[^125]: - Weshburn and Lbman, 'Bulletin No, 140, Enganeering Exporiment Station, Univaralty of Illinous.

[^126]: - 'Trana Soc Glaes Tech.,' vol B, p. 220 (1020).

[^127]: *W. E S. Turner, ' Glean Remearch Ansociation Bulletin,' No, 12 (Feb., 1025) F. Eokert, 'Trane Soo. Gleas Teoh ;' val. 10, p 09 (1086).

[^128]: * Stott, Irvine and Turder, ' Roy. Soc. Proo.,' A, vol. 108, p. 164 (1025).

[^129]: - Loo. and

[^130]: * ' Pbul. Trans ;' A, vol. 214, p 373 (1914).

[^131]: - V would heve to axceed 8,000 in the case of the 0.001 -inch wire before an ARolian tone could be produced (cf. ' Proc. Phys Soc ;' vol. 36, p 165 (L824)),

[^132]: ' 'Ann. d. Phynk,' vol. 25, p. 181 (1012).

[^133]: - ' Ann. d Physur,' vol. 76, p 39 (1025)
 \dagger 'Ann, d. Phyvik,' vol 107, p. 889 (1859).

[^134]: * ' Phye. Rev.,' val. 2, p. 270 (1013),
 \dagger First suggeted by Tume.

[^135]: * Denoted by ϕ in the figure.

[^136]: - 'J. Ann Ohem. Soo,' val 46, p. 1377 (1024), and unpublished remulte.
 \dagger ' Zedt. I Phyalk. Chern,' vol. 88, p 115 (1010).
 \ddagger ' Comptea Hendua,' vol. 86, p. 68 (1878)
 g' Bull. Aoad. Belg.', vol. 18, p. 81 (1889).
 I| ' Zeat. Anorg Chem.,' vol. 47, p. 79 (1806).
 fi 'Roy Soo. Proo.,' vol. 15, p. 802 (1806)
 - ' 'Monata. I. Chemie,' vol. 13, p. 40 (1899).
 $\dagger \dagger$ 'Ann Chim Pbyn,' val 22, p 280 (1801)
 it ' Zedt. phymit. Ohom.'; vol. 60, p. 129 (1800).

[^137]: - 'Ann Phyn.,' vol. 30, p. 1230 (1819).
 †'Mem. l'Aoed. Bels, ' rol. 23, p. 1 (1866).

[^138]: - Sleverta and Bergner, ' Ber.,' vol 44, p. 2994 (1011).
 \dagger Sleverta and Krumbhar, 'Ber,' rol, 48, p 809 (1010).
 \ddagger Sieverta and Krumbharar, ' Ber,', vol 48, p. 883 (1010).
 I Sleverte and Hagenioker, ' Z. phyik. Chem.,' vol 68, p. 115 (1910).
 || Pease, ' J, Am. Chem, Boon', val. 45, p. 2889 (1023).

[^139]: * ' Roy, Soo. Proo.,' A, vol. 90, p. 288 (1914).
 †'Z. phyilk, Chera,' vol. 06, p. 465 (1008).

[^140]: - The writer is indebted to the Direotor of Artillery, Wer Offioe, lor permiedion to pablinh the peper.

[^141]: - The case of thin platea is peculiar in that defexiona greater than the thleknews oan be ohtalned without the plate sufforing overstrain, and no the theory that treats the clisplacementa as Infiniteaimal, compared with the plate dimenalons, must obvloully be wrong. For a very thin plata the flexurul rigidity can almost be ueglectad enturely, and the plate treated as a reembrane reacting by tension alone In Intermodiato casce, both flexural ngidity and tenaion have to be taken into eccount, and the problom becomes comploated, Theeo mattens hava been diecused In a paper by J. Frevcote ("Elantlo Plate andor Narmal Preasure," ' Phil. Mag ; (ber. 8), vol, 48, Pp. 97-125 (1022)).

[^142]: - Buch a disonsaion of oxnct achutions for a genaral diatribution of load is to be foand In a papar by J. Doogall ('Trans RSE,' vol. 41, (1004)) He does not dinouna the edge conditions,

[^143]: * Of Love, ' Elasticity,' 2nd edn, p 263, where references are given.

[^144]: * This 18 generally known to engizeen ar the Gruhof formula, and is quoted aes such ith warks on Strength of Materials, although it wen orlginally worked out by Podieon.

[^145]: - In this oonneotion, remants in ath 25 chould be noticed

[^146]: * By one of the relerean.

[^147]: - The work was carried out in the Ballutis Branch of the Resoaroh Dopertmond, Woolwich

[^148]: * Pohl and Pringahoim, 'Verh d U Phye Gee ,' vol 12, p 840 (1010); vol. 12, p. 682 (1010); vol 18, p 474 (1011), vol 14, p 40 (1912), etc
 $\dagger \mathrm{K} . \mathrm{L}$, Dompton and 0. W Richardeon, loe cil.
 F Corueliue, 'Phym. Rov,'vol 30, p 3 (1010)
 5 A. F' A Young. 'Roy, Soc Proo;' A, vol 104, p 611 (1029).
 || Ruhard Hamer, Optical Soc of Amence, 'J \& Rov, So. Inat ;' vol. 0, p. 201 (1024)

[^149]: - Lanymulr ('Journ. Am Chem. Boc;' vol. 42, p. 2100 (1980)) mentrong in a footmota (1 . 2\%04) that some careful experiments (unpoblished) made by him on the toted photo. electilo emifaion from tungaten had ahown that the magodtade of the photo-electilc ourrents. wen of tho ander of owo-millionth of the occreponding thrmionio ourneate

[^150]: - Ropart os ' The Properties of Tungoten and the Chereoterintica of Tangaten Lampa.' Sce aloo Worthing, 'PhyL Rev.', vol. 19, p. 436 (1982).

[^151]: - C. T. R. Wilson, ' Roy Soc. Proo.,' A, vol. 104, p 1 (1923), Skobalayn, 'Z. L. Phyilk,' vol. 28, p. 278 (1924) ; Compton, 'Phys Rev.;' vol. 29, p. 439 (1924), W. Bothe, 'Z. t. Fhyalk,' vol. 16, p. 810 (1099) ; ibid., vol 26. p. 59 (1026).
 t Oravtein and Burger (loo. cil.), "volmene" of a Ught-quant $=\frac{1}{6 \pi} \cdot \lambda$ '. Erloh Masx,

[^152]: - In making thim emumption the writer has kept in mind the following piotnce of a light wave aoting on an eleotron anside an atom. It is maymed that the atom offen an opportanity to the pervodio eleotrio force to break loose the election only during the intarval in whleh the foroe in in the increanng phase. This interval ocomprisea all values between zero and T/4. Heace in a large number of wave-atom encouatery the sverage time of encounter is equal to $T / 8$.
 \dagger See 0 W. Ruchardson's 'Electron Theory of Matier,' p. 2d1, equation (16), 1016 edition

[^153]: - Flementa with n electrons in the optical level may be expeoted to have a oo-efilioient n tumen thls. But the abmorption-data available at prement do not enable a deciaian to be obtaned on this point.
 \dagger The anmmation sigo agrifite that the procesaes of aboorption are more than oen.

[^154]: - J. J. Wodide (' Phys. Rev ; vol. 25, p. 893 (1025)) and Hiohard Hemer (ibid., p. 894) have independendy polnted out thus possibility. It ohoold, however, be, nofed that the break does pot oocur it the wave-length λ_{s} but at a illightly ohorter waro-length.

[^155]: - Taken from the graphes
 \dagger Data givea by S Dumhan ad J W Ewald, 'General Electnc Reriew,' p 156 (March, 19z3).
 It will be seen from this table that the experimental ratio ind is practacaly constant and independent of temperature, Hoce mon ad vomer ititr (8) 1 ant identical for Ta, Mo and \mathbf{W}, or differ from each other by an msugnificant amount.

[^156]: - Lor cal.
 \dagger It is probable that the main effect of thin fiald in a rotation of the phane of poliatisetion tbrough newly 45°.

[^157]: - We are oning the seriea notation of Rassoll and gaupdora (' Asteophyi Journ ،'vol 81, p 39 (1085)), in whioh terms mith increasing anumuthal quantum number art represented by the
 mulmpliaty of the torm and g is the inner quantum number For convenience an integral eoale

 † At 7 volta (obeervation ol Ellett, Footo and Mohler)

[^158]: - Brealer, 'Ann d Phyalk,' vol. 28, p 808 (1009).
 \dagger ' Phyg Rov,' vol 24, p 243 (1026)
 \ddagger ' Z L. Phynik,' vol 37, p 93 (1025).
 f 'Phye Zeit ,' vol 27, p. 381 (1026).

[^159]: * Their value is further oonfirined as regards order of magnitude by the expenmonta of Ellott, Foote and Mahier which have been menticned

[^160]: - ' 7, I ['hyulh,' vol 3I, P ABS (1925)

[^161]: * Loc. en

[^162]: polartation is too mensill for any deonsion to be prosible.
 \dagger 'Nature,' vol, 117, in 박 (1024).

[^163]: angular momentum parallel to the field in irsiuferred by Procena H, it would be neoegsary for $\sqrt{\mathbf{3}}$ quanta perpondicular to the ficld to be tranmerreal by Proceas A.

[^164]: - See vartous papera by Born, Hewenbery and Jardan, 'Zeite f. Phys;'vol, 33 onwerdh. \dagger ' Roy Soc. Proo,' A, vol. 110, p 501 (1026).
 \ddagger See varione papers In the 'Ann d. Phya;' beginning with val, 79, p 361 (1988),

[^165]: *The general solution may contain quanulities, ruch $u \psi_{a}$ and $\partial \psi_{a} /$ (an, whioh astingly the diferentanl equation (b), bat which cannot strnotly be pat in the form $\int c_{0} \psi_{\mathrm{a}}$ da, although they may be rogerded as the lumita of seriee of quantities which are of this form,

[^166]: - The same time variable t muri be taken in each owing to the faot that we write the Hersithonian equation for the whole ryettern. $\mathbf{H}(1)+\mathbf{H}(2)-\mathbf{W}=0$, whare $\mathbf{H}(1)$ and $\mathbf{H}(2)$ are the Hamultomang for the two elootrons ecparately, so that there in a common tume t conjugats to mlau the total enerry W

[^167]: - Pauh, 'Zerta f. Phys, vol 81, p. 765 (1025).

 4 Prof Born has informed me that Helsenberg hen independently obtsined rearita equivalept to theee. (Added In proof)-Eer, Heareaberg, 'Zelt. fur Phys.,' vol. 38. p. 411 (1820).

[^168]: - Buse, 'Zerta, f Phyw,' vol 20, p. 178 (1984), Einstelw, 'Sitrangeb. d Preasa Ao ,'

[^169]: \dagger We have negleoted a term involving $\boldsymbol{\kappa}^{\prime}$ 'Thls approximation is lepitimate, even thougb we later evaluato the number of transitions that ooour in a time T to the order x^{\prime}, provided The large compared with the periode of the atom,

[^170]: " X-Rey Analyaw of Oopper-Zanc, Bliver-Zino and Gold-Zino Alloyn," by Arne Weatgren and Gouta Phragmén, 'Phil. Mag,' vol. 60, p. 811 (1025),

